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Abstract. A new method of identifying parameters of nonlinearly vibrating system in frequency domain is presented in this paper.
The problems of parameter identification of the nonlinear dynamic system with nonlinear elastic force or nonlinear damping
force are discussed. In the method, the mathematic model of parameter identification is frequency response function. Firstly, by
means of perturbation method the frequency response function of weakly nonlinear vibration system is derived. Next, a parameter
transformation is made and the frequency response function becomes a linear function of the new parameters. Then, based on
this function and with the least square method, physical parameters of the system are identified. Finally, the applicability of the
proposed technique is confirmed by numerical simulation.
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1. Introduction

The parameter identification is one of the important problems of the vibration research. There are many methods
of identifying parameters of the linear system. But the parameter identification of nonlinear system is much more
difficult than the linear system. Hence, this problem attracts much attention. A. H. Nayfeh has presented an excellent
method of parametric identification of nonlinear system that exploits nonlinear resonances and comparisons of the
system to be identified with those of known system [1], but the difficult usually appears when we find the known
system. Tang et al. [2–4] have suggested time domain method and phase plane method for identifying parameters
of nonlinear system which are effective for integrable nonlinear system. K. Yasuda et al. [5,6] have proposed an
experiment method of parameter identification which is useful for geometrically nonlinear systems. R. Bachmayer
et al. [7] have established adaptive parameter identification method for marine thruster which is an on-line technique
for adaptive identification. There are some other methods of parameter identification, such as orthogonal function
method [8], wavelet-based technique [9], Volterra series method [10], cross-correlationanalysis [11], power spectrum
technique [12], and so on.

A new method of identifying parameters of the weakly nonlinear vibration system in the frequency domain is
presented in this paper. We discuss two kinds of nonlinear vibration systems with nonlinear elastic force or nonlinear
damping force respectively. First, by using the multiple scale method, we obtain the frequency response function
of the system which is regarded as a mathematical model of the curve fitting. Next, a new set of parameters are
introduced to replace the parameters to be identified and the frequency response function is transformed into the
linear function of the new parameters so that the least square method can be used to identify the parameters. This
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is the key step of our method. Then, with the least square method the normal equations are established and they
are linear equations of the new parameters. From the solution of normal equations we can get the values of the
parameters to be identified.

The method we present is a combination of the perturbation method and the least square method, hence, the
method has the same precision with those of perturbation method and least square method. On the other hand, the
perturbation method is an effective method to deal with weakly nonlinear system and the least square method is an
excellent method of curve fitting such that this parameter identification method has a wide application in the study
of weakly nonlinear vibration system. Although frequency response function is the first order approximation of the
relationship between amplitude and frequency of nonlinear system, it is the most useful and important mathematical
model to study the property of nonlinear vibration system [13]. It can be determined by experiment with good
accuracy because in practice any complicated nonlinear system will finally move in a steady motion state if the
excitation is harmonic and the system doesn’t come into chaotic motion. Compared with response function in time
domain, frequency response function is independent of initial conditions and the test to determine this relationship
possesses good repeatability and stability, such that this method of parameter identification can be easily realized by
experiment.

2. Principle of the method

The governing equation of the vibration system with nonlinear damping force is as follows

mẍ + cẋ + f(ẋ) + kx = G cosΩt (1)

The governing equation of the vibration system with nonlinear elastic force is as follows

mẍ + cẋ + kx + f(x) = G cosΩt (2)

wheref(ẋ) is a nonlinear function oḟx, f(x) is a nonlinear function ofx. Rewrite Eqs (1) and (2) into the standard
form

ẍ + ω2x = ε[−2nẋ− f1(ẋ) + g cosΩt] (3)

and

ẍ + ω2x = ε[−2nẋ− f1(x) + g cosΩt] (4)

whereε being a small positive parameter,ω = k
m being the linear natural frequency of the system,n = c

2m ,

f1(ẋ) = f(ẋ)
m , f1(x) = f(x)

m andg = G
m . WhenΩ approaches toω, we introduce a detuning parameterσ, letting

Ω = ω + εσ (5)

We can find the approximate frequency response function of the nonlinear system Eqs (3) and (4) by using
approximate analytical method, such as the methods of iteration, multiple scales, KBM and so on [13–15].

The general approximate frequency response function of Eqs (3) and (4) can be written in the form

F (ω, n, . . . , a, σ) = 0 (6)

Whereω, n, . . ., are physical parameters to be identified of the system Eqs (3) and (4),a is the amplitude,σ is the
detuning parameter whose dimension is the same with frequency.

Equation (6) plays key role in revealing the properties of nonlinear vibration system and here we take it as a
mathematical model of the curve fitting. ButF (ω, n, . . . , a, σ) is a nonlinear function of parameters(ω, n, . . . , )
we must replace the parameters(ω, n, . . . , ) with a new set of parameters(A, B, . . . , ) before employing the least
square method to identify the parameters, such thatF (ω, n, . . . , a, σ) can be transformed into a linear function of
(A, B, . . . , ). That is, if we chose

(ω, n, . . . , ) = R(A, B, . . . , ) (7)

then
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F (ω, n, . . . , a, σ) = F1(A, B, . . . , a, σ) = 0 (8)

WhereF1(A, B, . . . , a, σ) is a linear function of parameters(A, B, . . . , ). Transform functionR(A, B, . . . , ) is
determined by the frequency response function of the systems. We use the test data(σ i, ai)(i = 1, 2, . . . , m) for
fitting the curve. Substitutingσi, ai into Eq. (8) yields small errors

Ei = F1(A, B, . . . , ai, σi) i = 1, 2, . . . , m

The sum of the square of all errors is

E =
m∑

i=1

E2
i =

m∑
i=1

[F1(A, B, . . . , ai, σi)]2 (9)

It is obvious that the parametersω, n . . . will fit to make the totle square errorsE get the minimum. This means
that we can use the method of the minimum squares to identify the parameters of the system. By determining the
extreme value ofE and solving a set of normal equations resulted from the extreme value ofE, we can identify
parametersω, n, . . . of the nonlinear system.

3. The system with nonlinear damping

Let us consider a weakly nonlinear vibration system with a small cubic nonlinear damping force, its governing
equation is as follows.

mẍ + cẋ + c1ẋ
3 + kx = G cosΩt (10)

Rewrite the standard equation in the form

mẍ + ω2x = ε(−2nẋ − αẋ3 + g cosΩt) (11)

where

ω2 =
k

m
, 2n =

g

m
, α =

c

m
, g =

G

m
(12)

ω, n andα are the physical parameters to be identified of the system Eq. (11). We begin by assuming an expansion
of the solution having the form

x(t, ε) = x0(T0, T1) + εx1(T0, T1) + . . . (13)

New independent variables are introduced according to

Tn = εnt for n = 0, 1, . . . (14)

Substituting Eq. (13) into Eq. (11) and equating the coefficients ofε i, (i = 0, 1, 2, . . .) to zero, we obtain

D2
0x0 + ω2x0 = 0 (15)

D2
0x1 + ω2x1 = −2D0D1x0 − 2nD0x0 − α(D0x0)3 + g cos(ωT0 + σT1) (16)

The solution of the Eq. (15) is

x0 = a cos(ωT0 + ϕ) (17)

Substituting Eq. (17) into Eq. (16) leads to

D2
0x1 + ω2x1=2ωa′ sin(ωT0 + ϕ) + 2ωaβ′ cos(ωT0 + ϕ) + 2nωa sin(ωT0 + ϕ)+

1
4
αa3ω3[3 sin(ωT0 + ϕ)

− sin 3(ωT0 + ϕ)] + g cos(ωT0 + ϕ) cos(σT1 − ϕ) − g sin(ωT0 + ϕ) sin(σT1 − ϕ)

To eliminate secular terms fromx1, we must put
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2ωa′ + 2naω + 3
4αa3ω3

−g sin(σT1 − ϕ) = 0
2ωaϕ′ + g cos(σT1 − ϕ) = 0

(18)

Letting

σT1 − ϕ = γ (19)

Determining the derivatives with respect toT1 yieldsϕ′ = σ − γ′. Considering the steady-state response, that is,
a′ = 0, γ′ = 0, we have{

2naω + 3
4αa3ω3 − g sin γ = 0

2ωaσ + g cos γ = 0 (20)

The result by eliminatingγ in Eq. (20) is

4n2ω2a2 + 3αnω4a4 +
9
16

α2ω6a6 + 4ω2σ2a2 − g2 = 0 (21)

This is the first-order approximation frequency response function of the weakly nonlinear system Eq. (11). For
identifying physical parametersω, n and α of the system with test data{σ i, ai}(i = 1, 2, . . . , m), Following
transformation should be introduced

A = 4n2ω2, B = 3αnω4, C =
9
16

α2ω6, D = 4ω2 (22)

therefore Eq. (21) becomes

Aa2 + Ba4 + Ca6 + Dσ2a2 − g2 = 0 (23)

Equation (23) is a frequency response equation of the nonlinear system Eq. (11). We regard it as a mathematical
model of the parameter identification. Setting the testing values of(σ, a) are{σ i, ai}(i = 1, 2 . . . , m) and substituting
them into Eq. (23) generating errors as follow

Ei = a2
i A + a4

i B + a6
i C + σ2

i a2
i D − g2i = 1, 2 . . . , m

The sum of the square of all errors is

E =
m∑

i=1

(a2
i A + a4

i B + a6
i C + σ2

i a2
i D − g2)2 (24)

The best way to determineA, B, C andD is choosing those values of them that make the sum of the square of
all errorsE be minimum. This means that the difference between the theoretical result and the experiment result is
least. Noting that the errorE is the function ofA, B, C andD, the necessary conditions ofE getting minimum are
that the partial derivatives ofE with respect toA, B, C andD equal zero, respectively, that is,

∂E

∂A
= 0,

∂E

∂B
= 0,

∂E

∂C
= 0,

∂E

∂D
= 0

namely,
m∑

i=1

(a2
i A + a4

i B + a6
i C + σ2

i a2
i D − g2)a2

i = 0

m∑
i=1

(a2
i A + a4

i B + a6
i C + σ2

i a2
i D − g2)a4

i = 0

m∑
i=1

(a2
i A + a4

i B + a6
i C + σ2

i a2
i D − g2)a6

i = 0

m∑
i=1

(a2
i A + a4

i B + a6
i C + σ2

i a2
i D − g2)σ2

i a2
i =0
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These equations are usually called normal equations in numerical analysis. They are linear algebraic equations
of parametersA, B, C, D. According the theory of numerical analysis, the solution of the normal equations is sole
and it makes the errors E get minimum definitively [16]. For the simplification we write the normal equations in the
matrix form,

Q	y = 	s (25)

where

	y = (A B C D)T

	s =

(
g2

m∑
i=1

a2
i g2

m∑
i=1

a4
i g2

m∑
i=1

a6
i g2

m∑
i=1

σ2
i a2

i

)T

and

Q =




m∑
i=1

a4
i

m∑
i=1

a6
i

m∑
i=1

a8
i

m∑
i=1

σ2
i a4

i

m∑
i=1

a6
i

m∑
i=1

a8
i

m∑
i=1

a10
i

m∑
i=1

σ2
i a6

i

m∑
i=1

a8
i

m∑
i=1

a10
i

m∑
i=1

a12
i

m∑
i=1

σ2
i a8

i

m∑
i=1

σ2
i a2

i

m∑
i=1

σ2
i a6

i

m∑
i=1

σ2
i a6

i

m∑
i=1

σ4
i a4

i




(26)

As mentioned above, the solution of normal equation is sole and this means matrixQ is reversible. Solving matrix
Eq. (25) yields	y = Q−1	s. Substituting the values ofA, B, C andD into Eq. (22) we obtain physical parameters of
the nonlinear system in the form

ω =
√

D

2
, n =

√
A

D
, α =

B

2nω4
or α =

4
√

C

3ω3
(27)

4. The system with cubic elastic force

In the case of a nonlinear vibration system with a small cubic nonlinear elastic force and linear viscous damping,
the governing equation of it is

mẍ + cẋ + kx + k1x
3 = G cosΩt (28)

Equation (28) can be rewritten as

ẍ + ω2x = ε(−2nẋ − βx3 + g cosΩt) (29)

ω2 =
k

m
, 2n =

c

m
, β =

k1

m
, g =

G

m
. (30)

Using the method of multiple scales or KBM, we can derive the frequency response equation of Eq. (29) as follows

4n2ω2a2 + 4ω2σ2a2 − 3βωσa4 +
9
16

β2a6 − g2 = 0 (31)

Similarly,A, B, C andD are introduced, Eq. (31) becomes

Aa2 + Bσ2a2 + Cσa4 + Da6 − g2 = 0 (32)

Where
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A = 4n2ω2, B = 4ω2, C = −3βω, D =
9
16

β2. (33)

The sum of the square of all error arising in the procedure of substituting the testing data{σ i, ai}(i = 1, 2, . . . , m)
into Eq. (32) is

E =
m∑

i=1

(a2
i A + σ2

i a2
i B + σia

4
i C + a6

i D − g2)2 (34)

The normal equation corresponding to the minimum of error functionE can be obtained as follows


m∑
i=1

a4
i

m∑
i=1

σ2
i a4

i

m∑
i=1

σia
6
i

m∑
i=1

a8
i

m∑
i=1

σ2
i a4

i

m∑
i=1

σ4
i a4

i

m∑
i=1

σ3
i a6

i

m∑
i=1

σ2
i a8

i

m∑
i=1

σia
6
i

m∑
i=1

σ3
i a6

i

m∑
i=1

σ2
i a8

i

m∑
i=1

σia
10
i

m∑
i=1

a8
i

m∑
i=1

σ2
i a8

i

m∑
i=1

σia
10
i

m∑
i=1

a12
i







A

B

C

D




=




g2

m∑
i=1

a2
i

g2

m∑
i=1

σ2
i a2

i

g2

m∑
i=1

σia
4
i

g2

m∑
i=1

a6




(35)

Solving Eq. (35) we obtain the values ofA, B, C andD.
Therefore physical parameters of the nonlinear system Eq. (29) are

ω =

√
B

2
, n =

√
A

B
, β = − C

3ω
, or, β =

4
3

√
D (36)

5. Example and discussion

With the method of numerical simulation we can check up the precision of the method. We take Eq. (29) for
example, letting

ω = 5, n = 0.1 β = 0.4 g = 9.8

By substituting them into Eq. (29) and employing multiple scales method, we get the frequency response equation
as follows

a2 + 100σ2a2 − 6.0σa4 + 0.09a6 − 96.04 = 0

From this equation we can get the data as in Table 1.
Noting that in the multivalue section in Table 1 there are several amplitudes for each value ofσ and it is consistent

to theoretical results. The values in the blod correspond to the unstable state of the system asσ increases and
mutation occurs at the pointσ = 0.75.

Substituting{σi, ai} in Table 1 into Eq. (35), except the values in dark area, and solving them we get the values
of A, B, C andD as follows

A = 1.0387 B = 99.8408

C = −5.9802 D = 0.0891

Substituting them into Eq. (36), we obtain the physical parameters of the nonlinear system as follows

ω = 4.996 n = 0.102 β = 0.399

These results ofω, n andβ are very close to the values of them we set above, thus the accuracy of the method
presented in this paper is excellent. This conclusion can be explained by the principle of the method. From Section II
we see our method is the combination of perturbation techniques and least square method which are effective methods
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Table 1
Frequency response data simulated by computer

σ a

−1 0.49394
−0.5 0.93359
−0.4 1.11467
−0.3 1.35531
−0.2 1.66498
−0.1 2.03576

0 2.44104
0.1 2.85192
0.2 3.25015
0.3 3.62786
0.4 3.98285 2.96945 1.40922
0.5 4.31488 3.69048 1.04664
0.6 4.62311 4.2309 0.85208
0.7 4.90001 4.70466 0.72298
0.75 5.00000 0.67279
0.8 0.62938
0.9 0.55787
1 0.50126

to deal with the weakly nonlinear vibration system and curve fitting, respectively, and the frequency response
function is obtained from the first-order approximation of multiple scale method or other approximation methods,
so that the accuracy of the method is as well as the one of first-order approximation of perturbation methods or the
least square method. Meanwhile, the mathematical model, frequency response function of the weakly nonlinear
system, of parameter identification of present method is a most important model describing the properties of weakly
nonlinear systems. Above discussion shows that this method is a useful means for the parameter identification of
weakly nonlinear vibration system.

Though the data{σi, ai}(i = 1, 2 . . . , m) in the example is obtained by numerical simulation, we can achieve
these data in practice. Noting that, in essence, the detuning parameterσ is a small difference between the frequency
of excitation and the linear natural frequency of the nonlinear system, thus, in practice test, we may change the
frequency of excitation in a small range around the linear natural frequency, that is varying the detuning parameterσ.
Recording downσ and the correspondingamplitudea of the system we obtain the test data{σ i, ai}(i = 1, 2, . . . , m).
This means that the present method of parameter identification can be realized by experiment.

The study only involves one-degree-of –freedom nonlinear vibration system with cubic nonlinearity, but it is
obvious that the proposed method of parameter identification can be applied to the system with higher nonlinearity
or multi-degree-of-freedom nonlinear vibration systems.
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