
A MIP-and-refine matheuristic for smart

grid energy management

Matteo Fischetti∗1, Giorgio Sartor†1, and Arrigo Zanette‡1

1DEI, University of Padova

October 2012; Revised, 13 March 2013

Abstract

In the last years we have witnessed an increasing interest in smart

buildings, in particular for what concerns optimal energy management,

renewable energy sources, and smart appliances. In this paper we in-

vestigate the problem of scheduling smart appliance operation in a

given time horizon with a set of energy sources and accumulators.

Appliance operation is modeled in terms of uninterruptible sequential

phases with a given power demand, with the goal of minimizing the en-

ergy bill fulfilling duration, energy, and user preference constraints. A

Mixed Integer Linear Programming (MIP) model and a greedy heuris-

tic algorithm are given, intended to be used in a synergic way. We

show how a general purpose (off-the-shelf) MIP refining procedure can

effectively be used for improving, in short computing time, the quality

of the solutions provided by the initial greedy heuristic. Computa-

tional results confirm the viability of the overall approach, in terms of

both solution quality and speed.

Keywords Matheuristics, Mixed-Integer Programming, Refinement heuris-

tics, Energy Management, Smart Houses

∗matteo.fischetti@unipd.it
†gio.srt@gmail.com
‡zanettea@gmail.com

1



1 Prologue

Many successful matheuristic schemes use a black-box MIP solver to gener-

ate high-quality heuristic solutions for difficult optimization problems. The

hallmark of this approach is the availability of a (possibly incomplete) MIP

model of the problem at hand, and of an external metascheme that iter-

atively solves sub-MIPs obtained by introducing invalid constraints (e.g.,

variable fixings) defining “interesting” neighborhoods of certain solutions.

The goal of the approach is to iteratively refine the incumbent solution,

producing a sequence of better and better feasible solutions in short (or, at

least, acceptable) computing times. The above solution-refinement approach

is completely general, i.e., it can in principle be applied to the original MIP

without the need of ad-hoc adaptations.

An example of a general MIP refinement procedure is the evolutionary

polishing method of Rothberg [7]. The method implements an evolutionary

metaheuristic to be applied at selected nodes of a branch-and-bound tree.

A fixed-size population of feasible solutions is maintained. Iteratively, two

or more “parent” solutions are combined with the aim of creating a new

“son” member of the population. This is done by fixing all variables whose

value coincides in the parents solutions, and by heuristically solving the

resulting sub-MIP by invoking an external MIP solver for a limited number

of branch-and-bound nodes. Diversification is guaranteed by performing a

classical mutation operation that consists in (i) selecting at random a seed

solution in the population, (ii) fixing at random some of its variables, and

(iii) heuristically solve the resulting sub-MIP.

Interesting enough for practitioners, an off-the-shelf implementation of

the polishing heuristic is available in some commercial MIP solvers, hence

it can readily be used.

In very difficult cases, however, the approach based on general MIP

refinement is not successful, and one tends to design ad-hoc matheuristics

that exploit the structure of the problem. As a matter of fact, a main issue

with the general approach is the lack of good (or even feasible) solutions

to refine. In this context, one can argue that ad-hoc heuristics and general

2



MIP refinement procedures are complementary one to each other, the former

being typically able to find feasible solutions very quickly, while the latter

can exploit the underlying MIP model to improve them by reaching a quality

degree that is difficult to attain otherwise.

In the present paper we show how the application of above scheme can

lead to a very effective overall heuristic even in case a very simple greedy is

used to feed an off-the-shelf general MIP refinement module. The resulting

MIP-and-refine approach is exemplified and tested in the context of smart

grid energy management, whose underlying MIP models turn out to be very

difficult to solve without the hints provided by an external heuristic.

Although we cannot claim deep theoretical contributions, we hope that

the present paper can be used as a case study by researchers and practi-

tioners working in the field of matheuristics, and that the simplicity of the

MIP-and-refine approach will make it one of the first options to try when

approaching a new problem.

2 Introduction

Energy optimization is attracting an increasing interest amongst researchers

as long as new “smarter” infrastructures and devices are going to replace

the traditional ones. The most popular scenario involves a new concept

of electrical grid, the Smart Grid that allows to convey a two-way flow of

electricity and information between central generators and customers [5].

Smart Grid benefits are fully exploited only if the grid endpoints, home

appliances for examples, are smart as well. Smart appliances are able to

exchange data with the grid, such as dynamic energy prices and grid sta-

tus. Along with user preferences, this information can be used to optimally

manage the energy demand in order to reduce the customer energy bill and

to prevent major blackouts. A common way of addressing the demand side

energy management problem is by solving a scheduling problem involving

multiple appliances with different operational constraints, user preferences,

renewable energy sources, and batteries.

Mixed Integer Linear Programming (MIP) models from the literature

3



allow for an effective mathematical formulation of the appliance scheduling

problem. Barbato et al. [2] also take the photovoltaic energy into account,

and a linearized description of battery charge states is given. Sou et al. [9]

provide a detailed MIP formulation of appliance power profiles and opera-

tions, and model appliance operations as a set of sequential uninterruptible

phases with variable inter-phase delays. Other authors have investigated

variants of the appliance scheduling problem, Hatami and Pedram [6] by

taking the interaction among different users into account, Zhang et al. [10]

by considering a so-called microgrid, and Agnetis et al. [1] by addressing

additional thermal comfort constraints.

As far as the solution of appliance scheduling problem is concerned, Car-

pentieri et al. [4] propose an LP-rounding heuristic for solving the appliance

scheduling problem with the goal of minimizing the maximum peak energy

of multiple houses. Barbato et al. [3] use different heuristics to address the

problem of online recovering an offline schedule taking into account the real

parameters.

The paper is organized as follows. In Sections 3 and 4 we describe the

only two ingredients of our recipe: the MIP model and a simple greedy

heuristic, respectively. Computational results are then presented in Sec-

tion 5, while some conclusions are drawn in Section 6.

The present work is based on the dissertation of the second author [8].

3 Our MIP model

Following Sou et al. [9], we model appliance operations as a set of sequential

uninterruptible energy phases, each of which uses a given total amount of

electric energy. For example, typical washing machine phases are pre-wash,

wash, rinse and spinning. The set of phases is also called the power profile

of the appliance.

Depending on the appliance, phase duration may vary, as long as the

inter-phase delay (e.g., the spinning of the washing machine must start

within ten minutes of the rinsing being finished). The total energy given for

a phase can be evenly distributed over time, or it may vary. We model the

4



latter case with per-phase bounds on the instantaneous power consumption.

Besides the intrinsic operational constraints, we allow the user to specify

preferences for the time interval in which an appliance should run (e.g., start

the washing machine between 4pm and 6pm).

Following Barbato et al. [2], we have modeled three classes of energy

sources: power grid, domestic renewable energy and accumulators (batter-

ies). The power grid advertises the maximum amount of available energy

(peak power) for each time instant. Note that this peak power can be dif-

ferent from the actual user contract maximum power. In fact, a common

feature in the Smart Grid paradigm is to dynamically advertise (i.e., broad-

cast) the peak power depending on the grid state, in order to let users adjust

their demands for preventing more dangerous power outages. Along with

the peak power, also the cost of energy changes with time. For example,

in the Italian market it can vary between two values depending on the day

time and on the day of the week. More dynamic power grids allow for a

finer grain price adjustment (hourly or less).

Domestic renewable energy sources provide free energy but with a lim-

ited availability. For example, the performance of a photovoltaic (PV) plant

depends on geographical position, weather conditions, and time. Accumu-

lators allow to store energy (from grid or from other sources) when energy

price is low, and to use it later when energy price is higher. This feature rep-

resents an important degree of freedom as far as optimization is concerned.

Our model only deals with batteries, viewed as direct electric energy ac-

cumulators; however, it can trivially be extended to other types of energy

accumulators (e.g., boilers for thermic energy).

Finally, the optimization goal is to minimize the total energy cost by

finding a proper allocation of all appliance phases.

Given two integers a and b, let [a, b] denote the discrete set {a, a +

1, · · · , b}. We discretize the scheduling time horizon into m uniform time

slots, indexed by k ∈ [1,m]. The phases for each appliance i ∈ [1, N ] are

denoted by j ∈ [1, ni]. To simplify notation, in what follows we write ∀i, j
instead of ∀i ∈ [1, N ], j ∈ [1, ni], and ∀k instead of ∀k ∈ [1,m].

In our model, nonnegative continuous variables pkij represent the energy

5



assigned to phase j of appliance i during time slot k. The typical unit for

pkij is Watt (W) per timeslot (energy). With binary variables xkij , s
k
ij and

tkij we model the allocation of a time slot k for phase j of appliance i. In

particular, xkij = 1 iff phase j of appliance i is allocated in time slot k.

Variable skij jumps from 0 to 1 right after the last time slot of where the

phase j of appliance i is allocated, and is defined by the equations:

xk−1ij − xkij ≤ skij ∀ i, j, ∀k ∈ [2,m] (1a)

sk−1ij ≤ skij ∀ i, j, ∀k ∈ [2,m] (1b)

Instead, tkij is 1 iff there is a inter-phase delay between phase j − 1 and j in

time slot k, and is defined as:

tkij = ski(j−1) − (xkij + skij) ∀i, k, ∀j ∈ [2, ni]

Figure 1 illustrates the meaning of the above variables in a simple case

of an appliance with two phases: the first phase is allocated between hours

2 and 6, and the second between 14 and 16 (the day being divided into 12

time slots).

Our model also uses nonnegative continuous variables zk and yk to rep-

resent the amount of total energy sold and bought in each time slot k,

respectively. Then, if ck and gk denote the input cost of bought and sold

electricity during time slot k, respective ly, our MIP model calls for

z = min
m∑
k=1

(
ckyk − gkzk

)
(2)

subject to the following constraints.

Phase energy: ensures the energy allocated during phase j of appliance i

meets the given phase total energy Eij

m∑
k=1

pkij = Eij ∀ i, j (3)

Energy bounds: ensures the energy allocated in phase j for appliance i in

6



Figure 1: Example of binary variables xkij , s
k
ij and tkij

7



any time slot k belongs to the allowed range [P ij , P ij ]

P ij x
k
ij ≤ pkij ≤ P ij x

k
ij ∀ i, j, ∀k (4)

Power safety: guarantees that the total energy assigned in time slot k does

not exceed the peak power limit

yk ≤ P k
peak ∀ k (5)

where P k
peak is the peak limit of slot k; this constraint can also be used to

model additional unscheduled power demands that reduce the available grid

energy in time slot k.

Energy phase duration:

T ij ≤
m∑
k=1

xkij ≤ T ij ∀ i, j (6)

where T ij and T ij represent, respectively, the lower and upper bound on the

number of time slots to allocate for phase j of appliance i.

Uninterruptible phase: these constraints ensure that all time slots of phase

j are allocated contiguosly (i.e., when an energy phase starts, it must finish

without interruptions).

xkij + skij ≤ 1 ∀ i, j, k (7)

Recall that skij is 0 before the last time slot allocated for phase j and appli-

ance i, and becomes 1 afterwards (1a) until the end (1b). Thus, constraint

(7) prevents the variable xkij to be 1 after the last-phase time slot.

Sequential processing: previous energy phase must be finished, before a new

one starts

xkij ≤ ski(j−1) ∀ i, k, ∀ j ∈ [2, ni] (8)

8



Inter-phase delay duration:

Dij ≤
m∑
k=1

tkij ≤ Dij ∀ i, ∀ j ∈ [2, ni] (9)

where Dij and Dij are the minimum and the maximum number of time slots

between phase j − 1 and j of the appliance i.

User time preferences: disable phase allocation of appliance i in the given

time slots

xkij ≤ TP k
i ∀ i, j, k (10)

where TP k
i is equal to zero iff phase j of appliance i cannot be allocated in

time slot k.

In order to model batteries behavior we need two extra binary variables

wk
c and wk

d , where wk
c is equal to 1 if the battery is charging in time slot k

and 0 otherwise, while wk
d is equal to 1 if the battery is discharging in time

slot k and 0 otherwise. Moreover, with the nonnegative continuous variables

vkc and vkd we describe the charge and discharge rates, respectively, that is

the amount of energy that is charged/discharged in time slot k. The total

accumulated energy in time slot k is described by the nonnegative continu-

ous variable ek.

Battery usage constraint: the battery cannot charge and discharge at the

same time.

wk
c + wk

d ≤ 1 ∀ k (11)

Battery charge/discharge rate bounds:

vkc ≤ vmax
c · wk

c ∀ k (12a)

vkd ≤ vmax
d · wk

d ∀ k (12b)

where vmax
c , vmax

d denote the max charge and discharge rates respectively.

9



Battery energy function: this is a linearization of the actual charge/discharge

curves

ek = ek−1 + ηc · vkc − ηd · vkd ∀ k (13)

where ηc and ηd are, respectively, the charging and discharging efficiency

Battery capacity bounds: used to limit the energy stored in the battery

γmin ≤ ek ≤ γmax ∀ k (14)

where γmax and γmin represent the maximum capacity and the minimum

energy safety value (required, for example, by lithium batteries)

Balancing constraint: balance between produced and consumed energy

yk + πk + vkd = zk +

N∑
i=1

ni∑
j=1

pkij + vkc ∀ k (15)

where πk is the the sum of the newable domestic power sources contribution

in time slot k.

4 A Greedy Algorithm

In this section we describe a heuristic greedy algorithm for finding good

feasible solutions of the described problem, that we apply in a multi-start

fashion. The algorithm schedules appliances in order of decreasing priority,

according to a greedy policy—once an appliance has been scheduled, it is

not changed anymore, and all other appliances are allocated on top of the

current partial solution. In the first application of the greedy, we use energy

requirements as appliance priorities. In the subsequent runs, the priority

vector is shifted to generate different solutions. For each appliance, we look

for a feasible allocation of its phases according to the following rules.

We consider a simplified (more restricted) version of the problem, where

the duration dij (say) of each phase is the minimum between T ij and

dEij/P ije, and bounds (4) become pkij = xkijEij/dij for all k.

10



Accordingly, every phase has a constant duration and a constant energy

consumption, and can be scheduled in the time slots interval [1,m − dmin
i ]

where dmin
i =

∑ni
j=1 dij represents the minimum duration of a complete

appliance power profile (i.e., without phase delays). To be more specific,

once a phase has been allocated we look for all possible allocations of the

next phase in the range given by [Dij , Dij ], see (9), and we select the most

profitable one. Our allocation procedure enforces the user preferences on

time slots (10) and three other constraints: power safety (5), uninterruptible

phase (7), and sequential processing (8).

A pseudo-code of our heuristic is given in Algorithm 1. We have an

external loop (starting after line 1) where appliances i are scheduled one after

the other. For each appliance i, we consider all possible “shifts” t for the

starting slot of the first phase (line 3), and then consider a straightforward

greedy (lines 8-19) to find the best starting slot k?j of all other phases j.

Variable kmin gives the first slot k currently available for allocation: it is

initialized at line 7 after the allocation of the first phase, then it is updated

at line 18 after the allocation of each new phase.

Recall that we consider a simplified phase allocation whose duration dij

is a constant, so the “cost of allocating i, j starting from slot k” at lines 5

and 11 refers to the solution with xhij = 1 for all h ∈ [k, k+dij − 1], and also

takes user preferences into account.

When all possible shifts t have been tried, z? gives the cost of the (heuris-

tically) best assignment for all phases of i, the corresponding solution being

stored in the incumbent x. At line 27, if no feasible phase allocation was

found for appliance i (case z? = +∞) the overall problem is heuristically

considered to be infeasible and the greedy is aborted—although this situ-

ation can occur if the constraints are very tight, it never occurred in our

tests.

As to time complexity, the most time consuming step is the cost eval-

uation at line 11, that takes O(dmax) time, where dmax = maxij dij . This

step is executed, for each appliance i and for each shift t, at most nmaxDmax

times, where nmax = maxi ni and Dmax = maxij{Dij − Dij + 1 : j ≥ 2}.
As we have N appliances i and O(m) possible shifts t, the overall time

11



complexity of our heuristic is O(NnmaxDmaxdmaxm).

5 Computational results

In our tests we considered a time horizon of 24 hours, subdivided in 96

time slots of 15 minutes each. Experiments were grouped into four sets

according to two main parameters. The first parameter is the “flexibility”

of the user time preference constraint. We considered two level of flexibility,

namely: high flexibility (HF), meaning that the appliance can be scheduled

at any time during the day, and medium flexibility (MF), meaning that

appliances can run inside a 12-hour randomly-generated time window within

the day. The second parameter is electricity cost: it can vary either every

two hours (BC), or every time slot (TC). For each of the four resulting sets,

namely HFBC, HFTC, MFBC, and MFTC, we considered 10, 20, or 30

appliances, respectively, and solved 5 random instances for each of the 12

combinations—60 instances in total.

A constant price of the sold photovoltaic energy was considered, equal

to half of the minimum cost of the bought energy. All the other model

parameters are taken from uniform random distributions: ck ∈ [2, 4], j ∈
[2, 5], Eij ∈ [400, 800], P ij ∈ [50, 80], P ij ∈ [400, 800], T ij ∈ [1, 2], T ij ∈
[3, 5], and P k

peak ∈ [2400, 2600]. For all appliances i, we set Dij = 0 for all j,

and Dij ∈ [4, 6] (if j ≥ 2) or Dij = m−
∑

t dit (if j = 1).

We considered a single renewable photovoltaic power source, whose pro-

vided energy is sampled from a Gaussian distribution N (µ, σ) with mean

µ = 52 (1pm, the period of maximum production at the latitude of Italy),

standard deviation σ = 10, and maximum value of 1250W per time slot.

The considered battery has a capacity γmax = 500 Watt per time slot and

charge/discharge rates vmax
c = vmax

d = 50 Watt per time slot, with efficien-

cies ηc = ηd = 1.

12



Algorithm 1 Greedy algorithm

1: for all appliances i ∈ [1, N ] by nonincreasing
∑

j Eij do

2: z? ← +∞ ; . Best allocation cost for appliance i

3: for all t ∈ [1 +Di1, 1 +Di1] do . Try all possible shifts t

4: j ← 1 ;

5: z ← cost of allocating i, j starting from slot t (+∞ if infeas.);

6: k?j ← t ;

7: kmin ← t+ dij ; . First slot k available for the next phase of i

8: for all phases j ∈ [2, ni] do . Greedy alloc. of all other phases

9: c← +∞ ; k ← −1 ;

10: for all k ∈ [kmin +Dij , kmin +Dij ] with k+ dij − 1 ≤ m do

11: c← cost of alloc. i, j starting from slot k (+∞ if infeas.);

12: if c < c then

13: c← c ; k ← k

14: end if

15: end for

16: z ← z + c ;

17: k?j ← k ;

18: kmin ← k + dij

19: end for

20: if z < z? then . Update the best allocation for appliance i

21: z? ← z ;

22: xkij ← 0 for all j, k ;

23: xkij ← 1 for all j and k ∈ [k?j , k
?
j + dij − 1]

24: end if

25: end for

26: if z? = +∞ then . No feasible allocation found for appliance i

27: return infeasible

28: end if

29: end for

30: return the incumbent solution x

13



We compared four different solution approaches, all run in single-thread

mode:

• Greedy-alone: our stand alone greedy algorithm without multistart

enhancement;

• Greedy: our greedy algorithm applied N times by starting from the

N possible shifts of the initial priority vector, taking the best solution

found and storing the others;

• Cplex: the state of the art IBM ILOG CPLEX MIP 12.4 solver used

as a black-box, with its default setting, stopped as soon as the first

feasible solution is found;

• Cplex+Polish: CPLEX’s polishing refining heuristic [7] applied right

after the root node and for a total of 10 nodes (all cuts disabled),

when starting from the feasible solution found by the previous Cplex

algorithm;

• Greedy+Polish: our proposed MIP-and-refine scheme, i.e., the previ-

ous Cplex+Polish algorithm but starting from the list of all feasible

solutions found by Greedy.

Note that the last three methods also return a lower bound on the optimal

value hence, as a byproduct, they can provide a proof of optimality in some

(easy) cases. This is true, in particular, when the root-node lower bound is

very tight and the method starts with an (almost) optimal Greedy solution,

meaning that just few branching nodes need to be explored.

14



G
r
e
e
d
y

C
p
l
e
x

C
p
l
e
x
+
P
o
l
i
s
h

G
r
e
e
d
y
+
P
o
l
i
s
h

S
et

%
In

cr
%

S
T

D
T

im
e

%
In

cr
%

S
T

D
T

im
e

%
In

cr
%

S
T

D
T

im
e

%
In

cr
%

S
T

D
T

im
e

H
F

B
C

10
0.

0
5

0.
0

0.
5

25
2
.9

19
3.

4
56

.8
7
2.

7
2

9
5.

6
94

.9
0.

0
5

0
.0

0
.6

H
F

B
C

20
-0

.5
0.

5
2.

4
50

.2
80

.4
3,

05
4.

4
13

.4
41

.2
3,

2
23

.2
-9

.4
4
.8

2
6
2
.0

H
F

B
C

30
-0

.6
0.

5
6.

4
1
.8

4.
7

9,
58

5.
8

-5
.1

3
.4

9,
96

6
.5

-6
.1

1
3
.2

3
1
0
.2

H
F

T
C

10
0.

0
5

0.
0

0.
4

94
.0

12
9.

2
4
9.

0
47

.0
4

9
4.

1
83

.4
0.

0
5

0
.0

0
.6

H
F

T
C

20
-1

.7
1.

2
2.

3
58

.0
49

.9
2,

2
13

.0
-1

.4
2
1.

3
2,

38
7.

4
-2

2.
2

1
1
.8

1
5
4
.7

H
F

T
C

30
-0

.6
0.

3
6.

6
-1

2.
3

1.
4

46
,4

3
9.

1
-1

9.
0

2
.6

4
6,

90
4
.7

-2
1.

2
1

2
.5

6
1
7
.7

M
F

B
C

10
0.

0
5

0.
0

0.
3

15
7
.3

1
14

6
.7

5.
2

38
.8

2
5
1.

4
15

.4
0.

0
5

0
.0

1
.3

M
F

B
C

20
-3

.0
2.

2
1.

5
16

0.
1

45
.9

35
.2

24
.4

24
.2

9
0.

0
-1

3.
8

7
.8

1
0
0
.8

M
F

B
C

30
-0

.8
0.

5
3.

7
4
4.

4
11

.5
65

.1
0.

7
8
.3

16
4.

5
-1

1.
7

1
4
.5

6
7
.4

M
F

T
C

10
0.

0
5

0.
0

0
.3

1
59

.9
89

.5
5.

6
33

.5
1

24
.8

1
8.

8
0
.0

5
0
.0

1
.5

M
F

T
C

20
-1

.2
1.

2
1.

5
5
4.

8
21

.8
52

.5
-8

.4
13

.6
11

4
.2

-2
3.

5
1

2
.6

5
4
.6

M
F

T
C

30
-1

.0
0.

3
3.

7
1
6.

2
24

.8
11

7
.8

-1
4.

0
6
.1

23
2.

7
-2

2.
0

1
.6

1
1
2
.0

T
ab

le
1:

P
er

ce
n
ta

ge
co

st
in

cr
ea

se
(%

In
cr

)
w

it
h

re
sp

ec
t

to
th

e
G
r
e
e
d
y
-
a
l
o
n
e

al
go

ri
th

m
al

on
e,

an
d

co
m

p
u

ti
n

g

ti
m

e
(i

n
C

P
U

se
c.

s)
;

a
n

eg
at

iv
e

in
cr

ea
se

co
rr

es
p

on
d

s
to

a
b

et
te

r
so

lu
ti

on
w

.r
.t

.
G
r
e
e
d
y
-
a
l
o
n
e
.

T
h

e
re

p
or

te
d

va
lu

es
ar

e
ar

it
h

m
et

ic
m

ea
n

s
ov

er
5

ra
n

d
om

in
st

an
ce

s.
C

ol
u

m
n

%
S

T
D

gi
ve

s
th

e
p

er
ce

n
ta

ge
st

an
d

ar
d

d
ev

ia
ti

on
of

co
st

in
cr

ea
se

.
C

om
p

u
ti

n
g

ti
m

es
fo

r
G
r
e
e
d
y
-
a
l
o
n
e

ar
e

ju
st

n
eg

li
gi

b
le

.
S

u
p

er
sc

ri
p

t
k

m
ea

n
s

p
ro

ve
n

op
ti

m
al

it
y

fo
r

k
o
u

t
of

5
in

st
an

ce
s

(p
ro

of
of

op
ti

m
al

it
y,

w
h

en
av

ai
la

b
le

,
b

ei
n

g
ob

ta
in

ed
b
y

an
y

of
th

e
ex

ac
t

m
et

h
o
d

s)
.

15



According to Table 1, Greedy+Polish outperforms its competitors by a

large amount.

As expected, Greedy-alone is always able to provide feasible solutions

in very short computing times. In spite of its greedy nature, the solution

quality is fair in many cases, in particular in the easiest scenarios where

the greedy solution often turns out to be optimal. Nevertheless, for more

difficult scenarios there is room for large improvements—also because of the

contribution of batteries that is exploited by the MIP model but not by the

greedy.

As to Cplex, it has a great difficulty even in finding its first feasible

solution—a task that takes a huge amount of time in the difficult cases. Sig-

nificantly improved solutions are found by Cplex+Polish, thus confirming

the effectiveness of this heuristic. However, the full power of MIP refinement

is only exploited when Greedy+Polish comes into play. This is due to two

main factors: the speed of the greedy, and the fact that several diversified

solutions are passed to the polishing method.

Of course, we cannot claim that Greedy+Polish would outperform more

sophisticated heuristic approaches from the literature on similar problems—

for that, much more extensive computational comparisons would be needed.

However, we believe our computational results support the message of the

present paper—sound matheuristics can be built around a simple greedy

and an off-the-shelf MIP refinement procedure.

6 Conclusions

A simple MIP-and-refine matheuristic framework has been addressed, where

a greedy heuristic is used to trigger a general purpose MIP refinement pro-

cedure. Computational results on a smart-grid energy management problem

have been presented, showing that the method produces sound results.

The approach is based on two ingredients: an initial heuristic, and a

MIP model. The heuristic needs not to be very effective, as its role is just

to initialize a pool of feasible solutions–the more diversified the better. The

MIP model itself needs not to be very sophisticated, as it is automatically

16



resized by the general purpose MIP refinement procedure. Nevertheless,

the combination of the two can be much more effective than the sum of

its parts, in the sense that the two modules work in a highly synergic way

and can produce outcomes whose solution quality can only be matched by

sophisticated ad-hoc heuristics.

Future research on the topic will hopefully confirm the viability of the

approach on other classes of very difficult problems.

Acknowledgements

The research of the first author was supported by the Progetto di Ateneo on

“Computational Integer Programming” of the University of Padova, and by

MiUR, Italy (PRIN project “Integrated Approaches to Discrete and Non-

linear Optimization”).

References

[1] A. Agnetis, G. Dellino, P. Detti, G. Innocenti, G. De Pascale, and

A. Vicino. Appliance operation scheduling for electricity consumption

optimization. In 50th IEEE Conference on Decision and Control and

European Control Conference (CDC-ECC), Orlando, FL, USA, Decem-

ber 12-15, pages 5899–5904, 2011.

[2] A. Barbato, A. Capone, M. Carello, Delfanti, M. Merlo, and A. Za-

minga. House energy demand optimization in single and multi-user

scenarios. In 2nd IEEE International Conference on Smart Grid Com-

munications, 2011.

[3] A Barbato and G. Carpentieri. Model and algorithms for the real time

management of residential electricity demand. In IEEE International

Conference and Exhibition, ENERGYCON ’12, 2012.

[4] G. Carpentieri, G. Carello, and E. Amaldi. Optimization models for

residential energy load management. In Atti delle Giornate AIRO,

Vietri, 2012.

17



[5] X. Fang, S. Misra, G. Xue, and D. Yang. Smart grid – the new and

improved power grid: A survey. IEEE Communications Surveys and

Tutorials (COMST), 14:944–980, 2012.

[6] S. Hatami and M. Pedram. Minimizing the electricity bill of cooperative

users under a quasi-dynamic pricing model. SmartGridComm10, pages

421–426, 2010.

[7] E. Rothberg. An evolutionary algorithm for polishing mixed integer

programming solutions. INFORMS Journal on Computing, 19(4):534–

541, 2007.

[8] G. Sartor. Optimal scheduling of smart home appliances using mixed-

integer linear programming. Master’s Thesis, DEI, University of

Padova, 2012.

[9] K. C. Sou, J. Weimer, H. Sandberg, and K. H. Johansson. Scheduling

smart home appliances using mixed integer linear programming. In

50th IEEE Conference on Decision and Control and European Control

Conference (CDC-ECC), Orlando, FL, USA, December 12-15, pages

5144–5149. IEEE, 2011.

[10] D. Zhang, L.G. Papageorgiou, N.J. Samsatli, and N. Shah. Optimal

scheduling of smart homes energy consumption with microgrid. In

ENERGY 2011, The First International Conference on Smart Grids,

Green Communications and IT Energy-aware Technologies, pages 70–

75, 2011.

18


