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ABSTRACT

Functionally graded materials (FGMs) are multiphase
composites whose composition, microstructure and
properties vary gradually. They can be tailored to meet the
requirements encountered in practice through the design of
their constituents. In this paper, analytical expressions for
stress intensity factors of mixed-mode cracks in a FGM
strip have been derived for the first time. A parametric
study, by varying both the geometric and material
parameters, is conducted to determine their effects on the
stress intensity factors.

INTRODUCTION

FGMSs are multiphase composite materials designed in
a way that combines the desirable characteristics of each of
the constituents. The distinctive feature of FGMs is that
their material properties vary spatially. Though desirable
for engineering applications, the variation of mechanical
properties of FGMs significantly complicates the
mathematical analysis of these materials.

Some crack problems in FGMs have been solved
during the past decade. While most of these works are
limited to semi-infinite or infinite domains, Wu and
Erdogan solved the mode [ crack problem in a FGM strip
in [1]. The geometry of this problem is an internal or edge
crack in a strip with finite width. Konda and Erdogan
solved the mixed mode crack problem in FGMs [2] for an
arbitrarily oriented crack in an infinite nonhomogeneous
medium.

In this paper, the more general problem of an
arbitrarily oriented crack in a FGM layer is studied. The
problem is formulated in terms of a system of singular
integral equations, which is solved numerically. The stress
intensity factors at the crack tips are computed. A complete

parametric study, by varying both the geometric and
material parameters is conducted.

1. The Formulation

The crack problem under consideration is a FGM strip
of thickness 4 containing an embedded finite crack on

the y, =0 plane (Fig. 1). To make the problem
mathematically tractable, the Young's modulus of the

material is assumed to vary exponentially in the thickness
coordinate. The shear modulus is defined by:

pu(x) = we®™ or p(x,,y) = e (1)
where,
L =0cosb, y =-0sinf 2)

Here, 6 is a constant that describes the
nonhomogeneity of the material. We assume 6 >0 to
simplify the discussion. @ is the angle between the crack
line and x.
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Fig. 1. Crack geometry in the FGM layer
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In a previous study [3], it was shown that the effect of
the Poisson's ratio on the stress intensity factors is
negligible. Thus in this paper the Poisson's ratio is assumed
to be constant.

The mixed boundary value problem will be solved
under following boundary and continuity conditions:

o, (x,+0) = o, (x;,-0)

3)
xly] (xl 7+0) Ty ] (xl ,—0)
0,(0,y)=0,(h,y)=0
—0 < y< o “)
Txy(oay) = Txy(hay) =0
,4+0) = ,—0
V(31:40) = v(x1.-0) X, <a or x;>b 4)
u(x,+0) = u(x,,—0)
o, (x1,0) = p(x;)
n P aax <b (6)

ey, (X1,0) = Py (X))

where p,(x;) and p,(x;) are known crack surface
tractions, which can be determined by solving the elasticity
problem for the uncracked strip under the given loads.

The solution may be expressed as the sum of two
displacement sets in forms of u,(x;,y,), v;(x,»;) and
Uy (%), vo(x,¥).

The governing equations in (x;,y;) system may be
expressed as:

o2y
(K+1) +( +/)’( +1)
le yl 8 X1
6v ov,
+y(k— 1)( l) +pB-x)—=0
6 M1 &3
e o (7
(z<—1)—V21+(;<+1)—V21 p e T K)
ox, Vi ox 16)’1 ox)

ou, Ov ov
+ (kD)L + D) +y(xk+1)—L=0
ay  Oox &2

Here, we allow x=3-4v for plane strain and
x =(3-v)/(1+v) for plane stress.

Assuming u;(x,)y), Vl(xlayl)as

1 (@ S
up(xp, 1) = E.[_wu(yl’“)e “da

v (X, 1) = EJ‘— V(y,a)e “da
and substituting in (7), we get:
4
U(y,a) =Y mF(a)""
- ©)

4
V(y.a)= Y Fi(a)e"”
J=1
where F;(a) are unknown functions, m;(j =1,...,4)

are given by

[2ai + B(x =3)]n; +iay(xk 1)

m;= 2 .
(k=Dn;” +(k=Dm; —(k + Na+if)a
and n;(j=1,..,4) are the roots of the characteristic

(10)

equation,

n* +2}/n3 +[—20{(0{+iﬂ)+72

+ 2 K_3]n2+a;/(—2a—iﬂ ) (11)
+1 +1

+a’(a’ +2iaf - B* +}/23 K) 0

From equation (11), the values of n; are obtained.

To satisfy regularity conditions, # and v must
vanish for x12 + yl2 — oo, then the unknown functions
Fi(a)(j=1..4) satisfy the relations:

F(a)=F,(a)=0, >0
(@)= Fi(@) y 0
Fi(a)=Fy(a) =0, <0

Using generalized Hooke's law, the stresses are found
to be:

7]

O'x,(xph):m'

[+1

00

J. Z[—iamj (A+x)+n;3 _K)]Fj(a)en’ylfim]da

=l
U
o, (r10) = :
D P ) (13)
o Itl )
J' > [riam (3~ )+ 0, (1+ ©)IF (@) da
2
Txlyl(xliyl):

/+1

I Z[n m; —ialF;(a)e T g

where /=1 for y>0 and /=3 for y<O0.
Applying the boundary and continuity conditions (3),
and the expressions of stresses obtained in (13), we find
Fy(a) = R\(a)F(a) + Ry (@) Fy(a)
Fy(a) = Ry () (a) + Ry(a) Fy(a)

where R () are known functions.

(14)

To determine the two remaining unknown functions
Fi(a) and F,(a), the following new auxiliary functions
in terms of the crack surface derivatives are introduced:
9100 = =y (40— (31,0)), @ <[ <

N (15)
g (x)) = 8_)cl[vl (x1,40) = v, (x,,-0)], a < |x1| <b
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From definitions of g;(x;) and g,(x;), one can
easily conclude that g;(x;)=0 and g,(x;)=0 when

0<|x1|<a or |x1|>b and

b
[g,0dr=0,  j=12 (16)
Equations (16) are referred to as the single-valuedness
conditions.

Substituting u, and v, into the definition of g,(x;)
and g,(x;), we get

g = [ a0 e,
JC é—0

+(f12_10f42)F2] - ld
B o (17)
g0 =5 [ —iall-(x) fy +iaG-x) fh

el

+[-(+x)f5 +ia(3- K)fzz]Fz} da
Ry

where f,-j (i=1,...,4; j=12) are known.
Inverting the Fourier integrals (17) and substituting
F, and F, into equation (13), we can express o, , o,

and 7,, intermsof g, and &, for y, >0 as,

7, ) = £ [ Z g (0

7, ) =S [ Z OG0, (0dr (18)

O (xy,yy) = 2221 J Z 3 Gy (e

Fan 272(1+ 1)
where

h® Cepyy 1) = LO K,V (v, @)e ™ dg (19)
k=12 j=12

and K kj(l) are known kernels.

Similarly, after some manipulation, we obtain Oy s

o, and 7, for y, <0,as:

N R0l
7, ) = 21 f,‘())j Z O ng, (0t
0, (,31) = ;‘(fllfg)j Z @00t (20)
xly,(z)( X, ) = ;(Ecll;yll())j Z 3](2)(x1»y17t)gj(t)dt

where

hy® v = [ KD a)e TV da @D
k=12; j=12
and K kj(z) are known kernels.

In the coordinate system (x,y), the Navier equations

for the elastic medium may be expressed as:

2 2 2
(K’+l)a—+( —1)a—+2 oy
y 6xay

ou ov
+0(k+1)—+5(3-x)—=0
(e + D)=+ ( K)Gy

o o o @2
(k- 1)—2V+ (k+ 1)—§+2—”
x y 8xay

+06(x —1)(@+—) 0
Assuming the solution of u,(x,y) and v,(x,y) as

uy(x,y) = %J‘ gA(a)e™ eV da
T (23)
vy (x,y) = E.Lo A@)eP e P da

the characteristic equations for p and ¢ may be
expressed as
[(x+ l)p2 — (k- l)a2 +o(x+1)plg
—ia[2p+6(3-x)]=0
(x-Dp*>+8(k—D)p—(x+Da’
—iog2p+o(xk—1]=0

solving equations (24), we have:

(k=1)(p; +8)p; —(x+Da”

q;= ai[épj +§EK_1)] ,j=1.4 25)

Then we can express u, and v, in terms of the

24

unknown functions 4;(a)(j =1...,4)

4
1 (= X
”2(X,Y)=Ej_wzjlqjx4j(a)ep’ e da
o | (26)
vy (x,¥) = ELOCZAj(a)ep’xef’“yda
J

From generalized Hooke's law, the stresses
corresponding to u, and v, are
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o= H(x,y)
27(x —1)

J' DA +k)pq; +(x ~iald,(@)e” " da
J

3) _ ,u(x,y) .
T T - @7)

J' S+ ki +(-x)p,q, 14, (@e” P da
J

4
X, 0 . i
rxy(3) :—'U(zﬂy) .J._OOZ[PJ- —zocqj]Aj(ot)epf)C "Ydo
J

2. The Integral Equations

At a given point in the medium, the stress state is the
sum of the stresses given by equation (27) and (18) or (20),
depending on the sign of y,. The free boundary conditions

in equation (4) then yield the following set of equations for
the unknown functions A4,(a) (j=1,...,4) in terms of the

auxiliary functions g, and g,,

4
D [A+k)pq; +(x=3)iald; (@)
J

1 2 b
:mgj;ﬂj(a,t)g (0t
4
Z[pj_iaqj]Aj(a)

27z(1+K) ZI Fy (a,)g (1)t

Z[a +k)p;q; + (k- 3)iald; (@)™
J
1

(4 k) S J Fy;(a)g, (0)dt

o, i (e
J

1

m J. Fyi(a,t)g ;(t)dt o8)

where the known functions ij(z)(k =1.4,j=12)

are known functions.
From equation (28), 4;(«) may be obtained as:

2 b
A;(a) = ZJ’ C i(ang (1)di (29)
i=1

where

4
Ciilann) = Zb w(@Fg(a), (j=1.4,i=12) (30)
k=1
Here, the matrix (b, ) is the inverse of (a;) given
by
a;;(@)=(1+k)p,;q; +(x=3)ia

aZj(a):pj_iaqj

L ph €2y
ay;(@)=[(1+k)p;q; + (k- 3iale”’
. h
as (@) =[p; _laqj]epl
Applying the boundary conditions
o, (x,+0) = p;(x;)
(32)

Txlyl (x1,+0):p2(x1) (a<x<b)
where p;(x;) and p,(x;) are crack surface
tractions, we obtain:
o, ® (x,,0) +sin? Hax(z') (x, cos @, x, sinb)
+ cos? 90},(3) (x; cos @, x,sin @) (33)
—2sin@cosOr,, ¥ (x, cos, x, sin @) = p, (x,)
Ty, W (x1,0) +sinfcosb[o,, @ )(xl cos®, x; sin )

+ rxy( )(xl cos @, x; sin 8)(cos® @ —sin’ ) (34)

- O-x(3)(x1 cosd, x;sind)] = p,(x;)
Substituting the expressions of stresses and extracting the
singular parts of (33), we obtain

1,800 ~y, 0 )
_J. {_+Z[k1j (xl,t)-f-kzj (xl,t)]gj(f)}dt
j=1

7T da =X

(35)
1+x
:upl (x1)
2,u(x1,0)
where the kernels are
1
kll(l)(xl,t) :thlm(xl,O,t)
T, (xy,1) =
lI [Kzz(l)(o,a)— lim Kzz(l)(oj a)]efa(t—xl)da
4 - a—>0
(1)
ij (xlat) (36)
_ (I+x)

0 4
v 20+ 0pia + = asin® 0

+[~(1+k)ia +(3-K)p,q;]cos> 0
—2sin@cosO(x —1)[ p;, —iog; ]}

X O—-i in@
Cyi(a, )l ety

Note that for o —
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K, " =0

(37)
Ky~ = —ZiMe_‘a‘y
(04
Similarly, equation (34) yields:
1 b g(t) <
LStk 20+, 2 0l O
T da t—xl —
7=l (38)
(1+x)
=——py(x
200,01
with
1
ki (1) = 2y (1,0,0) (39)
k11(2)(x1at) =
o _ (40)
% [ 1K,V 0,00~ tim &,V 0@ da
—0 a—>®
kP (3,0 =
(1+x) J‘
{(cos® @ —sin’ O)(xk —1)[p; —icg ;]
4k —1) 2 74

+ 251n90056(1 —K)ia+p;q;}

P X cos O—iax, sin Bda

Cji(a,t)e
The single valuedness conditions (16) complete the
formulation of the problem, i.e.

b
j g, (0dt=0, j=12 42)

3. The Numerical Solution

The system of Cauchy-type singular integral equations
obtained above can be solved numerically. Here we
employ the collocation method used in [1,4].

First, to normalize the integral interval a < x,¢<b to
—-1<r,s<1, we define

b—a b+a

t= r+

2 2

b—a b+a
X, = s+

2 2
g1 =¢() g0 =¢,(r)
pi(x)=fi(s)  pa(x)) = fr(s) (43)
4(x,.0) = m(s 0)
a; " (5,7) = 2Lk, (3, 0)

(i=12j= 1,2, n=12)
In terms of Chebyshev polynomials U, (s) and

T,(r) the integral equations become:

1
ch( )Un—l (S) +

n=l1

—lej Z[ql,‘ 5.+ 42,V (5., 7 Lr L0,

_ (+x) 3
- 2m(s,0)fl(S) l<s<l

Z cn(Z)Un—l (S) +

n=1

Lo s @ ) o L)
— : )+ gy ,N)]e, ) —E=—==dr
~ ;:1 .[_1 ,,2:1 (g, 7 (s,r)+q5; 7 (s,1)]c 2

r

(44)

_ (+x) a
_2m(s,0)f2(S) 1<s<l1

Equation (44) can be solved by truncating the series,

and choosing the collocation points S, as

4
Ty(s,)=0 s, =cos((2n - l)ﬁ (45)
n=1.N
The stress intensity factors are defined by
ki(a)= lim V2(x—a)o,, (x,0)
ky(a) = hm w/2(x a)z,, (x,0)
(40)

ky(b) = 11m1/2(b x)o,, (x,0)
ky (D) = hm 1/2(b X)7 4, (x,0)

O (2)

After determining ¢, ' andc,”’, we can express the

stress intensity factors at the crack tips as

b—a 2u(a,0) <, . ()
k(@) =224 20§
1(a) T ik n:l( ) ¢,

b-a 2 70 S n
ka(a) = T"%Z(—l) e

e (b) = - fb a 2f§_bK0)Z
oy (b) = — /b a 2,;1J(FbKO)z

and the crack surface openings as
u(xy,+0) —u(x;,—0)

o0 1 '
= —wl(a‘z—x‘2 )Z;cn(l)Un_l (x'/a")
n=l1

v(x;,+0) —v(x, ,:O)

= —wl(a'z —x" )z%cn(z)Un_] (x'/a")
n=1

(47

(48)
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where a'=(b—a)/2 is the half crack length and
b+a

x'=x-

(49)

4. Results and Discussion

The system of integral equations is solved for various
values of geometric and material parameters. The loading
is uniform strain at infinity, with
&,y (x,300) = & (50)

where &, is a given constant.

The crack surface traction defined by (6) may be

expressed as,
Axcos
e
il £ycos” 6

K
ox cos @ (5 1)
&pcosfsinf

pl(xlﬂo) ==

1+x
For the nonhomogeneous medium considered, v is
assumed to be a constant and assigned the value of 0.3 in
the calculations. The measure of material nonhomogeneity
is given in the form of the nondimensional constant o ,
with the value of ¥ =10.0. The crack length is given by
another nondimensional variable: a'/# .
The calculations were carried out for various crack
lengths combined with the angle 6 varying from 0° to

near 90°. Figures 2 - 4 show the variation of the stress
intensity factors with the angle & . All stress intensity

factors are normalized with K, =o,+a', where o, is

.. 8
the normalizing stress defined as o) = £ & -
I+x
K;(b)
SO
-

3. S =

\0 A\
KIK, \\ \Q AR
2 Ki(@) NN L

\\
Ka(b)
\:ﬁg\

1 = ‘\iuéa\ L

A AN

X Na el

;8% Ky(a) \ﬁQA\B\a
@ °x Sa
e $§5<A§Q\n
[ T T T L
0.0 0.1 0.2 0.3 0.4 0.5

Fig 2. Variation of the normalized stress
intensity factors K/K, with 6/z for an

internal inclined crack in a FGM strip under
uniform strain, a'/ A =0.05

59 7%~ , K,(b) L
\A
< /
4 \4 -
\A
Ky(a)
K/K, ! \\A
34 L
—o — \\A
Tel, N
~, s
2 ~o N =

o/n

Fig. 3. Variation of the normalized stress
intensity factors K/K, with 6/z for an

internal inclined crack in a FGM strip under
uniform strain, a'/h =0.20

RN Kilb)
8 Sa =
\A
N
A
6 N, =
K/K, \
"
’ Ki(a) N
"
4 N -
—oc
© o~o X \A
~o_ N,
2 Kb~ o= =80, =
s
/0/ o
o/c‘/D/D/D
zo—"
0 T
0.0 0.1

Fig. 4. Variation of the normalized stress
intensity factors K/K, with 8/z for an

internal inclined crack in a FGM strip under

uniform strain, a'/h=0.35

It can be observed that the stress intensity factors for
mode [ crack ( K,(a) and K (b)) decrease as & increases.
At the same time, the stress intensity factors for mode 17
crack increase with the crack angle increasing from 07 to
a certain degree, and then decrease as the crack angle
increases. The stress intensity factors (K;), are always
greater than (K,), at the beginning, where the problem is
mostly under mode / deformation. After € increases to a
certain degree, (K;), become smaller than (X,),, as

mode /I loading starts to dominate. The length of a crack
does not affect this trend, while the values of stress
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intensity factors change significantly for different length of
cracks.
Fig. 5 shows K,(b) for different crack under the

same loading. It should be pointed out that for =0 the
problem reduces to the one studied in [1] with the results
obtained here matching those in [1]. Fig. 6 shows the stress

intensity factors for different crack lengths when 6 =45° .

d/h=035
030
025
020
015
010 [
005

0.5

Fig. 5. Variation of the normalized stress intensity
factors K,(b)/K, with &/z for an internal inclined

crack in a FGM strip under uniform strain, for various
a'/h ratios

0.5 |

0.0 T T T
0.1 0.2 0.3 0.4

Fig. 6. Variation of the normalized stress intensity
factors K/K, with a'/h for an internal inclined crack in
a FGM strip under uniform strain, 8 =z /4

The crack surface openings are displayed in Fig. 7 and
Fig. 8. Fig. 7 depicts the crack surface opening in y,
direction with the crack length a'/h =0.35. Fig. 8 shows
the corresponding opening in x; direction, where o’ (the
origin of x”) is the center of the crack (Fig. 1).

“ / 0=0' B
20 ~
0=45"
15 ~
>

0 6=675 N
5 / i
0 T T T

-1.0 0.5 0.0 0.5 1.0

Fig. 7. Crack surface openings in the y, direction for

a'/h=035, 0=0°, 45° and 67.5°

Fig. 8. Crack surface openings in the x; direction for

a'/h=035, =0, 45° and 67.5°
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