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Abstract

Let A be a commutative ring and M be a projective module of rank k with n generators. Let h =
n − k. Standard computations show that M becomes free after localizations in

`
n
k

´
comaximal elements

(see Theorem 5). When the base ring A contains a field with at least hk + 1 non-zero distinct elements
we construct a comaximal family G with at most (hk + 1)(nk + 1) elements such that for each g ∈ G, the
module Mg is free over A[1/g].

Keywords: Generalized Gram coefficients, finitely generated projective module, local freeness.

Introduction

Let A be a commutative ring and M be a projective module of rank k with n generators. Standard computations
show that M becomes free after

(
n
k

)
localizations in comaximal elements (see Theorem 5). This bound is

exponential (e.g. when n = 2k) and a polynomial bound is expected to be found. This problem is reminiscent
of the one of finding a good bound on the number of affine charts for the grassmannian variety of k-dimensional
vector subspaces of an n dimensional vector space. Such a good bound is given in [1, Chistov & al.]. In this
paper we use their result in order to find a polynomial bound for the first problem (see Theorem 12). More
precisely, letting h = n − k we give explicitely (hk + 1)(nk + 1) convenient comaximal elements. Nevertheless
we have to assume that the base ring A contains a field with at least hk + 1 non-zero distinct elements.

1 Preliminaries about finitely generated projective modules

Let M be a projective module over A isomorphic to the image of a projector P ∈ An×n. In this case, the matrix
Q = In − P is a presentation matrix for M , that is, KerP = ImQ which implies that ImP ' CokerQ. In this
section, we introduce constructive notions about finitely generated projective modules. We start defining the
determinantal ideals of a matrix.

Definition 1 Let A ∈ An×m be a matrix with coefficients in A and let 1 ≤ k ≤ min(m,n). The determinantal
ideal of order k of A is the ideal Dk(A) generated by the minors of order k of the matrix A. By convention, we
let Dk(A) = 〈1〉 for k ≤ 0 and Dk(A) = 〈0〉 for k > min(m,n).

When M is projective, it is well known that the determinantal ideals of both matrices P and Q are generated
by idempotent elements. Moreover, they allows us to define full rank of matrices with entries in a ring as follows.

Definition 2 A matrix A ∈ An×m, with n ≤ m, has full rank if Dn(A) = 〈1〉.
∗This work is partially supported by the MICINN project MTM2008-04699-C03-03
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Another notion that will be crucial throughout the paper is the following.

Definition 3 A family of elements x1, . . . , x` of A is said comaximal if 〈x1, . . . , x`〉 = 〈1〉.

Next we introduce a constructive definition of the rank of a projective module, that allows us to work without
localizing at prime ideals.

We set
PM (X) = det(In +XP ) = 1 + d1(M)X + · · ·+ dn(M)Xn

and d0(M) = 1, dp(M) = 0 for p > n. This polynomial does only depend on M (see Theorem 5 below).

Definition 4 Let RM (X) =
∑
i ri(M)Xi be defined by RM (1 +X) = det(In +XP ). Then

• The module M is said of rank k if RM (X) = Xk.

• The module M is said of rank ≤ k if rk+1(M) = . . . = rn(M) = 0.

• The module M is said of rank > k if r0(M) = . . . = rk(M) = 0.

We will denote ri(M) by ri. Note that

PM (X) =
∑
i

ri(1 +X)i, RM (X) = PM (X − 1) = det(In + (X − 1)P ).

In fact, we have the following result.

Theorem 5 1. The polynomial RM (X) does not depend on the matrix P . The polynomial RM (X) verifies
RM (XY ) = RM (X)RM (Y ) and RM (1) = 1. That implies that the set {r0, . . . , rn} defines a basic system
of orthogonal idempotents.

2. We have r0 = det(In − P ) and the ideal 〈r0〉 is the annihilator of M .

3. The localization of A at rk, Ark
= A[1/rk], is isomorphic to A /〈1− rk〉 . The Ark

–module Mrk
is

isomorphic to the submodule rkM and its rank is equal to k as Ark
-module.

4. The module M is the direct sum r1M ⊕ . . .⊕ rnM (with possible zero summands).

5. Dk(P ) = 〈rk, rk+1, . . . , rn〉 for k ≤ n. If M is of rank k then dk(M) = rk = 1.

6. The coefficient dk(M) is equal to the sum of all kth principal minors of the matrix P . Furthermore,
rk dk(M) = rk and if µ is a kth principal minor of P , then Mrkµ is a free module of rank k over A[1/(rkµ)].

7. The module M becomes free after localizations at 2n comaximal elements. This number decreases to
(
n
k

)
when M has constant rank k.

For proof, see [10], Chapters 5 and 10.

Observe that our definition agrees with the usual definition of projective module of constant rank. More
precisely, since M is finitely generated projective, MI is AI-free for every I ∈ Spec(A). Following classical
definitions, M is said to have constant rank k if k = rankAIMI for every I ∈ Spec(A), see for example [9] for
details.

Thus, given I ∈ Spec(A), if M has constant rank k according to Definition 4, then there exists a nonzero kth
principal minor µ of P such that µ /∈ I and so k = rankAIMI . Conversely, assume now that M has constant
rank k according to the usual definition; this implies that rk = 1 and rh = 0 for h 6= k, which means that M
has rank k according to Definition 4.

Hereafter we will suppose that the module M has constant rank k. It follows from (5) of Theorem 5 that
all (k + 1)th minors of P are equal to zero. Moreover, if Pk denotes the set of all k–minors of P , the fact of
having rank k implies that the set {µ|µ ∈ Pk} is comaximal and a priori it is required

(
n
k

)
localizations to make

M free. Remark that this bound is exponential in n; for example, with n = 2k we have
(
n
k

)
≥ 2k. In Section 3

we will discuss how to reduce the number of localizations in an effective way. For convenience for the reader,
we first introduce the notion of Gram ideals presented in [5] and [6].

2



2 Gram and Vandermonde ideals

Let t be a formal variable. The ring A(t) is the localization U−1A[t] with U equal to the set of primitive
polynomials (a polynomial is said to be primitive when its coefficients are comaximal). Next we define the
quadratic form Φt,m on E′ = A(t)m with values in A(t) as

Φt,m(ξ1, . . . , ξm) = ξ1
2 + t ξ2

2 + · · ·+ tm−1 ξm
2 ,

and the quadratic form Φt,n on F ′ = A(t)n with values in A(t) as

Φt,n(ζ1, . . . , ζn) = ζ1
2 + t ζ2

2 + · · ·+ tn−1 ζn
2 .

The “associated inner products” with Φt,m and Φt,n will be denoted by 〈·, ·〉E′ and 〈·, ·〉F ′ respectively.
Given a linear transformation ϕ ∈ L(E,F ), we get by extension of scalars a linear transformation ϕ′ in

L(E′, F ′). The matrix A of ϕ is the same as the matrix of ϕ′.
Thus, there exists only one linear transformation, A◦ : F ′ → E′, which verifies:

∀x ∈ E′, ∀y ∈ F ′, 〈Ax, y〉F ′ = 〈x,A◦ y〉E′ . (1)

If Qm = diag(1, t, t2, . . . , tm−1) and Qn = diag(1, t, t2, . . . , tn−1) are the diagonal matrices associated with
〈·, ·〉E′ and 〈·, ·〉F ′ respectively, A◦ is given by

A◦ = Q−1
m At Qn.

Hence, for all x ∈ A(t)m×1, y ∈ A(t)n×1, we have (Ax)tQn y = xtQm (A◦ y). In practice, if A = (ai,j), then
A◦ = (tj−i aj,i).

Definition 6 The Generalized Gram’s Polynomials, G′k(A)(t) = ak(t) ∈ A[t, 1/t], and the Generalized Gram’s
Coefficients, G′k,`(A) = ak,` ∈ A, are given by the following expression:

det(Im + z AA◦) = 1 + a1(t) z + · · · + an(t) zn

ak(t) = t−k(m−k)

(
k(m+n−2k)∑̀

=0

ak,` t
`

)
.

(2)

Observe that if the matrix A is real, usual Gram’s Coefficients are obtained by substituting 1 for t in the
expression G′k(A)(t). Furthermore, if µα,β denotes the k–minor where the rows and columns retained are given
by subscripts α = {α1, . . . , αk} ⊂ {1, . . . , n} and β = {β1, . . . , βk} ⊂ {1, . . . ,m}, then the Generalized Gram’s
Coefficient ak,` = G′k,`(A) is given by

G′k,`(A) =
∑

(α,β)∈Sn,m,k,`

µα,β
2. (3)

with
|α| =

∑
i≤k

αi, |β| =
∑
i≤k

βi, Sn,m,k,` = {(α, β) | |α| − |β| = `− k(m− k)} .

Example: Suppose that the matrix A is equal to the generic 2× 3 matrix. Then

A =
[
a11 a12 a13

a21 a22 a23

]
, A◦ =

 a11 t a21

t−1 a12 a22

t−2 a13 t−1 a23

 ,
and the Generalized Gram’s Polynomials are given by det(I2 + zAA◦):

1 +

(
a2
2,1t+

(
a2
1,1 + a2

2,2

)
+
a2
1,2 + a2

2,3

t
+
a2
1,3

t2

)
z

+


∣∣∣∣ a1,1 a1,2

a2,1 a2,2

∣∣∣∣2 +

∣∣∣∣ a1,1 a1,3

a2,1 a2,3

∣∣∣∣2
t

+

∣∣∣∣ a1,2 a1,3

a2,2 a2,3

∣∣∣∣2
t2

 z2.
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Definition 7 Given k, the Gram’s ideal Ck(A) of the matrix A is the ideal generated by the Generalized Gram’s
Coefficients G′h,`(A) for h ≥ k.

Ck(A) =
〈
G′h,`(A), h ≥ k

〉
Remark that if (( Ck+1(A) = 0 and Ck(A) = 〈1〉 )), then degree(PAA◦(z)) = k and ak(t) is invertible in A(t).

Proposition 8 We have
√
Ck(A) =

√
Dk(A). More precisely, there exists r ∈ N which depends only on

(m,n, k) such that
Dk(A)r ⊂ Ck(A) ⊂ Dk(A)2 ⊂ Dk(A).

Corollary 2.1 Let M be a projective module over A isomorphic to the image of a projector P ∈ An×n. Then
Dk(P ) = Ck(P ).

Theorem 9 Let A ∈ An×m, with n ≤ m. A has full rank if and only if Cn(A) = Dn(A) = 〈1〉.

For details and proofs see [5] and [6].

3 Localization

Recall that M is a projective module over A isomorphic to the image of a projector P ∈ An×n, of rank equal
to k. Assume that k 6= 0 and k 6= n. Here we will discuss the number of needed localizations.

Let n = h + k. Let us consider a field K with at least kh + 2 distinct elements. Let Z = (zi)0≤i≤kh be
a family of kh + 1 non-zero distinct elements of K. Under these assumptions, we introduce a result based on
Proposition 3 of [1, Chistov & al.].

Proposition 10 Let a0, . . . , an−1 be distinct elements of K. We define H = Hn,k(s) = (si−1aj−1
i−1 ) ∈ K[s]n×k.

Then, for every matrix A ∈ Kn×h of rank equal to h, the polynomial VA(s) = det(A|H) is not identically zero
and has at most kh roots different from zero.

Example: For a 4× 2 matrix of rank equal to 2, the matrix H is given by
1 a0

s sa1

s2 s2a2

s3 s3a3


The following corollaries are consequences of Proposition 10.

Corollary 3.1 Let A ∈ Kn×h be a matrix of rank equal to h. Then, there exists z ∈ Z such that the matrix
(A|Hn,k(z)) is invertible.

That means that the subspace generated by columns of A is a direct complement to the subspace generated
by the columns of Hn,k(z) (columns of A and Hn,k(z) span Kn).

Corollary 3.2 Let L be a field such that K ⊆ L. Let Q ∈ Ln×n be a matrix of rank h. Then there exists
z ∈ Z such that the matrix [Q|Hn,k(z)] has full rank, which implies that the Generalized Gram’s Polynomial
G′n([Q|Hn,k(z)])(t) is not identically zero.

Corollary 3.3 Let Q be a generic n×n matrix over K (i.e., the matrix (qi,j) in n2 independent indeterminates
over the polynomial ring K[qi,j ]). Then, the following system of equations has no solution in any field containing
K

Q2 = Q, rh(Q) = 1,
∧
`,j

G′n,l
(
[Q|Hn,k(zj)]

)
= 0, (4)

which implies by the Weak Nullstellensatz that there exists a linear combination of such equations equal to 1,
with coefficients in K[qij ] .
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The following proposition introduces a sufficient condition for a module to be free.

Proposition 11 Let E be a projective module of rank h and let F be a module generated by k elements,
f1, . . . , fk, such that An = E + F , with n = k + h. Then An = E ⊕ F and F is free of rank k, with basis
f1, . . . , fk.

Proof.
Suppose x ∈ E∩F . We will prove x = 0. Consider a localization Aµ of A at one comaximal element µ, where Eµ
is free of rank h (i.e., Eµ ' Ah

µ). Let e1, . . . , eh be a basis for Eµ. Hence, An
µ = Eµ+Fµ = 〈e1, . . . , eh, f1, . . . , fk〉.

Since n = h+ k, we have An
µ = Eµ ⊕ Fµ and so x = 0 in An

µ. Since that happens for every localization which
makes E free, it follows that x = 0 in A and thus An = E ⊕ F .
This implies that F is a projective module or rank k. Since a projective module of rank k with k given generators
is free, we can conclude that F is free, which completes the proof. ut

We can now state our result.

Theorem 12 Let M be a projective A-module of rank k with n generators. Assume that A contains a field K
with at least hk + 1 non-zero distinct elements with n = h+ k. Then, there exists a comaximal family G, with
|G| ≤ (hk + 1)(nk + 1), such that for every g ∈ G, the module Mg is a free module of rank k over A[1/g].

Proof.
Consider the matrix Q = In − P which is the projector of the complement of M . Observe that Q is of rank
h = n − k, Q2 = Q and rh(Q) = 1. Then, Corollary 3.3 tells us that the family G = {G′n,i([Q|Hn,k(zj)]), zj ∈
Z, 0 ≤ i ≤ nk} is comaximal in A. That is, there is a linear combination of G′n,i([Q|Hn,k(zj)]) with coefficients
in A equal to one

1 = a0,0 G′n,0([Q|Hn,k(z0)]) + a1,0 G′n,1([Q|Hn,k(z0)]) + . . .+ ank+1,n−1 G′n,nk([Q|Hn,k(zhk)]).

Now, consider an element of G, for example g = G′n,i([Q|Hn,k(zj)]). Then Cm([Q|Hn,k(zj)]) = 〈1〉 and the
matrix [Q|Hn,k(zj)] has full rank over the localization A[1/g]. We can claim by Proposition 10 combined with
Proposition 11 that the columns of Hn,k(zj) define a basis of a free module, direct complement of ImQ. Such
a basis is transformed by P into a basis of ImP and so we can conclude that Mg is free as A[1/g]-module. We
have, thus, shown that G is the comaximal family we searched. ut

Observe that for most of the cases,
(
n
k

)
> (hk+1)(nk+1). However, the ring A is supposed to contain a field

K with at least hk+ 2 different elements. In [2, Chistov & al.], they improve the bound on the minimal number
of elements in the field. For a finite field K with |K| > min(h, k), they build a family of (hk+ 1)3 matrices with
the property described in Corollary 3.1.

Conclusion

Concerning the general problem of finding few comaximal localizations upon which a given projective module
becomes free we can add the following remarks.
1. For rank one modules and an arbitrary n > 1 there exist projective modules M generated by n elements
but not by n − 1 elements (see e.g. [12, Swan, 1962]). Moreover, if there exist k comaximal elements si such
that every Msi

is free, generated by xi, then the x′is generate M and k ≥ n. In conclusion the general bound
n cannot be improved.
2. Following the same reasoning for projective modules of rank 2, the fact of finding a module of rank 2 with 2n
generators that cannot be generated by 2n−1 elements would imply that at least n comaximal free localizations
are needed. But here n is much less than the general bound

(
2n
2

)
= n(n− 1).

3. Using the formal Nusllstellensatz instead of Nullstellensatz, it is possible to slightly weaken hypothesis of
Theorem 12: we don’t need a field K with at least hk+ 1 non-zero distinct elements inside A, it is sufficient to
assume we have in A a family of hk + 1 elements vi such that all vi and all vi − vj for i 6= j are invertible.
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4. It remains unknown (at least for us) if the generic case (an idempotent matrix F of size n whose entries are
indeterminates over Z constrained only by F 2 = F and rk(ImF ) = 1) admits a bound better than

(
n
k

)
on the

number of comaximal free localizations.
5. It is known from [11, Serre, 1957/58] and [7, Forster, 1964] that over a Noetherian ring A of Krull dimension
k any projective module of rank r = k + ` can be written as A` ⊕ N where N is a rank k projective module
generated by at most 2k elements. It follows that in this case the general bound

(
n
r

)
can be replaced by any

general bound for rank k modules generated by 2k elements, e.g.
(
2k
k

)
.

Moreover the Noetherian hypothesis has been removed in [8, Heitmann, 1984]. Other improvements are due
to [13, Swan, 1967] and [4, 3, Coquand, 2004, 2007]. In [4, 3], proofs are constructive and more details can be
found in [10, Lombardi & Quitté, chapter 14]. Nevertheless the corresponding algorithms are far from being
implemented.
6. The result given in the present paper shows that some link can be established between the minimal number
of affine charts for some grassmannian variety and the minimal number of comaximal free localizations for a
projective module of constant rank. It should be interesting to understand better this kind of links.
7. Observe that in practice Theorem 12 implies on the one hand that the module M is given by a projector
matrix P or a presentation matrix Q, and on the other hand, the computation of the family G. By combining
the results of the paper with standard computations in computer linear algebra over an arbitrary computable
ring (as in [6]), we can conclude that computations required in such a theorem are of polynomial arithmetic
complexity. Moreover if the determinants whose addition defines the coefficients of every G′n,i([Q|Hn,k(zj)]) are
of polynomially bounded size, then the bit complexity is also polynomial w.r.t. the size of the data.
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