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Results
Presented is the model based diagnostics of a three-way catalyst (TWC). The proposed
TWC model relates measurable engine inputs (engine air mass (AM) and catalyst temper-
ature) to a metric that quantifies TWC oxygen storage capacity. The TWC model struc-
ture is based on the dynamics of the TWC and identified using orthogonal least squares
(OLS). The model coefficients are estimated using an instrumental variables four step
(IV4) approach. TWC diagnostics is realized by means of an information synthesis (IS)
technique where changes in the adapted TWC model coefficients are utilized to estimate
TWC health. The approach is experimentally validated on a federal test procedure (FTP)
drive cycle for healthy (full useful life, FUL) and failed (threshold) TWCs. The results
will show that a 100% accurate classification in TWC health estimation (FUL or thresh-
old) is produced for the catalysts tested. [DOI: 10.1115/1.4004041]

Introduction

The Environmental Protection Agency (EPA) and the Califor-
nia Air Resource Board (CARB) began requiring onboard diag-
nostic (OBD) in the 1980s. Today, OBD-II requires every system
that impacts tailpipe emissions be monitored. The main require-
ment from OBD-II is the detection of hydrocarbon (HC), carbon
monoxide (CO), and oxides of nitrogen (NOx) or evaporative
emissions that exceed 1.5 times the federal test procedure (FTP)
standards for that model year [1]. A catalyst monitor ensures that
the TWC is functioning at an acceptable efficiency level keeping
emissions within mandated requirements.

A comprehensive review of patented catalytic converter diagnostic
methods, prior to 1998, is presented in Ref. [2]. This review details
the three main modalities of TWC diagnosis: comparison of
upstream and downstream exhaust gas oxygen (EGO) measurements,
measurement of exhaust gas temperature to determine exothermic
heat, and direct measurements of HC, CO, or NOx. The comparison
of EGO sensor readings is by far the most common method. The
EGO signal comparisons is an indirect diagnosis method (meaning
the exhaust gas composition is not directly analyzed, it is inferred)
based on oxygen storage capacity (OSC) of the TWC. Temperature
based diagnostics is also an indirect approach whereby measuring
the heat release caused by the exothermic reactions taking place in
the TWC indicates catalyst light off [2]. A properly functioning
TWC generates heat during a purge event owing to the chemical
reactions. This exothermic reaction leads to a difference between
inlet and outlet exhaust gas temperatures. As the TWC ages, the
main reaction zone moves from the front of the catalyst toward the
back, representing a change in the temperature profile along the
TWC length. Usually a temperature based method is rarely used
since it requires long steady state driving conditions to accurately
measure the temperature differences. Direct TWC diagnosis using
HC, CO, or NOx sensors seems like the obvious choice for catalyst
diagnosis and emission monitoring. These sensors measure emission
quantities directly and report a failure when the emission is 1.5 times
its standard. However, because these sensors are generally bulky,
temperature limited, and extremely cost prohibitive, they have not
found their way to production.

On the road today, TWC diagnostic monitors utilize the EGO
sensors, both upstream and downstream of the catalyst, to estimate
TWC health. The TWC acts as a time varying emissions capacitor

between the upstream and downstream EGO sensors. When the
TWC is green (under 4000 miles) it is storing and releasing oxy-
gen at a rate such that the downstream EGO senor measures a
heavily attenuated response in comparison to the upstream EGO
response. When the TWC is degraded, its ability to convert pollu-
tants is dramatically reduced. In essence, a failed TWC behaves
more like a straight pipe; “what goes in, comes out.”

There are two basic classes of EGO based catalyst monitors: in-
trusive and passive. The intrusive monitors described in Ref. [3]
use engine fueling to provide a persistently excited repeating
cycle of lean and rich perturbations for a preset duration while the
engine is running within a given speed/load window. The monitor
then calculates the downstream signal length and divides it by a
calibrated, worst case, low oxygen storage length. Failure is
defined as when this ratio is near or greater than unity [3]. Passive
monitors as described in Ref. [4] do not require the fuel perturba-
tions to estimate TWC health. Instead, this monitor activates
when speed, load, and AM reside within a prespecified window of
operation. The monitor then calculates the signal ratio between
the downstream signal arc length and the maximum allowable
length. The catalyst is considered failed when this signal ratio is
beyond a calibrated value [4]. There are pros and cons to both
types of monitors. For example, when an intrusive monitor acti-
vates, closed-loop fueling is suspended, thereby leading to possi-
ble emission penalties. As the EPA implements more stringent
emission requirements, intrusive monitors may become obsolete
because of their potential to negatively impact emissions. Passive
monitors, on the other hand, pose a challenge in that the persis-
tency of excitation condition is contingent upon the drive cycle
and the driver. Thus a passive monitor executes in batch mode
once the engine has entered the window of operation.

There is a class of catalyst diagnostic methods that involve inte-
grating subsystem models together to form an overall catalyst
model. Brandt et al. proposed a model in Ref. [5] that combines
three submodels: an oxygen storage model, a thermal model, and
a static mapping model to predict exhaust emission levels thereby
determining catalyst efficiency. The models use feedgas air/fuel
ratio (AF), mass air flow (MAF), and feedgas temperature to esti-
mate NOx, HC, and CO conversion efficiencies. This work was
expanded in Ref. [6] to incorporate a hypothesis test to estimate
catalyst health. An assumption within this test is that the TWC is
healthy until statistical evidence shows the TWC is malfunction-
ing. This method focuses on the effective catalyst volume or
depleted OSC as the TWC failure mode for which the authors
quantify by the empty or fill time of the OSC. The hypothesis test
classifies the TWC as healthy until the TWC effective volume is
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greater than a prespecified quantity. A degraded TWC is classified
as damaged when the effective volume is less than that required to
meet emission regulations. One limitation of this methodology is
that it requires longer than normal rich and/or lean excursions to
determine the empty or fill characteristics required for diagnosis.

The TWC diagnostic knowledge base appearing in the open lit-
erature is significantly larger than presented. There are, however,
commonalities among these many methods. Oxygen storage
capacity estimation, in one form or another, appears in most of the
proposed TWC diagnostics methods since OSC correlates to NOx

and HC efficiencies [7]. Moreover, OSC is generally estimated
using models that compare upstream and downstream EGO
responses. Another recurring theme in the TWC diagnostics litera-
ture is the use of engine operating information to make diagnos-
tics more robust. Some of these parameters include engine speed,
inlet AF ratio, catalyst temperature, exhaust gas temperature, and
AM through the catalyst, all of which impact conversion effi-
ciency of the TWC.

Three-Way Catalyst Primer

Three-way catalysts are engineered to direct reactants to spe-
cific products. The goal of the automotive TWC is to convert
harmful engine feedgas emissions (NOx, CO, and HCs) into be-
nign gasses (N2, O2, CO2, and H2O). To promote oxidation and
reduction reactions and enhance conversion efficiency, cerium
(Ce) and various cerium oxides are added to the TWC washcoat.
The cerium stores oxygen during lean engine conditions and
releases the oxygen during rich engine conditions. The TWC OSC
is a critical health characteristic influencing conversion perform-
ance. In particular, as the OSC decreases, the conversion capabil-
ity of the TWC (the TWC health) decreases.

For a given health level, the TWC conversion efficiency is
dominated by two primary parameters, exhaust gas space veloc-
ities and TWC temperature. As damage is introduced into the
TWC, there is an irreversible decline in the TWC performance.
The TWC damage considered in this work occurs through one of
two possible paths: excessive TWC temperature leading to sinter-
ing or washcoat poisoning due to high sulfur fuels. Although these
damage mechanisms are distinct, the resulting effects are similar.
Namely, the number of active sites in the TWC is reduced, which
manifest itself as a reduction in the OSC of the TWC.

Space Velocity and TWC Efficiency. The influence of space
velocities on the chemical kinetics in a catalytic converter is
described in Refs. [8] and [9]. These references assume a one-
dimensional, isothermal, plug flow in the TWC during steady-
state operation. Applying a material balance between the catalyst
inlet (i) and outlet (o) yields

ln
Cbo

Cbi

¼ � k0z

v
¼ �k0t (1)

where v is the gas velocity (cm/s), C is the molar concentration of
constituent [(g mol)/(cm3)], z is the length of the catalytic reactor
(cm), k0 is the apparent rate constant, b is a particular reactant,
and t is the residence time(s) of a reactant in the catalytic bed. In
automotive TWCs, the residence time is a function of volumetric
flow and catalyst volume. Space velocity (SV) through the cata-
lyst is the volumetric gaseous flow rate at standard temperature
and pressure (STP) divided by the volume of the catalyst plus
void volume. Substituting the reciprocal of SV, which is the resi-
dence time, into Eq. (1), the rate expression becomes

ln
Cb;o

Cb;i
¼ � k00

SV
(2)

where k0 0 is the empirically determined ratio DSV/Cb. From
Eq. (2), it can see that to increase conversion of reactant b (i.e.,

smaller concentration of b at outlet than at inlet) a decrease in
space velocity must occur.

Temperature and TWC Efficiency. As the temperature of
catalyst TWC increases from cold start conditions, the TWC oxy-
gen storage capacity increases until the TWC reaches its peak effi-
ciency temperature range, which is between 400 and 600�C.
Under high load operation, the catalyst temperature can surpass
900�C at which point, the TWC oxygen storage capacity
decreases due to the sintering of catalyst sites [10]. When this
occurs, the catalytic sites begin to coalesce, thereby decreasing
the surface to volume ratio which decreases the available catalytic
sites. Therefore, active sites get buried within a growing crystal
and with fewer sites available for a reaction, a decline in TWC
performance will follow. Such TWC damage is permanent.

Estimating TWC State. Presented in this section is the intro-
duction of a metric representing real-time estimate of a TWC
state. The metric is an online adaptive TWC gain KTWC defined as

_VHEGOðiÞ ¼ KTWC DuðiÞ (3)

where VHEGO(i) denotes the sampled voltage from a narrowband
HEGO sensor located in the middle of the TWC (also called the
monitoring sensor) and D/(i) is deviations in the feedgas fuel-air
ratio about unity.

This proposed metric is meaningful in that it essentially cap-
tures the state of the TWC OSC and lumps all other catalyst
behavior such as space velocities and TWC temperature into one
adaptive gain [11]. To illustrate, consider the KTWC estimates
using Eq. (3) for three different TWCs tested over the same engine
cycle (Fig. 1). The green TWC gain is consistently low (near
zero) over the engine cycle (Fig. 1). The interpretation of KTWC in
this case is that despite the incoming exhaust feedgas emissions,
the resulting emissions reaching the monitoring sensor in the
TWC are near zero. In fact, a low KTWC gain indicates a high
OSC for a TWC. As the aged and damage TWC were tested, a
corresponding increase in the estimated KTWC occurred, indicat-
ing a low OSC of the TWC. In response to an increase in KTWC,
the fueling controller modulates the air-fuel ratio, thus driving the
chemical kinetics and thermal condition of the TWC in an effort
to maintain regulated EPA emission requirements.

Fig. 1 KTWC estimates for differently conditioned TWCs:
(a) green TWC, (b) aged TWC, and (c) damaged TWC
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The online estimation of KTWC is based on a gradient descent
approach. The sensor used in this estimation is a midbed (monitor-
ing) narrowband EGO sensor (switching type) called the HEGO.
To attenuate the switching frequency behavior of the HEGO and
recover a DC trend, the voltage from the HEGO sensor, VHEGO, is
low pass filtered as

Vf
HEGOðkÞ ¼

1

1� aq�1
VHEGOðkÞ (4)

where VHEGOðkÞ ¼ VHEGOðtÞjt¼kT , T is the sampling interval in
seconds, q�1 denotes a back-sample, and a is selected such that
the filter break frequency corresponds to 1 rad/s. This value was
preselected by the engine manufacturer. Similarly, the EEC fuel-
air command must be filtered using the same low pass filtering
giving

Duf ðkÞ ¼ 1

1� aq�1
DuðkÞ: (5)

Using a first order backward difference equation to approximate
the derivative in Eq. (3) and employing, the filter signals gives the
following discrete equation:

Vf
HEGOðkÞ ¼ T KTWCðkÞDuf ðkÞ þ Vf

HEGOðk � 1Þ (6)

The discrete equation for the one step ahead estimate is

V̂f
HEGOðkÞ ¼ T K̂TWCðkÞDuf ðkÞ þ Vf

HEGOðk � 1Þ (7)

Defining the error necessary for adapting the estimated TWC gain
gives

eðkÞ ¼ Vf
HEGOðkÞ � V̂f

HEGOðkÞ (8)

Using the gradient descent method defined as

DK̂TWCðkÞ ¼ �c eðkÞ @eðkÞ
@K̂TWC

(9)

the adapted TWC gain equation

K̂TWCðk þ 1Þ ¼ K̂TWCðkÞ þ c T Duf ðkÞ

� Vf
HEGOðkÞ � Vf

HEGOðk � 1Þ � K̂TWCðkÞ T Duf ðkÞ
� � (10)

Thus, KTWC in Eq. (3) is calculated as defined in Eq. (10).

Section Summary. Reviewed in this section is the operation
of a TWC, an adaptive gain of the TWC quantifying its state and
those engine parameters (SV and TWC temperature) that influ-
ence the TWC conversation efficiency. In the “Proposed TWC
Diagnostic Approach” section, an online adaptive TWC model
predicting KTWC will be developed based on SV, TWC tempera-
ture, and past calculations of KTWC via Eq. (3). It is expected that
KTWC will be proportional to SV since higher level SVs will lead
to more emissions reaching the midbrick of the TWC thus giving
a higher KTWC gain. For the TWC temperature, the conversion ef-
ficiency of the TWC increases as the catalyst reaches its light-off.
Thus, as TWC temperature increases, KTWC is expected to
decrease indicating improved TWC performance. Therefore, the
inverse of TWC temperature is expected to appear in the adaptive
diagnostics model involving KTWC.

Proposed TWC Diagnostic Approach

This work focuses on the development of an adaptive TWC
health model using healthy TWC data from the FTP cycle. The

health monitoring model uses SV, the inverse of TWC tempera-
ture and past samples of KTWC to estimate the current KTWC value
calculated using Eq. (10). Based on the changes in the coefficients
of this model, a diagnostic algorithm will estimate TWC health.
To develop the TWC health model, orthogonal least squares
(OLS) is used to determine the model regressors. These regressors
are then used in the instrumental variables four step (IV4) method
to identify the diagnostics model coefficients from which an infor-
mation synthesis (IS) technique will be used to estimate TWC
health. The primary advantage of using adaptive models is that
both slowly time varying dynamics and sensor noise attenuation
are directly addressed. The latter feature is addressed by consis-
tency in the model parameter estimated via system identification
methods. This improves the robustness of the diagnostics method.
Presented herein are the three primary steps in developing the
TWC adaptive model diagnostics method. In particular, orthogo-
nal least squares will be used to identify the adaptive model struc-
ture. Instrumental variables four step approach will be used to
obtain consistent estimates of the adaptive model parameters.
Finally, information synthesis is employed to realize the diagnos-
tics approach.

Orthogonal Least Squares. Least squares (LS) techniques
have been employed in the past to identify model parameters of
real world systems. The main problem with LS is that it requires a
priori knowledge of the system: model structure and terms to be
included in the model must be known or hypothesized. Once these
unknowns have been determined only the model parameters are
unknown and LS can then solve the problem. However, the model
structure of real systems is rarely known ahead of time and there-
fore methods of model structure determination must be included
as an important part of the identification process.

An orthogonal algorithm efficiently and effectively identifies
model structure. This algorithm was originally developed in
Ref. [12] and made more reliable in Ref. [13]. Inputs to the OLS
algorithm are comprised of the anticipated model regressor varia-
bles (v), the maximum number of terms desired in the model
(terms), and the maximum integer power to which the regressor
term is raised (p). Based on these parameters, OLS systematically
searches for the regressor combinations and permutations that
result in the lowest error between actual output and model output.
The most significant regressor is added to the model, removed
from the orthogonal equation, and the method searches for the
second most significant regressor. This process repeats until
the specified number of terms is reached or until the error between
the actual output and model output is within a desired tolerance.

Online TWC Health Monitoring Model Adaptation. The
coefficients of the model are identified online using the IV4
approach for parameter estimation outlined in Ref. [14]. The first
step in the IV4 process uses a standard LS estimation technique to
calculate an initial estimate of the model parameters. The second
step performs an IV parameter estimate using the model output
from step one as the input to step two. The instrumental variables
are correlated to the system input and uncorrelated to system
noise. Next a noise filter is identified based on the error of the sec-
ond model. A final estimate is recovered using the filtered instru-
mental variables and filtered data. This four step process has a
proven reliability in obtaining consistent parameter estimates.

Information Synthesis. IS is a fault detection, isolation, and
estimation methodology presented in Ref. [15]. Fault detection,
isolation, and estimation are realized by adapting the model coef-
ficients online, which in turn addresses issues such as sensor
noise. A coefficient error vector is produced by comparing healthy
model parameters (H) to the adapted model parameters (F) that
may or may not contain a fault Ref. [15]

E ¼ SðH� FÞ (11)
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where

S ¼ diag
1

h1

1

h2

:::
1

hi
:::

1

hX

� �
(12)

H ¼ ½h1 h2 ::: hi ::: hX�T (13)

and

F ¼ ½a1 a2 ::: ai ::: aX�T : (14)

Fault Size Estimation. Detecting the presence of a fault is
achieved by evaluating the magnitude M of E and projecting it
onto directional vectors (fault isolation). Ensuring that the error is
not due to normal system variability or sensor noise, a statistically
determined length e is used as

M ¼ Ek k2 � e
0

provided Ek k2 > e
else

�
(15)

where the 2-norm, or length, of the error vector is

Ek k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i
EðiÞj j2

q
i 2 Iþ=ðXþ1Þ (16)

and e is the statistically determined threshold. For this work, e is
defined by

e ¼ 3rT (17)

where rT is the worst case standard deviation of the ||E||2 for a
threshold catalyst. This value of 3 rT represents a 99.73% confi-
dence interval assuming a normally distributed ||E||2.

To identify the coefficients of the healthy model, a series of
experiments is performed producing a family of healthy model
coefficients H(z,X), where z is the number of experiments per-
formed and X is the number of model coefficients. The mean of
each element in H(z,X) gives the healthy model coefficients of
Eq. (13).

Fault Isolation. The magnitude of the error vector alone does
not contain enough information to guarantee a fault. Fault isola-
tion will be realized through the projection of E onto predefined
vectors that facilitate isolation as described in Ref. [15]. The pre-
defined vectors, Dirj, are defined to isolate a fault to a specific
path that exists between the model input(s) and output. The gen-
eral unity fault direction vector for the jth path is defined by

Dirj ¼
1

Dirj

�� ��
2

½ d1 d2 � � � di � � � dX� (18)

where di’s are chosen based on the direction of the fault. If the
fault direction is unknown or if specific fault path isolation is
desired, a method described in Ref. [15] chooses di to be either 0
or 1 based on the influence of the jth input on the model regres-
sors. Fault isolation can be isolated to a specific path through the
projection of E on Dirj

WðjÞ ¼ Dirj � E (19)

where � denotes the usual dot-product. The location detected fault
will be isolated as the largest projection, defined as

WðlÞ ¼ max½WðjÞ� (20)

A schematic representation of the IS fault space is shown in Fig. 2
to illustrate the ability of IS to detect and isolate a fault to a spe-
cific path. This generalized representation shows three distinct
fault spaces, which could correspond to three different possible

faults of the system. Fault isolation gives realization to the identi-
fication of these different faults. The radius of each fault space is
a result of system variability possibly due to, among other things,
sensor noise and accuracy.

Experimental Results

The full useful life (FUL) TWC used in this work was created
on an engine dynamometer test where the fuel is doped with phos-
phorus (P2O5) to simulate 150,000 mile aging. The threshold cata-
lyst was created by first oven aging the brick for 8 h at 1250�C.
The brick was then submerged in water to determine the H2O
absorbed per volume of the TWC. Once dried, the brick was sub-
merged into a dilute H3PO4 solution to achieve 5% phosphorus,
dried again, and calcined.

The FTP data for the FUL TWC was used for the identification
of the model regressors. A total of ten FTP cycle data sets were
analyzed; five equipped with FUL TWCs and five threshold
TWCs. The possible model regressors for OLS to identify were
chosen based on the physics of the TWC operation and include
engine air mass (AM) (correlated to SV), the inverse of catalyst
temperature (invTEMP) since temperature and conversion effi-
ciency are inversely related, and four back samples of KTWC:
AM(k), invTemp(k), KTWC (k-1), KTWC (k-2), KTWC (k-3), and
KTWC (k-4). With these possible regressors, a maximum power of
p¼ 3 is selected thereby giving the highest power regressor term
as

AM3ðkÞ � invTemp3ðkÞ � K3
TWCðk � 1Þ � K3

TWCðk � 2Þ
� K3

TWCðk � 3Þ � K3
TWCðk � 4Þ

The maximum number of terms is selected as 10. The resulting
OLS model is

K̂TWCðkÞ ¼ /TðkÞH (21)

where

/ðkÞ ¼ ½KTWCðk � 1Þ KTWCðk � 2Þ KTWCðk � 3Þ :::
KTWCðk � 4Þ AMðkÞ � invTEMPðkÞ�T (22)

and

H ¼ ½a1 a2 a3 a4 a5�T (23)

Based on the dataset, the identified regressors best accounting for
the output variance in the current sample of KTWC is a linear model

Fig. 2 Example of information synthesis fault space
projections
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involving all four past samples and one input. Note that each KTWC

is calculated via Eq. (10). The coefficients ai are estimated online
using IV4. Notice that OLS analysis showed that powers greater
than unity and more than five terms had little effect on reducing the
error as seen in Table 1. Models were also developed using addi-
tional past samples of KTWC, but it was found that more than four
past samples did not reduce the error enough to justify their inclu-
sion in the model. The measure of model accuracy is the sum of the
square error (sqerr), which should be minimized

sqerr ¼
XN

i¼1

ðKTWCðkÞ � K̂TWCðkÞÞ
2

(24)

where N is the number of data points.

Results. Prior to running the IV4 algorithm, the FTP data are
segmented into 300 s windows, and each regressor is normalized
by its mean value. Beginning just after the TWC reaches light-off
temperature, an IV4 coefficient calculation is performed for each
window segment, the results stored, and the window shifts over
60 s to perform another IV4 calculation. This procedure results in
100 coefficient estimates per FTP cycle, which will be used to cre-
ate the healthy case coefficient set for the diagnostic method pre-
sented in the following section.

To depict the accuracy of the IV4 results one data segment is
shown in Fig. 3. Compared in this plot is the actual output with
the identified model output for a data set that was not used for
model identification. The model represents a 98.79% match to the
actual output, which yields a total sqerr of 1.589.

When IV4 is performed over the entire FTP cycle for the 300 s
windows, this method has shown greater repeatability and greater
model accuracy. The average FUL TWC coefficients, H, are

H ¼ ½7:22 � 6:74 2:86 � 0:47 0:01�T (25)

With the FUL set of coefficients determined, model parameter
identification is applied to other FTP cycle data for FUL and
threshold TWCs.

IS Results. To determine rT of Eq. (17), FUL catalyst data
were analyzed and the maximum standard deviation of ||E||2 was
found to be 1.72 and therefore � is rounded to be 5. Thus, M is
defined as

M ¼ Ek k2 � 5

0

provided Ek k2 > 5

else

�
(26)

To validate the diagnostic, the method was applied to several dif-
ferent FTP data sets for FUL and threshold catalysts. For one par-
ticular segment of FTP data equipped with a FUL catalyst, the
coefficient set identified by IV4 is

FFUL ¼ ½6:69 � 5:06 1:40 � 0:12 0:02�T (27)

and the corresponding error vector is

EFUL ¼ ½0:07 0:25 0:51 0:74 � 1:15�T (28)

which has a length, ||E||2, of 1.48 and when this is applied to the
fault detection criterion of Eq. (26), M is 0. Therefore, no fault is
correctly detected.

When applied to FTP data equipped with a failed (threshold)
catalyst, the coefficient set is

FFailed ¼ ½31:4 � 15:3 10:0 � 6:36 0:002�T (29)

with the error vector being

EFailed ¼ ½�3:35 � 1:28 � 2:51 � 12:5 0:74�T (30)

which has a length of 13.3 thus giving M¼ 8.27. Hence a fault is
possible.

Fault isolation is realized by defining Eq. (18) in the direction
of the fault relative to the healthy case. To realize this vector, the
center of gravity for the healthy case error coefficients, denoted as
(�E;H), are subtracted from the center of gravity for the threshold
case error coefficients (�E;T) giving realization to the error
direction

�E;H ¼ ½�0:23 �0:25 �0:30 �0:39 �0:12� T (31)

and

�H;T ¼ ½�4:40 �1:95 �2:63 �12:3 0:74� T (32)

leading to a unit fault vector of

Dir ¼ ½�0:32 �0:13 �0:18 �0:92 0:07 �T (33)

The direction of the fault will point to the coefficient or a combi-
nation of coefficients most responsible for fault. For a failed
TWC, the projection of the E vectors for the threshold case onto
Dir is upper and lower bounded as

1 	 WðjÞ 	 25 (34)

with a mean projection of 15, else TWC is healthy regardless of
the error vector length, ||E||2.

To validate the method, the entire FTP cycle was analyzed
using each FTP cycle test. Of the over 500 window segments that
were analyzed for each case, every threshold catalyst was properly
diagnosed as failed. In contrast, four false classifications were

Table 1 Sum of the square error for various number of terms
and powers

Maximum power (p)

Terms 1 2 3

1 5.3690 5.3690 5.3690
2 0.1688 0.1688 0.1688
3 0.0240 0.0240 0.0240
4 0.0124 0.0124 0.0124
5 0.0108 0.0108 0.0108
6 0.0106 0.0106 0.0106
7 0.0106 0.0106 0.0106
8 0.0105 0.0105 0.0105
9 0.0103 0.0103 0.0103
10 0.0103 0.0103 0.0103

Fig. 3 Actual KTWC vs. model KTWC for one 300 s window
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found for the FUL case when ||E||2 alone is used for diagnostics.
When the fault is isolated using Eq. (19) and applied to the crite-
rion in Eq. (34), all false classifications are rejected and properly
diagnosed, leading to a 100% accurate classification rate.

Reduced Order TWC Health Monitoring Model. For diag-
nostic purposes, the entire regressor and coefficient set, determined
by OLS, was reduced. It was found that using three coefficients of
the original model can provide as accurate classification of the
healthy and threshold cases. The coefficients corresponding to the
KTWC (k-1), KTWC(k-2), and AM*invTemp(k) regressors were cho-
sen for diagnostics. The inclusion of the AM*invTemp(k) coefficient
is to accommodate for possible excursions in engine operation.
Shown in Fig. 4 is the projection of the model coefficients in a fault
space, showing clear separation between FUL and threshold cata-
lysts. The normalized error vector coefficients, depicted in Fig. 5,
demonstrate the significant separation between healthy and thresh-
old cases as well. Also from this figure, a distinct direction of the
fault, drawn between the center of gravities of the healthy and
threshold regions, is evident.

For this reduced diagnostic model the value of e of Eq. (17) is 3
and a fault is now considered present when

~M ¼ Ek k2 � 3 > 0 (35)

and when the projection of E onto Dir2, denoted as W3, is bounded
as

2 	 W3ðjÞ 	 10 (36)

where

D
~
ir ¼ ½�0:91 �0:37 0:20 �T (37)

When this reduced order health monitoring model was applied to
the same procedure outlined in the previous section, similar
results to the full model set were found. Every window segment
for both healthy and threshold TWCs was properly classified as
such when coefficient estimates where applied to the criterion of
Eqs. (35) and (36).

Conclusion

Developed is a model based diagnostic method for automobile
three-way catalysts health. The method is founded on automated
processes for model structure identification; model parameters;
and fault detection, isolation, and estimation (TWC classification).
The results and analysis presented have shown this goal to be
accomplished. The theory behind catalyst deactivation, oxygen
storage phenomenon, catalyst dynamics, and modeling techniques
have been described in detail and experimentally validated. The
method was proven using actual vehicle data, equipped with dif-
ferent aged catalysts, generated on the federal test procedure chas-
sis dynamometer drive cycle.

The orthogonal least squares method proved to be reliable in
terms of choosing model regressors and the four-step instrumental
variables method proved effective for estimating parametric
model coefficients. The accuracy of these techniques was proven,
even in case of noise corrupted data, using benchmark TWCs. The
information synthesis technique proved to be a simple method to
mine the model coefficients for diagnostic information.

One main advantage of this diagnostic method is that it does
not require specific operating windows or intrusive fueling control
to effectively diagnosis the health of the TWC; features that are
extremely advantageous in on-board diagnosis. The recursive na-
ture of the IV4 and IS processes lends themselves to online identi-
fication and diagnosis.
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