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Abstract-A millimeter wave pulse generation system using 
mode locked arrays of coupled automatic level control 
oscillators is analyzed. Previous analyses have shown that 
90 degrees of coupling phase maximizes the entrainment 
region size, however this paper shows that pulse power can 
be significantly enhanced by choosing 0 degrees of coupling 
phase. A comparison of the entrainment size and phase 
sensitivity shows that for large arrays peak power 
enhancement can be utilized without a significant reduction 
in overall system robustness. 

I. Introduction 
At millimeter wave frequencies high power sources 

are difficult to realize with solid state devices. An attractive 
method is "quasi-optical" power combining utilizing arrays 
of many small devices. Such arrays have many interesting 
properties that can exploited for beam steering, beam 
scanning, and pulsed applications. Mode locked arrays 
produce periodic pulse trains by transmitting a combined 
spectrum of equal spaced components, and have been 
demonstrated experimentally.[ 11 Unfortunately the oscillator 
elements must be tuned with great precision because of the 
exceedingly small entrainment regions. Oscillators with a 
delayed gain response, such as the automatic level control 
oscillators considered in this paper, enhance the entrainment 
region as compared to traditional "instantaneous" gain 
response oscillators (e.g. Van der Po1).[2] This paper shows 
how the peak pulse power can be enhanced by choosing a 
particular coupling phase angle and addresses the principle 
concems for the designer: the size of the entrainment region 
and the sensitivity of the pulse shape with respect to 
oscillator tunings. 

11. Mode Locked Arrays of Oscillators 
Mode locking in coupled oscillators is a frequency 

entrainment condition, similar to the injection locking of two 
oscillators almost identically tuned, and occurs when the 
uncoupled oscillator spectra are almost evenly spaced. The 
locked steady state output frequencies of the array elements 
are exactly evenly spaced, and maintain this spacing even 
when the elements suffer small detunings. Entrainment 
occurs between an oscillator fundamental and the beat 
frequencies generated by nonlinear mixing of the nearby 
oscillator outputs.[3] 

The arrays considered in this paper are "linear," that 
is, the elements are arranged in a row with nearest neighbor 
coupling between elements. The mode locked array output is 
the sum of the individual outputs, and can be expressed as 

N 
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where 8,(t)=nWbt+$,(t). A(t)and+,(t)  are both periodic 
functions of time. This signal can be expressed as a periodic 
envelope modulating a high frequency carrier. The envelope 
is given by 

y ( t ) =  ~ ~ , , ( t ) e ' ~ ~ ( ' )  (2) i:, I 
Large mode locked pulses occur when all of the components 
add coherently. Using phasor diagrams one can show that 
this occurs at time t when 

(3) 
for w= 1,2,. . ', N - 2. If this condition is not met the phasors 
will not add coherently and the pulse amplitude will be sub- 
optimum. 

If equation (3) is satisfied and, in addition, the 
amplitudes are uniform across the array, equation (2) can be 
summed in closed form: 

M e ,  = en+2 - 2e,+, + e,, = M $ ~  (ti = o 

Constant amplitudes and phases result in the classic mode 
locked pulse train (see figure 1). Time varying amplitudes 
and phases will change the mode locked waveform, but the 
change can be advantageous. For instance, if the phases vary 
rapidly (in the same direction) during the time of coherent 
power combining the mode locked pulses will be sharper 
than what is predicted by equation (4). Or, if the amplitudes 
are large during the coherent combining and small otherwise, 
the pulses will be enhanced. For practical arrays the time 
varying phases have little effect on the waveform due to the 
weak coupling. The amplitude variations, however, can be 
made quite large in an ALC array due to amplitude resonance 
effects and can significantly enhance the quality of the mode 
locked pulses. 

111. Time Domain Characteristics 
The differential equatiorls that describe the amplitude, 

gain control, and phase of each oscillator are (see [2]): 
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where q is the normalized nonlinearity parameter, E is the 
normalized coupling parameter, @ is the coupling phase, 
z = w,t is the normalized time variable, and the dot denotes 
differentiation with respect to 2. Approximate solutions are 
derived using the Poincare-Lindstedt perturbation technique 
in which the solution is expanded in a power series in E. To 
the first order of approximation the amplitudes and phases 
are 

An(z) = l+E[qcos(z+A$n-l +@)+sin(z+A$"-, +@) 

+q cos( z + A$,, -@) + sin(z + A$" - a)] (6) 
$,,(T) = $ n o  +E[cos(z+A$~+, +@)-cos(z+A$,, -@)I 

n=1,2;..,N 
where the phase $,, is constant and the phase differences are 
defined as A$" = -$, . For any subscripts of zero or 
N+l the phase variable is set to zero. If we further assume 
the constant phases satisfy equation (3j, i.e. 
M$,,=A$n+l-A$n=O for n=1,2;..,N-2, then the 
amplitudes and phases are 

(7) 
A, (z) = 1 + ~ E ~ C O S ( @ ) C O S ( T +  A$ - tan-'($,)) 
Qn (z) = nA$ - 2 ~ s i n (  @)sin(z + A$), n = 1,2, ... , N 

The amplitude and phase variations of the center elements 
are uniform across the array. Ignoring the effects of the end 
elements allows us to use equation (4) for the mode locked 
waveform, and will be most accurate for large arrays. 
Because the phase variations are assumed to be uniform they 
do not affect the mode locked waveform. The peak of the 
mode locked pulse occurs at times z = w,t + 2 ~ k ,  k=integer. 
For large q the amplitudes are at their peak value and 
enhance the peak power of the pulse. Figure 1 shows plots 
of mode locked waveforms for two cases: amplitudes equal 
to unity and amplitudes given by equation (7). The peak 
power in the latter is considerably enhanced. Unfortunately 
the mode locking entrainment region is smaller for @=O than 
for -2. We will see in the next section, however, that for 
large arrays this difference is small and the phase sensitivity 
is actually lower for @=O. 

,,,-,,Time dependent 
amplitudes i 

0 n: 2R 
Figure 1 Pulse enhancement using the time varying 
amplitudes of the ALC oscillators. Waveforms from a six 
element array are shown for  unity amplitudes and for 
amplitudes given by equation (7). The parameters are ~=0.2, 
q=2, w. 

IV. Entrainment Region 
The mode locking entrainment region for arrays of 

ALC oscillators has been analyzed in detail elsewhere using 
approximate methods[2]. It was shown that the size of the 
mode locked entrainment region is proportional to the 
nonlinearity parameter and the square of the coupling 
strength. 'This former dependence is different than that 
derived for Van der Pol arrays for which an optimum value 
exists.[4] Thus, for ALC arrays we can increase the 
entrainment region beyond what is possible for Van der Pol 
arrays, 

Array tuning becomes complicated for large arrays 
since the pulse shape is affected by the combined tunings of 
all of the elements. The phase condition of equation (3) 
represents the ideal phase distribution, and we will refer to 
small changes of element tunings away from this optimum as 
element "detunings." The mode locked system has N-2 
degrees of freedom since two of the phase are arbitrary 
(neglecting frequency spectrum shifts). When tuning the 
array we will vary only the N-2 central element tunings and 
leave the end elements fixed. This will maintain an 
approximately fixed frequency spectrum. 

The most important entrainment region character- 
istics are the size of the region and the sensitivity of the 
phases to tuning variations. Also, the tuning that gives the 
desired phase distribution should lie at the center of the 
locking region. Information about the region of stable 
entrainment can be obtained from the functional relationship 
between the free running frequencies and time average 
oscillator phases.[5] Approximate equations were derived in 
[2] for arbitrary coupling phase. The results showed that the 
entrainment region size was maximized for e 9 0  degrees, 
and this special case was analyzed extensively. From the 
analysis presented in the previous section degrees is 
also an attractive choice since the peak power in the mode 
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locked waveform can be enhanced significantly. However, 
this choice of coupling phase produces a smaller entrainment 
region. In this section we will compare the entrainment 
region characteristics for these two values of coupling phase. 

For @=O or -0 degrees the functional relation 
between the central free running frequencies and the central 
time averaged phases is, in vector form, 

where A, x, and are N-2 by N-2 matrices, 5 is an N-2 
element vector which is the center octhe entrainment region 
in frequency space, and the vector U depends on the time 
average phases as (i)" = sin($,+2,0 -2$,,,, +$,,).[?I The 

matrix z and the vector 5 are functions of coupling phase, 
but are otherwise constant. The existence region can be 
determined by allowing the phases to span all of their 
possible values, which causes the components of the U 
vector to span (-1,l). The transformation from U space to 
frequency space is linear, so the cubical region in U space 
maps to a rectangular parallelepiped in frequency space. .The 
volume of the entrainment region is equal to the determinant 
of z. A figure of merit that measures the size of the 
entrainment region is the length of the side of a cube in N-2 
dimensional space that has the same volume as the 
entrainment region. This length is given by 

(8) 
=- - - - - - I = _  

CO,, = B  A u + g = M u + b  
_ -  - 

- 

- 

This permits comparison of entrainment regions in different 
dimensional spaces. 

Figure 2 shows the size, L, as a function of the 
number of array elements for the two desirable values of 
coupling phase, @=O and e 9 0  degrees. For large arrays the 
two are comparable, and for @=O the size is almost 
independent of N. Thus one may choose @=O degrees to 
enhance the pulse power without significantly reducing the 
entrainment region size. 

3 4 5 6 7 8 9 10 11 12 13 14 15 
Number of elements, N 

Figure 2 Entrainment region size, L, for two values of 
coupling phase, as a function of the number of array 
elements. 

The shape and orientation of the entrainment - region 
is related to the eigenvalues and eigenvectors of z. If we 

inscribe a unit sphere in the cubical region in U space, the 
sphere maps to an ellipsoid inscribing the parallelepiped in 
frequency space. The eigenvalues and eigenvectors of the 
transformation matrix are the lengths and directions of the 
major and minor axes [6],  and indicate the approximate size 
and shape of the entrainment region. A two dimensional 
example is shown in figure 3. 

Stability is determined by forming the matrix 

where (E)n is the nth central phase, that is (E), = $n+l ,o  .[51 

A vector E represents a stable mode locked state when the 
real parts of the eigenvalues of c are all positive. One can 

- 
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Figure 3 Consecutive nonlinear and linear transformations 
give the region of stable mode locking in the frequency 
plane. The circle in the U plane maps to an ellipse in the 
frequency plune, with major and minor axes given by the 
eigenvalues and eigenvectors of the linear transformation 
matrix. 

show that for the relation of equation (8) the region of stable 
mode locking is the same as the region of existence.[2] 

The sensitivity of the phases to tuning variations, an 
important parameter to the system designer, is directly 
related to the stability matrix c. Detuning the elements in 
some fashion changes the phases according to 

where c is evaluated at the center of the entrainment region. 
We can define the sensitivity of the phase change with 
respect to frequency change as 

- 

(1 1) 
-- - - - - I = = -  - - -- 

dw,, .= M i  d@oc = B A B  d$oc = C dqOc - 

This quantity depends on the dirktion in which the 
frequency change is taken. If that direction is one of the 
eigenvectors h of c then the sensitivity is simply 

- 
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V. Conclusions 
The preceding results show that one can design a 

mode locked ALC array with enhanced peak power without 
sacrificing too much of the entrainment region size. In fact, 
for large arrays the maximum sensitivity of the phases to 
tuning variations is significantly smaller for cp=O than for 
e 9 0  degrees. This will lead to more robust mode locked 
arrays. 
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