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Transmission of malaria from man to mosquito defines the human infectious reservoir of
malaria. At the population level this is influenced by a variety of human, parasite, and
mosquito vector factors some or all of which may vary depending on the epidemiological
setting. Here, we review our current state of knowledge related to human infectiousness to
mosquitoes and how current malaria control strategies might be adapted to focus on reducing
this. While much progress has been made in malaria control, we argue that an improved
understanding of human infectivity will allow more effective use of current control tools and
make elimination a more feasible goal.

Considerable progress has been made in our
understanding of the production and mat-

uration of Plasmodium falciparum gametocytes
and associated factors related to the biology of
malaria transmission at the level of the individ-
ual malaria-infected patients (Meibalan and
Marti 2016). In this review, we examine how
these individual factors combine with epidemi-
ological and entomological elements to define
transmission at the population level. The prem-
ise is that if we are able to better understand
transmission, we can then more effectively tar-
get malaria transmission stages in the fraction of
the human population that is most important
for onward malaria transmission to mosqui-
toes. Moreover, improving our understanding
of malaria transmission at the population level
will also allow more accurate monitoring of the

effects of control and elimination programs to
specifically counter the likelihood of resurgence
of malaria in areas that remain receptive to
malaria.

THE HUMAN PARASITE RESERVOIR:
A MATTER OF SENSITIVITY

Community estimates of parasite carriage by
microscopy (as parasite prevalence) are the
most widely available malaria metrics and are
commonly used to compare malaria transmis-
sion intensity between areas (Hay et al. 2009)
and compare infection burden between differ-
ent populations within malaria-endemic re-
gions (Smith et al. 2005). Routine microscopy
has a sensitivity in the range of 50–100 para-
sites/mL of blood (Okell et al. 2012). Rapid di-
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agnostic tests (RDTs), lateral flow devices that
are based on histidine-rich protein 2 (HRP2) or
Plasmodium lactate dehydrogenase (pLDH)
and aldolase (Bell et al. 2006), achieve a similar
sensitivity �100 parasites/mL (Banoo et al.
2006) and are increasingly widely used for rou-
tine malaria diagnosis and epidemiological sur-
veys (Bastiaens et al. 2014). Estimates of parasite
prevalence from RDTs are often slightly higher
than microscopy because of the persistence of
antigen after infection has been cleared (Wu
et al. 2015). Molecular methods for malaria
detection and species identification include
nested polymerase chain reaction (nPCR)
(Snounou et al. 1993), quantitative PCR (qPCR),
quantitative reverse transcription (qRT)-PCR,
and nucleic acid sequence-based amplification
(NASBA), and invariably detect a larger num-
ber of infections. nPCR, for which most data is
available, in conjunction with microscopy data,
detects approximately twice as many infections
as microscopy (Okell et al. 2012), but the frac-
tion of infections that is undetectable by mi-
croscopy varies considerably between endemic
areas and population groups. Although parasite
prevalence overall is lower, the proportion of
infections present at submicroscopic parasite
densities is largest in low-endemic areas (Fig.
1). This may reflect the lower density of malaria
parasites in low transmission settings that may,
in turn, be explained by a lower likelihood of
superinfection and a large fraction of monoclo-
nal infections, which are better controlled by the
human immune system (Okell et al. 2012). In all
areas in which transmission intensity is suffi-
ciently high to elicit an age-dependent acquisi-
tion of immunity, adults are more likely to carry
submicroscopic infections (Proietti et al. 2011;
Nguyen et al. 2012; Mosha et al. 2013). The role
of antimalarial immunity in determining the
density and detectability of infections is cur-
rently incompletely understood. In the context
of malaria-elimination initiatives, it is of great
relevance to understand the influence of waning
residual immunity (that follows successful ma-
laria control) on the likelihood that malaria in-
fections elicit malaria symptoms and reach den-
sities that are detectable by currently available
diagnostics (Wu et al. 2015).

GAMETOCYTE PRODUCTION AND THE
HUMAN INFECTIOUS RESERVOIR

Not surprisingly, in a similar way that molecular
diagnostics have identified increased number
of malaria infections, molecular assays for the
sexual-stage gametocytes have unveiled a previ-
ously unappreciated pool of low-density game-
tocyte carriers (Bousema and Drakeley 2011).
The detection of gametocyte-specific mRNA,
primarily based on Pfs25 mRNA (Bousema
and Drakeley 2011; Wampfler et al. 2013),
pfg377, or Pfs230 (Nwakanma et al. 2008), has
shown that mature gametocytes can be detected
in the majority of symptomatic (Nassir et al.
2005; Nwakanma et al. 2008; Sawa et al. 2013;
Eziefula et al. 2014) and asymptomatically P.
falciparum–infected individuals (Ouedraogo
et al. 2007; Shekalaghe et al. 2007; Nwakanma
et al. 2008), even if densities of asexual parasites
are below the microscopic threshold for detec-
tion (Ouedraogo et al. 2007; Shekalaghe et al.
2007; Wampfler et al. 2013).

The presence of an undetectable gametocyte
fraction was assumed before the advent of mo-
lecular gametocyte diagnostics as a result of ob-
servations of successful mosquito infections
from individuals who had no gametocytes de-
tected by microscopy (Boudin et al. 1993b; Bou-
sema et al. 2012a). The proportion of mosqui-
toes that becomes infected after feeding on these
submicroscopic, and therefore low-density, ga-
metocyte carriers is typically two- to fivefold
lower than on microscopy-positive gametocyte
carriers (Coleman et al. 2004; Schneider et al.
2007; Ouedraogo et al. 2009, 2015; Bousema
et al. 2012a; Churcher et al. 2013). However,
the high number of these individuals in many
endemic settings makes submicroscopic game-
tocyte carriers potentially significant contribu-
tors to malaria transmission (Bousema et al.
2014).

It would seem important that from a public
health perspective, a better understanding of the
detectability of malaria infections that infect
mosquitoes and quantification of the relative
contribution of patent and subpatent infections
to the human infectious reservoir is required. As
examples, two recent studies that determined

T. Bousema and C. Drakeley

2 Advanced Online Article. Cite this article as Cold Spring Harb Perspect Med doi: 10.1101/cshperspect.a025510

w
w

w
.p

er
sp

ec
ti

ve
si

n
m

ed
ic

in
e.

o
rg

Harbor Laboratory Press 
 at PENN STATE UNIV on June 30, 2019 - Published by Cold Springhttp://perspectivesinmedicine.cshlp.org/Downloaded from 

http://perspectivesinmedicine.cshlp.org/


infectivity in community surveys indicate that
onward transmission to mosquitoes is possible
from infections that have no detectable gameto-
cytes or asexual parasites by microscopy. In
a moderate transmission setting in Senegal,
8% (2/25) of infectious individuals had no par-
asites detected by microscopy, yet were respon-
sible for 18.2% (12/66) of all mosquito infec-
tions. A similar study in a high-endemic setting
in Burkina Faso found that 28.7% (25/87) of
infectious individuals were parasite-free by mi-
croscopy, yet responsible for 17.0% (145/855)
of all infected mosquitoes (Ouedraogo et al.

2015). The latter study was the first to use mo-
lecular assays in combination with mosquito
feeding assays and confirmed that all infectious
individuals had parasites detected by RNA-
based diagnostics (Ouedraogo et al. 2015). In
a setting of intense malaria transmission in Bur-
kina Faso, a substantial proportion of infectious
individuals harbored parasite densities below
100 parasites/mL, the density realistically de-
tected by microscopy and RDTs (Fig. 2). These
and other findings from transmission studies
(Stone et al. 2015) would suggest two relatively
clear and distinct paths for diagnostics for re-
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Figure 1. Submicroscopic parasite carriage as a function of malaria transmission intensity. Prevalence of Plas-
modium falciparum infections detected by nested polymerase chain reaction (nPCR, x-axis) or microscopy (y-
axis) in the same individuals. Each data point and associated confidence intervals represent data from one cross-
sectional survey. The dotted line shows the correlation that would be expected if the prevalence of infection
detected by both methods was the same. The solid line with shaded area represents the best fit to the data and
confidence interval (Okell et al. 2012). (Panel from Okell et al. 2012; adapted, with permission, from the
authors.) The shaded arrows in the panel below shows (top) the intensity of malaria transmission, which is
typically defined by microscopy and ranges from low to high transmission intensity; (middle) the average
parasite density in infections that increases with transmission intensity; and (bottom) the proportion of infec-
tions that is submicroscopic. While the proportion of the population that is malaria-infected is lowest in low-
endemic settings, the fraction of these infections that is submicroscopic (undetectable by microscopy and rapid
diagnostic tests [RDTs]) (Wu et al. 2015) is largest in low-endemic settings.
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search and public health settings. First, more
detailed research studies aiming to quantify
the human infectious reservoir or quantify the
impact of transmission-blocking interventions
would benefit from the use of sensitive, quanti-
tative molecular tools to detect asexual parasite
populations and gametocytes. In contrast, out-
side research settings, malaria surveillance and
surveys to support and evaluate community in-
terventions would not require gametocyte-spe-
cific diagnostics but instead rely on sensitive
methods to detect all stages of infection on the
assumption that all parasite infections are viable
sources of gametocytes and therefore potential-
ly infectious (Bousema et al. 2014).

DEMOGRAPHIC AND ENVIRONMENTAL
FACTORS INFLUENCING MALARIA
TRANSMISSIBILITY

Many previous studies aiming to determine the
human infectious reservoir often selected indi-

viduals with microscopically detected gameto-
cytes for transmission experiments (Stone et al.
2015) and, as discussed above, it is now clear that
this approach will have missed individuals who
harbor submicroscopic gametocyte densities
and who are potentially infectious. However,
even if individuals are selected randomly from
a population to assess their infectivity, these in-
fectivity assessments do not allow drawing firm
conclusions on the relative importance of differ-
ent populations for onward transmission. The
selection of study participants often does not
take into account the demographic structure
of populations. All available studies on the hu-
man infectivity to mosquitoes that included a
wide age range, observed that the proportion of
mosquitoes that become infected in mosquito
feeding assays is higher in children, because they
have higher gametocyte densities than adults
(Muirhead-Thomson 1957; Graves et al. 1988;
Githeko et al. 1992; Boudin et al. 1993a; Bonnet
et al. 2003; Gaye et al. 2015). Yet, when estimates
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Figure 2. Parasite density and infectivity in relation to age in an area of intense malaria transmission. Each dot
represents an individual in which parasite carriage was determined and quantified by a quantitative polymerase
chain reaction (qPCR) (Hermsen et al. 2001) and onward malaria transmission was determined by membrane
feeding assays. Open dots represent uninfected individuals (parasite density equals zero) or malaria-infected
individuals who are not infectious to mosquitoes. Closed circles indicate infectious individuals. Parasite density
and the likelihood of infecting mosquitoes are highest in children; onward transmission to mosquitoes is
commonly observed at densities below the microscopic threshold for detection (Slater et al. 2015).
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are adjusted for the demographic composition
of the population, the importance of older in-
dividuals becomes clearer and in many settings
adults comprise .20% of the human infectious
reservoir (Muirhead-Thomson 1957; Graves
et al. 1988; Githeko et al. 1992; Bonnet et al.
2003; Stone et al. 2015). This contribution
may be increased further if, in addition to de-
mographic composition, both accessibility and
attractiveness of humans to mosquitoes are also
considered. These factors have never been di-
rectly incorporated in assessments of the human
infectious reservoir, although it is well known
that the number of mosquito bites a person ex-
periences is highly variable. This is mostly driv-
en by human behavior and use of protective
measures. In areas with good bednet coverage
because of the specific targeting of children
and pregnant women, net use is highest in young
children (,5 years) and lowest in older children
and adolescents (Baume and Marin 2007; Ber-
nard et al. 2009; Matovu et al. 2009; Kulkarni
et al. 2010). Moreover, older individuals also
tend to spend more evening hours awake, un-
protected by a net and sometimes outdoors
where a relevant, and potentially increasing,
proportion of bites of malaria-transmitting
mosquitoes occurs (Braimah et al. 2005; Reddy
et al. 2011; Moiroux et al. 2012). Adults are also
more likely to attract mosquitoes (Muirhead-
Thomson 1951; Thomas 1951; Clyde and Shute
1958; Carnevale et al. 1978; Port et al. 1980), a
phenomenon probably associated with their
larger body weight and surface area (Port et al.
1980) and possibly with body temperature and
chemical cues that change with increasing age
(Knols et al. 1995; Mukabana et al. 2002; Qiu
et al. 2006). The lower intervention use, shorter
sleeping times, and increased attractiveness to
mosquitoes all make older children and adults
considerably more likely to be fed on by anoph-
eline vectors and thereby increase their plausible
contribution to the human infectious reservoir
for malaria if they are infectious to mosquitoes
(Fig. 3).

By their nature, cross-sectional surveys are
typically time-dependent and reflect a relatively
short period or snapshot of population infec-
tivity to mosquitoes. This creates challenges for

extrapolating single time-point measurements
of infectivity to an overall contribution to trans-
mission. It is clear that infections have differing
dynamics in different hosts, which will depend
on both intrinsic (e.g., age and immunity as a
result of local malaria endemicity) and extrinsic
factors (e.g., treatment seeking behavior and
treatment). There are very limited data on lon-
gitudinal infectiousness of individuals or pop-
ulations following natural infections. Malaria
therapy studies have shown that individuals
can be infected for up to a year and be infectious
to mosquitoes at multiple time points during
this period (Jeffery and Eyles 1955). In the ab-
sence of sufficiently detailed data from natural
infections, the malaria therapy data form a key
component of infectiousness in malaria mathe-
matical models (Ross et al. 2006; Okell et al.
2012; Johnston et al. 2013). However, as dis-
cussed above, continual exposure to parasites
and the acquisition of immunity will influence
asexual and, consequently, sexual parasite levels,
which together with factors such as human ge-
netics, exposure to other infections, and nutri-
tion and the restricted demographic range of the
participants in the malaria therapy studies lim-
its interpretation from these studies. One of the
important suggestions from malaria therapy
data that requires further studies in natural in-
fections concerns temporal fluctuations in the
infectivity of gametocytes during an infection
(Johnston et al. 2013). This corroborates anec-
dotal reports from natural infections that the
likelihood of mosquito infection at a given ga-
metocyte density may fluctuate between seasons
and potentially with the duration of malaria
infections (Ouedraogo et al. 2015) and would
clearly be a very important factor to parametrize
malaria transmission models. A recent analysis
of case reports and infections post-blood-trans-
fusion has suggested that infections with P. fal-
ciparum may last for up to 13 years (Ashley and
White 2014). No data on gametocyte carriage or
infectivity are available for these and other
chronic infections, yet such data may be vitally
important in managing malaria resurgence in
areas of low transmission.

Broadly speaking, two types of infection
scenario can be seen as bookends with individ-
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uals transitioning from one to the other as im-
munity develops. Initially, acute infections in
individuals with limited immunity would be
expected to result in higher parasite and game-
tocyte densities infecting high numbers of mos-
quitoes. These infections would be of relatively
short duration curtailed by drugs or, in a worst-
case scenario, death. Eventually, infections in

immune individuals will achieve low parasite
densities and consequently infect few mosqui-
toes and only sporadically. These infections,
however, might be expected to last for several
weeks and months as infections are asymptom-
atic. The infectiousness of any subsequent or
superinfection may also depend on when in a
transmission season this occurs. Ouédraogo

Infectious

C  Proportion of individuals infective to mosquitoes

B  Proportion of individuals with gametocytes Contribution to the human infectious reservoir

Contribution adjusted for body size and
relative exposure

A  Age-stratified population

0–5 5–15 >15

Gametocytemic
(noninfectious)

Gametocytemic

Nongametocytemic

Nongametocytemic

Figure 3. The human infectious reservoir for malaria. Individuals in the figure are represented by circles in three
age groups: ,5 (dark gray), 5–15 (black), and .15 years (light gray). The age-stratified population (A) reflects
the abundance of individuals in each group based on a simplified population age structure in sub-Saharan
Africa. (B) Speckling within circles represents the presence of Plasmodium falciparum gametocytes by molecular
methods. (C) Solid filled circles represent who are infectious to mosquitoes in membrane feeding assays. Many
gametocytemic individuals are not infectious to mosquitoes at the moment of sampling. The top pie chart
presents the proportional contribution of each age group to the human infectious reservoir for malaria after
taking into account the demographic distributions in the population. The bottom pie chart presents the same
contribution to the human infectious reservoir for malaria, taking into account differences in mosquito-biting
frequency that are related to differences in behavior, protective measures, and attractiveness to mosquitoes
because of body size and other host characteristics. (From data in Stone et al. 2015; adapted, with permission,
from Elsevier # 2015.)
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et al. (2015) showed that as parasite and game-
tocyte densities declined during a transmission
season in Burkina Faso, so did infectiousness to
mosquitoes. The decline was more pronounced
in the youngest age groups, which was hypoth-
esized to be a result of transmission-blocking
immunity (discussed below), while the infec-
tiousness of adults remained consistent and
low. Longitudinal data such as these need to
be interpreted in the context of the likelihood
of the infected host being sampled by a mosqui-
to. In Burkina Faso, where malaria transmission
vector densities are highly seasonal and in the
dry season infectious individuals may rarely be
bitten and mosquitoes that do bite may not
survive to transmit malaria. Counts of infected
mosquitoes can be used to estimate indirect
measures of population infectiousness or k (Kil-
leen et al. 2006; Tusting et al. 2014). These mea-
sures are perhaps of more use for evaluating
entomological factors than for characterizing
the human infectious reservoir for malaria as
individual human or age-specific contributions
cannot be derived. Additionally, there are in-
consistencies in methodological approaches
used to calculate k, including variation in mos-
quito trapping techniques that only sample a
subset of available mosquitoes, limiting the
broader relevance of any estimates.

HUMAN IMMUNE RESPONSES
INFLUENCING MALARIA TRANSMISSIBILITY

Human immune responses can influence ma-
laria transmission in several ways. Immune re-
sponses that reduce or prevent the establish-
ment of blood-stage parasitemia or reduce
the multiplication of the asexual will reduce ma-
laria transmission potential by simply reducing
the number of parasites that become gameto-
cytes. Immune responses may also directly tar-
get gametocytes or their infectivity to mosqui-
toes. As described in detail in Meibalan and
Marti (2016), early-stage gametocytes of P.
falciparum sequester primarily in the bone mar-
row (Sinden and Smalley 1979). There is incom-
plete evidence for immune recognition of
proteins that are present on the surface of ery-
throcytes that contain developing gametocytes

and may influence gametocyte sequestration
(Hayward et al. 1999; Rogers et al. 2000) and
maturation (Sutherland 2009; Tonwong et al.
2012). Similarly, naturally acquired antibody
responses have been described that recognize
erythrocytes containing mature, infectious ga-
metocytes and these antibodies have been
hypothesized to play a role in the immune clear-
ance of circulating gametocytes (Saeed et al.
2008). However, experimental evidence for
these immune responses to gametocyte-infect-
ed erythrocytes is difficult to show and a func-
tional phenotype is only speculative. By com-
parison, the natural acquisition of antibody
responses that influence the infectivity of game-
tocytes/gametes in mosquitoes is well estab-
lished. Gametocytes circulate for an average of
4 to 7 days (Bousema et al. 2010), after which
gametocytes are removed from the bloodstream
in the spleen and gametocyte proteins become
accessible to the human immune system. Prote-
omic analysis has identified .2000 proteins
that are expressed in gametocytes of which sev-
eral hundred that are specific to stage IV and V
gametocytes (Lasonder et al. 2002, 2016; Le
Roch et al. 2004; Silvestrini et al. 2010). Immune
recognition and the functionality of immune
responses have been described for only a hand-
ful of these proteins. This is due, in part, to a lack
of specific reagents to examine immune recog-
nition, which is in turn influenced by the fact
that several protein families have complicated
tertiary structure. The limited immune respons-
es to gametocyte antigens may be a result of
reproductive restraint in which the parasite pro-
duces low levels of gametocytes to avoid the
induction of effective immunity (Taylor and
Read 1997).

The functionality of antibody responses to
gametocyte and gamete antigens can be most
convincingly assessed in in vitro experiments
in which purified IgG is mixed with cultured
gametocytes and offered to mosquitoes in the
standard membrane feeding assay (SMFA)
(Ponnudurai et al. 1989). The SMFA has re-
vealed that naturally acquired antibodies to
sexual-stage malaria parasites may inhibit fer-
tilization in the mosquito midgut by inhibit-
ing gamete mobility, reducing contact between

Malaria Transmission at the Population Level
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male and female gametes or complement-
mediated gamete lysis (Vermeulen et al. 1985;
Grotendorst et al. 1986; Kaslow et al. 1992;
Ranawaka et al. 1994). At present, the most con-
vincing evidence for naturally acquired trans-
mission-reducing immunity (TRI) has been as-
sociated with the presence of antibodies to
proteins Pfs230 and Pfs48/45 (Rener et al.
1983), which are present on the surface of ga-
metocytes/gametes and play an important role
in male microgamete fertility (van Dijk et al.
2001; Eksi et al. 2006). Pfs25 and Pfs28 (Duffy
and Kaslow 1997) are candidate proteins for the
development of vaccines that elicit TRI but play
no relevant role in naturally acquired TRI be-
cause these genes are posttranscriptionally re-
pressed until the parasite’s development in the
mosquito midgut (Pradel 2007) and proteins
are therefore not exposed to the human im-
mune system (Miura et al. 2013). Antibody re-
sponses to Pfs8/45 and Pfs230 have been detect-
ed in numerous malaria-endemic settings and
have been associated with TRI (Premawansa et
al. 1994; Healer et al. 1999; Bousema et al. 2006,
2010; Drakeley et al. 2006; Jones et al. 2015) and
monoclonal antibodies against several epitopes
of these proteins reproducibly inhibit parasite
fertilization. However, the role of Pfs45/48 and
Pfs230 antibodies in natural malaria transmis-
sion remains to be quantified and a possible role
of antibody responses to other sexual-stage an-
tigens has been hypothesized but remains to be
proven. Despite the need for more research in
this area, it is evident that human immune re-
sponses can reduce the transmissibility of game-
tocytes in many African settings (Bousema et al.
2011) and that a fraction of gametocyte carriers,
estimated at �5%, is capable of completely pre-
venting mosquito infection (Bousema et al.
2006, 2007; Drakeley et al. 2006).

CONSIDERATIONS FOR THE DEPLOYMENT
OF TRANSMISSION-REDUCING
INTERVENTIONS

Key considerations for any intervention that aim
to reduce transmission are intervention cover-
age and the duration of the transmission-reduc-
ing effects. Coverage is essential in light of the

discussion above about the relatively high prev-
alence of potentially infectious individuals who
would be missed by current diagnostics. Recent
work on trial design for transmission-blocking
vaccines (TBVs) suggests that coverage of 80% is
required for a viable vaccine effect (Delrieu et al.
2015) with efficacy further enhanced if the
immunity induced lasts for 12 months or longer.
This latter point has implications for choice of
vaccine antigen and immunization strategies.
The impact of all TBV will be dependent on their
ability to induce long-lasting TRI. Vaccines
based on prefertilization antigens such as
Pfs48/45 and Pfs230 may benefit from natural
boosting of immune responses because these
proteins are expressed in gametocytes and there-
by naturally presented to the immune system.
TBV based on postfertilization antigens (e.g.,
Pfs25) would not be boosted as the immune
system is not exposed to these antigens and are
thereby fully dependent on the immunization
approach (Nikolaeva et al. 2015). Antibody lev-
els are crucial for the efficacy of the RTS,S vac-
cine (White et al. 2015) and the same could be
expected for a TBV; the efficacy of naturally in-
duced sexual-stage antibodies is strongly influ-
enced by antibody titer (Bousema et al. 2010).

In the absence of an efficacious TBV, trans-
mission-reducing interventions now com-
monly rely on the deployment of antimalarial
drugs to reduce the human infectious reservoir
for malaria. Community-based chemotherapy
studies have shown that only treating individu-
als positive by RDT had a very limited effect on
transmission (Tiono et al. 2013; Cook et al.
2015). This limited effect is related to the pro-
portion of infections that are capable of result-
ing in onward malaria transmission that is
undetected and therefore not targeted (Tiono
et al. 2013; Cook et al. 2015). In addition, the
beneficial prophylactic effect of antimalarial
drugs is withheld from a large proportion of
the population if treatment is prompted by ma-
laria diagnosis, which may further reduce the
effect of screening-and-treatment approaches
(Okell et al. 2011). At present, there is little
data to indicate what density of parasites a di-
agnostic test needs to achieve for a screen-and-
treat approach to become effective. On one
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hand, the proportion of populations that is di-
agnosed with malaria infections is increasing
with the improvement of molecular diagnostics
that examine larger blood volumes or use more
sensitive molecular targets (Bousema et al.
2014; Hofmann et al. 2015). On the other
hand, countries are eliminating malaria without
a specific focus on these low-density carriers
(Bousema et al. 2014; Lin et al. 2014). It appears
likely, albeit formally unproven, that malaria
elimination can be achieved sooner if field-de-
ployable diagnostics become more sensitive and
allow a larger proportion of the parasitemic and
infectious human reservoir to be included in
interventions.

It is important to note that infections are
likely to cluster in a household and these house-
holds in turn may also be proximal. Studies in
highland Kenya and low-endemic Tanzania
found that individuals were 2–6 times more
likely to be positive by molecular tests in the
household of a person with a positive RDT
(Cook et al. 2015; Stresman et al. 2015). This
spatial heterogeneity in transmission has long
been recognized at a macro scale but is only
recently being described at micro scales (Bou-
sema et al. 2012b; Bejon et al. 2014). The clus-
tering of malaria infections in certain geograph-
ic areas (Bousema et al. 2012b; Bejon et al. 2014)
or demographic populations (Wesolowski et al.
2012; Yangzom et al. 2012; Sturrock et al. 2013)
has relevance for both the development of im-
munity to infection and long-term parasite car-
riage as well as for targeted control. In some
instances in which malaria control nears elimi-
nation but isolated pockets of continued trans-
mission persist, the value of targeted interven-
tions is evident. In other settings in which
malaria continues to be widespread but hetero-
geneous, the evidence that supports targeted
interventions is less convincing. In these set-
tings, individuals who are disproportionally ex-
posed to (infected and uninfected) mosquitoes
may spread malaria transmission to the larger
population (Woolhouse et al. 1997). Targeting
these areas or individuals theoretically forms a
highly efficient approach to malaria control
(Bousema et al. 2012b), but many uncertainties
exist about the size, locality, detectability, and

stability of so-called malaria hot spots (Bejon
et al. 2014). One cluster-randomized trial that
quantified the effect of hot-spot-targeted inter-
ventions on surrounding malaria-endemic
communities found very limited evidence for
this community effect (Bousema et al. 2016)
Uncertainties about the spatial and temporal
dynamics of infected mosquitoes and human
parasite carriers currently hinder the rational
targeting of interventions in areas where malar-
ia transmission is widespread but geographical-
ly heterogeneous.

CONCLUSIONS

Control and transmission reduction of malaria
presents a uniquely complex challenge given its
high transmissibility or R0 (Smith et al. 2005).
Notwithstanding this, there are encouraging re-
ports of major reductions in malaria morbidity
worldwide (Bhatt et al. 2015) and several coun-
tries have recently declared themselves malaria-
free. However, lessons from history showed that
the Global Malaria Eradication Program had
little impact in Africa and, while this was attrib-
uted to decreasing efficacy of interventions,
there was also major acknowledgment of our
lack of fundamental understanding of basic bi-
ology. The currently available, field-deployable
diagnostic approaches, such as microscopy and
RDT, miss a substantial proportion of infectious
individuals. This undiagnosed fraction of the
human infectious reservoir may limit the im-
pact of malaria interventions that depend on
malaria diagnostics and extend the intervention
phase that is required before elimination is
achieved. TBV would be a highly desirable asset
for malaria-elimination efforts and would avoid
the challenges experienced by chemotherapy
approaches that rely on malaria diagnosis.
TBV are receiving significant investment, but
their efficacy will depend on the longevity of
the induced immune responses and the cover-
age of individuals transmitting infections to
mosquitoes. A better understanding of the dy-
namics of the human infectious reservoir for
malaria in the context of changing mosquito
vector populations and other malaria-control
interventions is urgently needed to support

Malaria Transmission at the Population Level

Advanced Online Article. Cite this article as Cold Spring Harb Perspect Med doi: 10.1101/cshperspect.a025510 9

w
w

w
.p

er
sp

ec
ti

ve
si

n
m

ed
ic

in
e.

o
rg

Harbor Laboratory Press 
 at PENN STATE UNIV on June 30, 2019 - Published by Cold Springhttp://perspectivesinmedicine.cshlp.org/Downloaded from 

http://perspectivesinmedicine.cshlp.org/


the implementation of TBV and other trans-
mission-reducing interventions by setting evi-
dence-based targets in terms of spatial and de-
mographic coverage levels and the strength and
longevity of the incurred protection.
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