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Population viability analysis (PVA) is a powerful tool for biodiversity assessments, but its use has been limited
because of the requirements for fully specified population models such as demographic structure, density-
dependence, environmental stochasticity, and specification of uncertainties. Developing a fully specified popula-
tionmodel from commonly available data sources – notably, mark–recapture studies – remains complicated due
to lack of practicalmethods for estimating fecundity, true survival (as opposed to apparent survival), natural tem-
poral variability in both survival and fecundity, density-dependence in the demographic parameters, and uncer-
tainty in model parameters. We present a general method that estimates all the key parameters required to
specify a stochastic, matrix-based populationmodel, constructed using a long-termmark–recapture dataset. Un-
like standard mark–recapture analyses, our approach provides estimates of true survival rates and fecundities,
their respective natural temporal variabilities, and density-dependence functions,making it possible to construct
a populationmodel for long-termprojection of population dynamics. Furthermore, ourmethod includes a formal
quantification of parameter uncertainty for global (multivariate) sensitivity analysis. We apply this approach to
9 bird species and demonstrate the feasibility of using data from theMonitoringAvian Productivity and Survivor-
ship (MAPS) program. Bias-correction factors for raw estimates of survival and fecundity derived from mark–
recapture data (apparent survival and juvenile:adult ratio, respectively) were non-negligible, and corrected
parameterswere generallymore biologically reasonable than their uncorrected counterparts. Ourmethod allows
the development of fully specified stochastic population models using a single, widely available data source,
substantially reducing the barriers that have until now limited the widespread application of PVA. This method
is expected to greatly enhance our understanding of the processes underlying population dynamics and our
ability to analyze viability and project trends for species of conservation concern.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

Assessing how close species are to extinction is one of the important
first steps in preventing their extinction, which is a main goal of biodi-
versity conservation. One of the commonly used tools for making such
assessments, as well as for evaluating the effectiveness of conservation
actions, is population viability analysis (PVA). Using stochastic popula-
tion demographicmodels, PVA projects population dynamics and calcu-
lates measures of viability such as extinction risk under current
conditions and future changes in human impacts and management
(Morris andDoak, 2002). Although uncertainties often exist, predictions
made by PVA tend to be unbiased, contrary to subjective judgments
Akçakaya).
es & Environmental Science,
made by experts, which makes it an effective tool in conservation
science (McCarthy et al., 2004). Despite its advantages, the use of PVA
is hampered by scarcity of reliable estimates of demographic parame-
ters for most species.Mark–recapture data, collected by repeatedly cap-
turing individuals that are uniquely and permanently marked at their
initial capture (e.g., using tags or rings), continue to be of great value
for estimating basic demographic parameters such as survival rates,
abundance, and fecundities (Jolly, 1965). In addition to the rapid in-
crease in the availability of long-term mark–recapture datasets for var-
ious taxa from geographically extensive and collaborative trapping
efforts, new tools and methods for analysis of mark–recapture data en-
able more accurate and precise parameter estimation (Francis et al.,
2014; King, 2012; Lindberg, 2012). Despite this progress,mostmark–re-
capture analyses focus on estimating only survival parameters
(Williams et al., 2002). Results from such analyses are useful for ad-
dressing a variety of ecological questions, but the general paucity of es-
timates for other demographic parameters, such as fecundity, temporal
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variability, and density-dependence in survival and fecundity, have
hindered the development of fully specified population models that
can be used to project future abundances and analyze population viabil-
ity. Here, we explain the key elements that are required in building a
population model and the common challenges for estimating such
parameters.
1.1. Fecundity

Fecundity is a measure of the reproductive rate of an organism, spe-
cies, or population and is defined as the per-capita number of offspring
produced in each life history stage during a breeding season. From a
population modeling perspective, fecundity estimates and survival
estimates are both important; however the literature on estimating
fecundity based on mark–recapture data is sparse in contrast to the
vast literature on estimating survival. Fecundity estimates for birds
have traditionally been obtained from nest surveys, in which the num-
ber of nestlings per nest or a similar quantity is measured. However,
nest survey data require extensive field effort and are often unavailable.
As an alternative, the ratio of juveniles to adults is conventionally used
as an index of productivity (Flanders-Wanner et al., 2004; Peery et al.,
2007). However, in population models, true fecundity, rather than an
index, is required. The uncorrected juvenile:adult ratio is likely nega-
tively biased, since juvenile birds and other wildlife are generally less
observable than their adult counterparts. This bias can be corrected by
using the ratio of capture probabilities between juveniles and adults,
which are a byproduct of standard likelihood-based mark–recapture
analysis (e.g., Cormack–Jolly-Seber model for estimating age-
structured survival rates). In the context of population modeling,
juvenile:adult ratio corrected in this way provides a superior estimate
of population-level fecundity than estimates derived from labor-
intensive nest surveys. Evenwhen nest data are available, critical pieces
of information, such as the proportion of breeding individuals in the
population and the number of re-nesting attemptsmay not be available.
Population models require fecundity to be estimated across all individ-
uals in the population, including those that fail to produce eggs, and
over all nesting attempts within a breeding season. If failed nests lead
to additional nesting attempts, reproductive measures averaged over
all observed nest attempts (such as fledglings per nest) underestimate
fecundity. If only some individuals breed, measures such as fledglings
per breeder overestimate fecundity, unless the population model ex-
plicitly models breeder and non-breeder stages separately and includes
the rates of transition between them.
1.2. Survival

Survival rate is defined as the proportion of individuals of a given
age or life stage in a population that survive from one breeding sea-
son to the next. Standard mark–recapture models for estimating sur-
vival do not distinguish mortality from emigration, and therefore
estimate “apparent survival” (φ), which is the joint probability of
surviving and remaining within the study area (and therefore avail-
able for recapture). However, survival and dispersal are distinct eco-
logical processes that are almost always modeled separately in
population models. Therefore, estimates of true, rather than appar-
ent survival rates are needed. When all individuals are recaptured
and their locations are known, multi-state or spatially explicit cap-
ture–recapture (SECR) methods can be used to estimate both surviv-
al and emigration rates (Ergon and Gardner, 2014; Schaub and Royle,
2014). Alternatively, if a dispersal kernel can be estimated, survival
can be corrected for estimated dispersal out of the study area
(Gilroy et al., 2012). However, when location information is not
available, or its spatial resolution is too coarse to estimate dispersal
rate, alternative approaches are required.
1.3. Temporal variability

Temporal variability in demographic parameters represents effects
of unpredictable changes in the environment on population-level vital
rates, and therefore, estimates of this variation are required for making
stochastic projections. In all but the lowest abundance populations, en-
vironmental stochasticity exerts a greater influence on population-level
risk metrics (e.g., extinction risk) than demographic stochasticity
(Lande, 1993). Calculating unbiased estimates of temporal variability
presentsmultiple challenges: first, it requiresmany years of data collec-
tion, and most importantly, one needs to separate sampling error from
natural variability (also referred to as “process variance”). Although
methods are available to estimate sampling error in survival from
mark–recapture data (Gould and Nichols, 1998) and in both survival
and fecundity from census data (Akçakaya, 2002), most studies do not
use or describe in detail suchmethods. In addition to estimating process
variance, sampling error determines uncertainty in model parameters,
therefore, it must be used to estimate upper and lower bounds for
model parameters to perform uncertainty analysis (e.g., sensitivity
analysis; Chu-Agor et al., 2012; Curtis and Naujokaitis-Lewis, 2008).

1.4. Density

Negative feedbacks between vital rates and intra-specific densities
are a key driver of abundance dynamics in most wild populations
(Akçakaya et al., 1999; Burgman et al., 1993). Therefore, explicit specifi-
cation of survival and fecundity rates across an ecologically realistic
range of intra-specific densities is essential for most population model-
ing applications. Without explicit modeling of the density effects, the
average stage matrix allows only very short-term projections, even if
survival and fecundity are estimated over a long time period.

1.5. A comprehensive method

We present a comprehensive yet practical method for generating
a fully specified, stochastic matrix-based population model based
only on long-term mark–recapture data (Fig. 1). We used standard
Cormack–Jolly–Seber (CJS) models to estimate stage-specific apparent
survival rates (φ) and capture probabilities (p). We developed and
applied several newapproaches for generatingunbiased estimates of fe-
cundity (F), true stage-structured survival rates (S), temporal variability
in survival and fecundity, and density-dependence functions for surviv-
al and fecundity. We used confidence intervals of parameter estimates
to calculate parameter uncertainties for use in global (multivariate) sen-
sitivity analysis. Thismethod allows for estimating all parameters need-
ed in a population model based on a single source of long-term mark–
recapture data. This greatly eases the process of specifying a population
model that would otherwise require additional independent datasets
such as nest surveys and population count data.

2. Methods

2.1. Mark–recapture data: the MAPS project

We used mark–recapture data from the Monitoring Avian Productiv-
ity and Survivorship (MAPS) program (http://www.birdpop.org/pages/
maps.php). The MAPS program, driven by collaborative effort among
public agencies, non-governmental groups, and volunteers, comprises a
network of ca. 1200 banding stations distributed across the US and
Canada. Multiple mist nets are deployed at each station at least once
per 10-day interval throughout the breeding period,where all newly cap-
tured birds are assigned to a unique band ID, all captures are identified to
species, sex, and age (hatching year vs. adult), and multiple additional
variables are recorded (e.g., mass, body condition). In MAPS, capture his-
tory data are now available for N180 species of land birds across North
America. To demonstrate our approach, we selected 9 focal species that
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Fig. 1.Workflow diagram.
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are geographically widespread and are commonly captured at banding
stations (Table 1). The species represent a variety of life history traits
(e.g., resident, migrant), foraging modes (e.g., canopy, mid-high, under-
story, ground), and diet specializations (e.g., invertebrate, fruit, seed,
plant). To aid the determination of potential transients (important for
survival estimation; see below), we extracted data on the status of the
cloacal protuberance and the brood patch for all captured individuals in
addition to band ID, date, banding station ID, and age. All analyses were
based on capture records during the breeding season (May to August).
We considered banding stations that were grouped together as “loca-
tions” in the MAPS network (generally comprising 1 to 7 stations) to be
separate populations, in order to obtain time-specific estimates of relative
density that is relevant for estimating the density-dependence relation-
ships (see below).
2.2. Density

For density analysis, we used relative density. To calculate relative
density, we first calculated the number of captured adults and juveniles,
respectively, for each year, species, and population (MAPS location). We
Table 1
Species list.

Species 4-Letter code Resident/migrant

Black-capped chickadee (Poecile atricapillus) BCCH Resident
Carolina chickadee Poecile carolinensis) CACH Resident
Common yellowthroat (Geothlypis trichas) COYE Migrant
Gray catbird Dumetella carolinensis) GRCA Migrant
Hooded warbler (Setophaga citrina) HOWA Migrant
Northern cardinal (Cardinalis cardinalis) NOCA Resident
White-eyed vireo (Vireo griseus) WEVI Migrant
Wood thrush (Hylocichla mustelina) WOTH Migrant
Yellow-breasted chat (Icteria virens) YBCH Migrant

a,bForaging mode and diet are from Wilman et al. (2014).
a Foraging mode: C: canopy, M: mid-high, U: understory, G: ground.
b Diet: I: invertebrate, F: fruit, S: seed, P: other plant material.
then corrected these numbers using adult and juvenile capture probabil-
ities estimated frommark–recapture analysis. Finally, we computed rela-
tive density by dividing the sum of corrected abundances of adults and
juveniles in each year by the average abundance over time for each pop-
ulation. Here, we assumed that adult and juvenile birds contribute equal-
ly to intra-specific competition for resources, therefore, summed the
corrected abundances of adults and juveniles with equal weights. In
order to match our analysis to how vital rates are used in most
discrete-time population models, we specified survival from year t to
t+ 1 and fecundity in year t + 1 as functions of relative density in year
t. We expected negative density-dependence relationships (survival
and fecundity decreasingwith increases in relative density) because pos-
itive density-dependence relationships (Allee effects) tend to be associat-
ed with populations characterized by abnormally low densities
(Courchamp et al., 1999).
2.3. Effort

In order to standardize capture rates per unit effort, MAPS datasets
include information on the duration of each mist netting event and
Foraging modea Dietb # of total captures # of unique capture histories

M,U I,F,S 2735 2328
M,U I,S 2207 1954
U,M I 7403 5624
U,M I,F 14,658 11,435
U I 2812 2134
G,U,M,C P,I,F 10,460 7942
U,M,C I,P,F 8821 6452
G,U I,F 5738 4538
U I,F 2530 2012
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the total number and dimensions of nets used. Such data are essential
for refining capture probability estimates and thereby generating
more accurate and precise estimates of population-level demographic
rates (Cooch and White, 2006). For our analyses, we defined effort for
each population as total net-days per month (standardized mist net
was 12 × 2.5 m) across all banding stations.

2.4. Survival

Based on capture histories during the breeding season (May to
August) in 1994–2012 (but 1994–2010 for black-capped chickadee
because of low number of captures in 2011–2012), we estimated
stage-specific apparent survival rates (φ) and capture probabilities
(p; subsequently used to compute unbiased fecundity estimates; see
below) using the Huggins' robust design model (Huggins, 1989, 1991)
in programMARK (White and Burnham, 1999). Huggins' robust design
model is an extension to the robust design model (Kendall and Nichols,
1995; Kendall et al., 1995, 1997) which allows the use of individual co-
variates. In our analysis, we used the Huggins' model to use individual
covariates for capture probability (p).

We modeled two stages in the survival analysis (juvenile: b1 year;
adult: ≥1 year). In our robust designmodel, years that represent discrete
breeding periods were treated as primary capture occasions (among
which populations were considered open to losses from mortality and
emigration), andmonthly intervals within years were treated as second-
ary capture occasions (among which the population was assumed to be
closed). Because movement events are rare for breeding adults and
hatching year birds during the breeding season, we applied this model
to estimate capture probabilities (p) that were also used later to correct
fecundity. All analyses were performed in the R environment (R Core
Team, 2014) using the ‘RMark’ package (Laake, 2013).

Standard mark–recapture analyses often implicitly assume that all
marked individuals are residents, therefore the presence of transients
(defined as non-resident individuals that are available for capture for
a single survey occasion) can result in survival rate estimates that are
biased low (Hines et al., 2003; Nott et al., 2002; Pradel et al., 1997). To
parse out the effect of transients, we estimated survival separately for
individuals that can be transients (“potential transients”). Potential
transients were identified as adult birds that were captured only once
and observed in non-breeding condition (i.e., no observation of brood
patch and cloacal protuberance) during the breeding season. In our
analyses for survival, we included a covariate for potential transients
which resulted in a separate apparent survival rate for an unknown
mixture of transient and resident adults.

We constructed three models of apparent survival (φ): a “stage-
model” to estimate time-constant survival, a “time-dependent model”
for estimating temporal process variation, and a “density-dependent
model” for estimating survival as a function of intra-specific density.
In all models, φ was specified as a function of stage class (juvenile or
adult) and status as potential transients (see above). For the “time-
dependent model”, φ was allowed to vary independently for each year
and stage class (Table A.1). For the “density-dependent model”, φ was
modeled as a logit-linear function of relative density. We modeled
capture probability (p) with additive effects of stage class (juvenile or
adult) and effort (standardized net-days) (Table A.1).

The results from the time-dependent model provide a set of time-
specific survival estimates separately for juveniles and adults. How-
ever, the total variance of the time-varying survival rates represents
a mixture of sampling variance and process variance (Burnham and
White, 2002). We used the variance components procedure imple-
mented in Program MARK to isolate the process variance from the
total variance, resulting in estimates of temporal stochasticity in ap-
parent survival for adults and juveniles, respectively (Burnham and
White, 2002; Gould and Nichols, 1998). If process variance was not
separately identifiable in juveniles due to low number of captures,
we used the estimate of adult process variance to compute juvenile
process variance in survival, assuming that the coefficient of varia-
tion (CV) in survival among years was equal in juveniles and adults.

To estimate true survival (S), we increased the apparent survival es-
timates (φ) for both juveniles and adults such that the deterministic
growth rate of the population model (the eigenvalue of the stage ma-
trix, λ; the stage matrix used in our analysis is presented in ‘Population
Model’)matched the estimated trend in population growth over the en-
tire distribution for a given species (i.e. regional trend). Here, we as-
sumed that the estimated regional trend is an unbiased representation
of the overall population trend and that the disparity between the re-
gional trend and the eigenvalue of the stage matrix is a result of under-
estimation of survival rates caused by marked individuals emigrating
from study areas. In addition, we assumed that the level of disparity be-
tween apparent and true survival is the same in both juveniles and
adults. To calculate λ, we used estimates of fecundity which resulted
from our analysis (the method for estimating fecundity is described
later in this paper).We obtained trend using the Pradel model (“reverse
capture history” approach, Pradel, 1996) in program MARK which
allows estimation of trend based on mark–recapture data without re-
quiring abundance data (Cooch andWhite, 2006). By reversing the cap-
ture histories, the Pradel model is capable of estimating per-capita rate
of entry into a population (analogous to apparent survival, φ) and pop-
ulation growth (Nichols et al., 2000). Here, we estimated a constant
population growth rate (λ) across the study region by setting apparent
survival (φ) constant (thus balancing the assumption of a constant
growth rate, resulting in an unbiased estimate of λ) and modeling
capture probability (p) as a function of effort.

Based on the trend estimate (λ) obtained from the Pradel model, we
calculated true survival (S) for both adult (Sa) and juvenile survival
rates (Sj) as:

S ¼ φ λ=λapp
� �

; ð1Þ

where λapp is the apparent finite rate of increase computed asφa+φj ∗ F,
and λ / λapp is the “survival correction factor”. In computing this correc-
tion factor, all apparent survival (φ) and fecundity (F; see below) terms
were taken at mean values across all years and intra-specific densities.
This “survival correction factor” can also be computed from any estimate
of regional abundance trends, such as that reported by the North
American Breeding Bird Survey (BBS) (Sauer et al., 2014). All survival
rates presented in this paper were corrected using trend estimates de-
rived from the Pradel model (described above); nonetheless, we tested
and implemented an approach for using BBS trends to adjust survival
rates (available in the source code; see Section ‘Data accessibility’).

Point (best) estimates for true adult (Sa) and juvenile survival (Sj)
were computed simply by applying Eq. (1) to mean adult (φa) and
juvenile apparent survival (φj) point estimates from Program MARK,
respectively. To derive uncertainty bounds for S (e.g., for sensitivity anal-
ysis), we first applied Eq. (1) to all possible combinations of upper and
lower bounds for the component terms φa, φj, λ, and F, derived
respectively from ProgramMARK results (i.e., upper and lower 95% con-
fidence bounds on φ terms), trend analysis (i.e., upper and lower 95%
confidence bounds on λ estimated by the Pradel model or on the BBS
trend), and the fecundity estimation process (upper and lower 95% cred-
ible interval from Bayesian posterior distribution of F). We then comput-
ed the upper and lower uncertainty bounds for Sa and Sj as theminimum
and maximum values across all combinations of uncertainty bounds (al-
though these bounds cannot be interpreted as a strict 95% confidence in-
terval, which would almost certainly be narrower, this method was
designed to provide reasonable lower and upper bounds for sensitivity
analysis).

2.5. Fecundity

Weestimated fecundity (defined as juveniles produced per adult per
year) as the annual ratio of juvenile to adult captures at each defined
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population (i.e. MAPS location), corrected for different capture proba-
bilities between adults and juveniles. We assumed no age effects on fe-
cundity for the species in our analysis. Estimated confidence intervals
for capture probabilities of adults (pa) and juveniles (pj) were obtained
directly from the survival analysis (results from Program MARK, see
above).

The expected total number of juveniles produced (N̂ j) in a popula-
tion in each year was modeled as a log-linear function of relative
intra-specific density with a lognormal random intercept term (γt)
representing temporal process variance in fecundity.

N̂ j ¼ exp log N̂a

� �
þ log F0ð Þ þ β � Densityþ γt

� �
; ð2Þ

where F0 is the global mean fecundity for the species, N̂a represents the
true number of adult females in the population, β represents the log-
linear fixed effect of intra-specific density (Density) on fecundity, and γt

is a lognormal random intercept term representing the deviation from
the mean fecundity in each year t. Here, the parameters that were esti-
mated are mean fecundity (F0), effect of relative density on fecundity
(β), and temporal variance in fecundity (σ2). Note that annual deviation
frommean fecundity (γt) is in turn controlled by a single hyperparameter
(σ2) representing the (lognormal) temporal process variance in fecundi-
ty. This hierarchical parameter estimation scheme allowed us to directly
estimate process variance (σ2), in contrast with the post hoc method
we used to estimate process variance in survival rates, and illustrates
one of the reasons why ecologists are increasingly using hierarchical
(often Bayesian) statistical models (Clark, 2005). The observed number
of juveniles (Nj) was modeled as a Poisson random deviate with mean
equal to the product of N̂ j and the probability of capture for juveniles

(pj). N̂a entered the model as interval-censored data with upper and
lower bounds defined by the equation (N̂a = Na / CI(pa)), where Na rep-
resents the observed total number of adult females captured within each
population, and CI(pa) represents the lower and upper 95% confidence
bounds for adult capture probability extracted from the Program MARK
results (time-dependent model, see above). Similarly, pj entered the
model as interval-censored data with upper and lower bounds defined
by the 95% confidence interval for juvenile capture probability, extracted
from ProgramMARK.

We also ran one variation on thismodel, the “uncorrected” fecundity
model which omitted the capture probability (p) terms from Program
MARK, using the raw observed numbers of juveniles and adults to esti-
mate fecundity directly (analogous to the standard approach of using
juvenile to adult ratio as a measure of fecundity).

We estimated all parameters with Markov chain Monte Carlo
(MCMC) methods using WinBUGS 1.4 (Lunn et al., 2000), called from
the R environment via the R2WinBUGS package (Sturtz et al., 2005).
We assigned uninformative uniform prior probability distributions to
all free parameters. We ran three independent Markov chains each
with 1 000 000 MCMC iterations, discarding the first half as a burn-in
and storing every hundredth of the remaining iterations for further
analysis.We tested for convergence of theMarkov chains to the station-
ary posterior distribution with the Gelman–Rubin diagnostic (Bolker,
2008). We diagnosed approximate convergence when the upper limit
of the Gelman–Rubin diagnostic was ≤1.01. We summarized posterior
distributions for all parameters with the mean of MCMC samples as a
point estimate. To specify lower and upper uncertainty bounds
(e.g., for sensitivity analysis), we used the 2.5 and 97.5 percentiles of
the posterior distribution.

2.6. Population model

For each species, we created a population model with the best esti-
mates of all model parameters. Using the estimates of survival rates
(S) and fecundity (F), we developed a matrix-based population model
with post-breeding census (Caswell, 2001):

F � S j F � Sa
S j Sa

����
����:

Temporal process variance associated with each of the four
matrix elements was also specified on the basis of the survival and
fecundity analyses described above. The standard deviation of F
was obtained directly from the fecundity analysis, where temporal
(i.e. annual) variability in F was estimated as a free (hyper) parame-
ter in the hierarchical model (hyperparameters of the γt term in
Eq. (2)). Standard deviations of Sj and Sa were calculated using
ProgramMARK's variance component analysis procedure (described
above). To estimate the variance of F · Sj and F · Sa (the top row of
the stage matrix), we used the formula given by Goodman (1960),
assuming full correlation.

To accommodate uncertainty analysis, we computed lower and
upper bounds for each of the stage matrix elements and associated
temporal variability terms (Table 5). For the bottom elements of the
stage matrix (Sj and Sa) and associated temporal variability terms, the
lower and upper boundswere drawndirectly from the survival analyses
described above. We computed the uncertainty bounds of top row ele-
ments of the stage matrix (compounded fecundity and survival terms)
by multiplying the respective lower or upper bounds of each compo-
nent terms. For the uncertainty bounds on the variance terms, we
applied the Goodman (1960) formula to the lower and upper-bound
estimates.

Using the parameter estimates described above (survival rates,
fecundity, and temporal variability and density-dependence func-
tions associated with these vital rates), we developed population
models, formatted both as generic text files and as input files for
the population modeling software RAMAS Metapop (Akçakaya and
Root, 2013). Separate files were generated for central point esti-
mates (“best” estimates) and for upper and lower uncertainty
bounds (lower and upper bounds for all parameters were packaged
separately), which can be used to perform global sensitivity analysis
with the new R package ‘demgsa’ (in review; https://github.com/
mlammens/demgsa).

We did not model long-term change in average vital rates, although
this can be added to our model for species with sufficient data to esti-
mate a long-term trend. However, when vital rates are functions of pop-
ulation density (as they are in our models, and in any model developed
for long-term projection), the important assumption is the long-term
change in that relationship; specifically, the long-term change in the
carrying capacity. Such change can be modeled with a time series of
habitat maps based on changes in land-cover (Akçakaya et al., 2005)
or climate (Fordham et al., 2013; Keith et al., 2008; Pearson et al.,
2014). We also did not model long-term change in variability of vital
rates. We are currently developing a method to incorporate changing
environmental variance over time, using information on projected
weather.

Since the functional forms of the density-dependence relationships
in our survival and fecundity models are not among the standard func-
tions used in population models, we implemented these in a compiled
Dynamic Link Library (DLL), which is a program module that can be
used or called by another (main) program. Because weak density-
dependence combined with large temporal variability can push simu-
lated abundances above plausible values, we implemented a restriction
that truncates population sizes (i.e. relative density) at the maximum
observed value for each population. The purpose of this is to prevent
large densities from driving population dynamics, as we cannot be cer-
tain about the strength of the density-dependence mechanism beyond
the observed density limits. Furthermore, it is reasonable to assume
that at densities above the observed range, there are additional mecha-
nisms of density-dependence (such as space limitations) that further
limit population increases.

https://github.com/mlammens/demgsa
https://github.com/mlammens/demgsa


Table 2
Fecundity and its natural temporal variability (standard deviation, SD), with and without
corrections for low juvenile capture probability.

Species Fecundity (corrected
for low juvenile
capture probability)

Fecundity (not
corrected)

Bias

Mean SD CV
(%)a

Mean SD CV
(%)

In mean
(%)b

In variability
(%)c

BCCH 1.14 0.66 58 0.671 0.41 62 −41 3
CACH 0.58 0.25 43 0.519 0.25 49 −11 6
COYE 1.66 0.63 38 0.321 0.13 40 −81 2
GRCA 4.07 1.17 29 0.424 0.12 29 −90 0
HOWA 1.93 0.94 48 0.214 0.09 42 −89 −7
NOCA 1.44 0.52 36 0.450 0.19 41 −69 5
WEVI 2.34 1.07 46 0.537 0.32 59 −77 13
WOTH 2.48 0.65 26 0.326 0.09 27 −87 0
YBCH 0.65 0.28 43 0.141 0.12 83 −79 40

a CV = SD/mean.
b [(mean of uncorrected F − mean corrected F) / mean of corrected F] ∗ 100.
c CV of uncorrected F− CV of corrected F.
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Unless otherwise specified, all analyses were performed in R
(R Core Team, 2014); all scripts and functions for performing
these analyses (Fig. 1), the MAPS data for the 9 species, and sample
results can be freely downloaded via GitHub (see Section ‘Data
accessibility’).

3. Results

We compiled a database comprising 57 364 capture records of
44 419 unique individuals (Table 1). Percentage of the individuals that
were recaptured at least once varied from 10.6% (CACH) to 20.2%
(NOCA). Adult recaptures weremore commonly recorded than juvenile
recaptures — the ratio of juvenile to adult recaptures varied from 0.14
(WOTH) to 0.84 (CACH).

Capture probability of adults and juveniles varied as a function of
survey effort (Fig. 2). Therewere significant differences in capture prob-
abilities between adults and juveniles for all species. Due to larger num-
ber of captures in adults, 95% confidence intervals for adult capture
probability were substantially narrower than for juveniles (Fig. 2).

3.1. Fecundity

Average fecundity at mean density ranged from 0.58 to 4.07 juve-
niles per adult across the 9 species, and the temporal variability (stan-
dard deviation) ranged from 0.25 to 1.17 (Table 2). When fecundity
was not corrected for different capture probability of adults and juve-
niles, the mean in fecundity was underestimated by 11% to 90% (‘Bias
in mean’ in Table 2) and the temporal variability in fecundity was
overestimated by up to 40% (‘Bias in variability’).

Except for WOTH and YBCH, fecundity was a negative function of
density, although the density-dependence relationshipwas onlyweakly
negative in most cases (Fig. 3a; Table A.4).

3.2. Survival

Average apparent survival rate (φ) at mean density ranged from
0.38 to 0.52 for adults and from 0.05 to 0.31 for juveniles across the spe-
cies (Table 3).Whenφwas combinedwith the fecundity values, the ap-
parent finite rate of population increase (Lambda, λapp, in Table 3)
ranged from 0.48 to 0.76. The finite rate of increase based on trend esti-
mates (Lambda of trend, λ, in Table 3) ranged from0.95 to 1.06. Increas-
ing the survival rates so that the eigenvalue of the stagematrixmatched
the estimated trend resulted in true survival rates (Sa and Sj in Table 3)
that were 1.3 to 2.0 times greater than the corresponding apparent sur-
vival rates (φa and φj in Table 3).
Fig. 2. Capture probability of (a) adults and (b) juveniles as a function of effort for the 9 study s
per month.
Only four of the species (BCCH, CACH, WEVI, and WOTH) exhibited
negative density-dependence in survival (Fig. 3b; Table A.4). For
other species, survival was a positive function of density, and therefore
was modeled as density-independent (Table A.4; see Section ‘4.
Discussion’).

Overall, approximately half of the total variance in adult survivalwas
due to sampling variability (estimated from a variance components
analysis); process variance represented 32% to 60% of total variance,
with a mean of 47% over the 9 species (Table 4). Except for NOCA and
WEVI, process variance could not be estimated separately for juveniles
because of small sample sizes (Table 4). Since the resulting temporal
variability represents variation in apparent survival rates, we adjusted
it by applying the same method used in correcting for true survival
rates to get the temporal variability in true survival rates. Temporal var-
iability in true adult survival rates (standard deviation) ranged from
0.07 to 0.21 (Table 4). If temporal variability in true juvenile survival
rates could not be estimated due to lack of process variance estimates
in juveniles, we estimated it by applying the coefficient of variation es-
timated for adults.

3.3. Population models

For each species, a population model was created using the best es-
timates of survival (S) and fecundity (F), their temporal variability, and
their density-dependence functions. The resulting population models
pecies. Gray areas indicate 95% confidence intervals. Effort is in units of total mist-net days



Fig. 3. (a) Fecundity and (b) adult apparent survival (φ) as functions of density for the 9 study species. Relative density is presented in % of the mean density over time. Rugs on x-axis
represent observed values of relative density. Dotted lines indicate 95% CI.

Table 4
Temporal variability in survival rates of juveniles and adults.

Stage Species Total
variancea

Process
varianceb

Sampling
variancec

Temporal
variability of
apparent
survival rated

Temporal
variability
of true
survival
ratee

Juvenile BCCHf NA NA NA NA 0.0800
CACHf NA NA NA NA 0.1419
COYEf NA NA NA NA 0.0172
GRCAf NA NA NA NA 0.0112
HOWAf NA NA NA NA 0.0329
NOCA 0.00396 0.00099 0.00297 0.0315 0.0226
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simulated more realistic population trajectories than corresponding
models that did not include the processes (stochasticity and density-
dependence) and the corrections (for apparent survival and capture
probability) that our approach implements (Fig. 4). For uncertainty
analysis, we calculated the lower and upper bounds for each of the
stage matrix elements and associated temporal variability terms. Esti-
mates of the stage matrix elements and their temporal variabilities,
and parameters of the density-dependence functions are given in Ap-
pendix A, together with their respective uncertainties (Tables A.2–A.6).

4. Discussion

Although population viability analysis is a powerful tool for biodi-
versity assessments, its use has been restricted because of data limita-
tions. We demonstrated the feasibility of using a single source of data
(i.e. mark–recapture) to develop a fully specified population model for
viability analysis. Our approach estimates the four main elements re-
quired tomodel stochastic population dynamics: (i) unbiased fecundity
estimates, (ii) true survival rates for adults and juveniles, (iii) temporal
variability in these parameters (by separating out sampling error), and
(iv) dependence of these parameters on population density. In addition,
Table 3
Apparent and true survival rates of adults and juveniles.

Species Apparent
survival

Fecundity Lambda Lambda of
trend

Corrected
(true) survival

φa φj F λapp
a λc Sa Sj

BCCHb 0.4298 0.1933 1.14 0.649 0.975 0.645 0.290
CACHb 0.4523 0.3117 0.58 0.634 0.995 0.710 0.489
COYE 0.4224 0.0798 1.66 0.555 0.957 0.729 0.138
GRCA 0.4710 0.0706 4.07 0.758 0.982 0.611 0.091
HOWA 0.4769 0.0833 1.93 0.638 1.058 0.7910 0.138
NOCA 0.5237 0.1476 1.44 0.736 1.007 0.717 0.202
WEVIb 0.4610 0.1128 2.34 0.725 1.027 0.653 0.160
WOTHb 0.3808 0.0499 2.48 0.504 0.996 0.752 0.098
YBCH 0.4295 0.0730 0.65 0.477 0.952 0.857 0.146

a Eigenvalue (λ) of the stage matrix using apparent survival rates.
b Survival rates based on density model. Except for these species, survival rates are

based on the null model because the density model was biologically unrealistic.
c Growth rate corresponding to long-term trend in MAPS data, and the eigenvalue of

the stage matrix using corrected survival rates.
parameter uncertainties are incorporated for use in a global sensitivity
analysis. If proper mark–recapture datasets are available, this approach
can be readily applied to all types of mark–recapture analyses (e.g. data
from camera traps) with some modifications in the models that fit the
biology of the species modeled. By easing and facilitating the process
of developing stochastic population models and sensitivity analysis,
we believe our new approach has the potential to identify the
WEVI 0.00187 0.00024 0.00163 0.0154 0.0204
WOTHf NA NA NA NA 0.0136
YBCHf NA NA NA NA 0.0342

Adult BCCH 0.02786 0.01401 0.01385 0.1184 0.1778
CACH 0.03806 0.01720 0.02086 0.1311 0.2060
COYE 0.00887 0.00280 0.00607 0.0529 0.0913
GRCA 0.00551 0.00333 0.00218 0.0577 0.0748
HOWA 0.02293 0.01292 0.01001 0.1137 0.1885
NOCA 0.00702 0.00343 0.00359 0.0585 0.0800
WEVI 0.00761 0.00345 0.00417 0.0587 0.0832
WOTH 0.00846 0.00278 0.00568 0.0527 0.1040
YBCH 0.02013 0.01017 0.00996 0.1009 0.2012

a Based on time model in MARK.
b Estimated using variance component analysis.
c Total variance − process variance.
d If process variancewas estimated, temporal variability in survival rate is the standard

deviation of the estimated process variance.
e Standard deviation of survival rates corrected for the apparent survival which was

calculated as coefficient of variation of apparent adult survival ratemultiplied by true adult
survival rate.

f Process variance could not be estimated due to low sample size, therefore, standard
deviation is calculated as coefficient of variation of apparent adult survival rate multiplied
by true juvenile survival rate.



Table 5
Stage matrix and standard deviation matrix for WEVI.

Stage matrix
Mean (95% CI)

0.374
(0.243–0.558)

1.528
(1.034–2.116)

0.160
(0.130–0.199)

0.653
(0.554–0.753)

SD matrix
Mean (95% CI)

0.218
(0.073–0.449)

0.892
(0.305–1.735)

0.020
(0.010–0.038)

0.083
(0.040–0.753)
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underlying mechanisms driving present-day population dynamics and
provide insights into the future conservation outlook for a wide range
of common and at-risk species.

Recently, a framework called integrated population models
(IPMs; not to be confused with integral projection models) has
been developed to make inference about population dynamics
using multiple independent datasets (e.g., capture-recapture data,
nest surveys, population counts) (Schaub and Abadi, 2011). Using
joint likelihoods, this new framework results in more precise param-
eter estimates, while enabling estimation of parameters that are oth-
erwise not obtainable using only a single dataset (Abadi et al., 2010).
By combining information that comes from multiple independent
datasets, IPMs gain precision and therefore, have the advantage
over the conventional methods that analyze each data separately
(Schaub and Kéry, 2012). However, multiple independent sources
of information are often unavailable for species of interest. Our
method overcomes this problem and makes it possible to estimate
all the parameters required for a matrix-based, stochastic population
model from a single capture-recapture dataset. Because of this attri-
bute, our framework is generally applicable to all other species that
have only one source of long-term mark–recapture dataset.

Unlike conventional studies, our method successfully corrects
the biases in parameter estimates, as demonstrated by the comparison
between the corrected and uncorrected fecundity estimates for our
study species. The independent analyses show that the uncorrected es-
timates of fecundity based on simple juvenile to adult ratio are unreal-
istically low. For example, for Gray Catbird (GRCA), 2.8 fledglings/nest
and three broods per female is reported in the southeastern U.S.
(Smith et al., 2011), resulting in 4.2 fledglings/adult. This ismuch higher
than the uncorrected juvenile to adult ratio of 0.42, and similar to the
corrected ratio of 4.07 (Table 2). For Northern cardinal (NOCA),
Fig. 4. (a) Projection of the stochastic population dynamics with the model developed for whi
index for WEVI in the Southeastern Coastal Plain region (the FWS region with the largest nu
“naive” model that excludes stochasticity, density-dependence, as well as correction for ap
curve), and both corrections (bottom curve). Note the different scales used for (c) to allow vis
fecundity is reported as 2.0–2.8 young fledged/pair/year (Halkin and
Linville, 1999), corresponding to 1.0–1.4 fledglings per adult, which is
much higher than the uncorrected juvenile to adult ratio of 0.45, and
similar to the corrected ratio of 1.44. Furthermore, our hierarchical
Bayesian method successfully removes sampling variance from the
total variance of fecundity. This not only provides robust mean fecundi-
ty estimates but also the temporal variability term, which is a critical
component of most stochastic population projection models. When
simulated, our approach resulted in realistic projections of population
dynamics compared to population models without these corrections
(Fig. 4).

For survival rates and their variability, our approach adjusts the ap-
parent survival rates derived from standard mark–recapture analysis
so that the estimated population trend matches the regional trend of
the species. This adjustment accounts for the difference between the
apparent and true survival, i.e., emigration. This is not a direct estimate
of emigration that would be useful for a dispersalmodel, because it rep-
resents emigration out of an undefined area. Directly estimating emi-
gration rate would be the preferred method, but data from the MAPS
program do not allow this (sparsely located MAPS stations make the
detection of movement between stations impossible for most of the
species). Hence, we used a practical approach based on the assumptions
that (i) the regional trend is a reasonable, unbiased representation of
the local population trend, (ii) the disparity between the estimated
trend (or observed BBS trend) and the eigenvalue from the population
model is a result of underestimation of survival rates (i.e. the difference
between apparent and true survival), which in turn is a result ofmarked
individuals emigrating from study area, (iii) the level to which the
apparent survival differs from the true survival is the same in both
juveniles and adults, and (iv) the fecundities are not underestimated.
Evidence from independent estimates of fecundity (see above) suggests
that this is a reasonable assumption to make; the resulting model is
much more realistic than one using apparent survival instead of true
survival, or those making an arbitrary assumption of emigration rate.
Furthermore, there is no a priori reason to suspect that fecundity
would be underestimated under our approach, whereas underestima-
tion of survival rates (i.e., due to inability to distinguish mortality from
permanent emigration) is a known issue that is especially likely to affect
highly motile species such as songbirds.

Density-dependence is often a critical aspect of population models,
not only because it strongly regulates the overall dynamics and affects
the predicted risks of extinction, but also because it is often difficult
to parameterize. With our approach, except for YBCH, we were able to
fit a densitymodel to either survival rate or fecundity, and for some spe-
cies, both. It is not clear why we obtained positive density-dependence
for some species in which the vital rate increased with increasing den-
sity. Allee effects might have played a role, but we believe it is highly
te-eyed vireo (WEVI). For clarity only the first 10 replicates are shown. (b) Breeding bird
mber of survey routes on which the species was encountered). (c) Projection with the
parent survival (top curve), correction for capture probability in calculating F (middle
ualizing the three curves.
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unlikely that they caused the positive relationship over the entire ob-
served range of population densities becauseAllee effects aremostly de-
tected at low densities (Courchamp et al., 1999). Also, there is no
evidence in the literature for Allee effects being particularly strong for
these species. We believe that the cases of positive density-
dependence represent limitations in the data, and therefore only imple-
mented negative density relationships into the population models.

The datasets we used to test our approach included a wide range
of sample sizes, approximately from 2000 to 15 000 total captures
(Table 1). In general, our approach was applicable to all the datasets;
the only issue we encountered with the smaller sample sizes was
non-convergence in the time model for juveniles. Although we cannot
be certain about the performance of our approach for sample sizes
much smaller than about 2000 total captures, we believe that the
major aspects of our approach (applying corrections to survival and
fecundity and estimating density-dependence in both parameters)
will not be overly sensitive to sample size.

Our study demonstrates the value of labor-intensive biodiversity
monitoring programs such as MAPS which, by itself, provides sufficient
amount of the data to develop a stochastic matrix-based population
model. By requiring only a single long-term mark–recapture dataset,
we strongly believe that this new method will ease the otherwise
complex process of constructing a population model and enable future
projections of population dynamics, especially for species for which
mark–recapture data are the only source of information for estimating
demographic parameters.

5. Data accessibility

MAPS data for the 9 species, the source code of themethods (R code
for data formatting, R code for MARK analysis, WinBUGS, and density-
dependence function), and sample results for one species can be freely
downloaded via https://github.com/Akcakaya/MAPS-to-Models.
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