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INTRODUCTION

State of the art first-principles calculations of
electronic structures aim at finding the ground state
electronic density distribution. The performance of
such methodologies is determined by the effective-
ness of the iterative solution of the nonlinear density
functional equation. We present a novel approach
based on the appropriate density mapping. We start
with the simplest density functional model, i.e., the
atomic Thomas-Fermi model.

Traditional mixing methods may not be appro-
priate for the larger complex systems of current
technological interest. Mixing employs successive
approximation iterates of a fixed point mapping.
Such iterates are often found to converge very
slowly or not at all. Attempting to resolve this, we
have designed a quadratically convergent operator
version of the Newton-Raphson method. From the
minimization of the Thomas-Fermi functional, one
obtains by variational methods a nonlinear integral
mapping for which the ground state density function
is a fixed point.

THOMAS-FERMI MODEL

After the functional minimization, we obtain, for
the atomic number Z, the following mapping for
the nonnegative density ρ in SI units:
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where κ = 3

5/3π4/3h̄2/(10m). Here, the usual
Lagrange multiplier μ, which fixes the number of
electrons, has been set to zero, as appropriate for the
neutral atom [1]. After assuming spherical symme-
try, we introduce a new variable Q(r) = r3/2ρ(r)
which regularizes the density at the origin. We then
obtain the mapping in the form
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where N is the number of electrons.

OPERATOR NEWTON-RAPHSON METHOD

To apply the Newton-Raphson method, we in-
troduce the mapping Y = I − R ◦ P . In terms
of this mapping, the iterates are given by Qnew

=

Qold
+ δQ, where δQ is determined by the implicit

relation
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]
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DISCUSSION

We observed that
∫ ∞
0

drδQ(r)
√
r = 0, which

ensures the charge conservation for the Newton-
Raphson algorithm. The figures are based upon
simulations involving a damped Newton-Raphson
implementation of Eq. (5) with simple integration
rules. An iteration history is included. A discussion
of the Thomas-Fermi model using the variable χ =

Q2/3 may be found in Ref. [2].
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Fig. 1. Q(r) for the 3rd, 8th and 13th iterations in logarithmic
scale. Inset represents the same data in linear scale.
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Fig. 2. Initial exponentially decreasing guess and the con-
verged result. Inset magnifies the data around the origin.
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Fig. 3. Variation of successive iteration distances which is
determined by

∑
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