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1. INTRODUCTION

The task of electromagnetic profile inversion is extracting information
about a material object from electromagnetic phenomena observed or
measured outside the material medium. The intrinsic feature that
sets these inversion problems apart from parameter estimation is that
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the unknowns are usually functions of space and time (or frequency).
The implication is that, in principle, the solution contains an infinite
number of variables and hence the problem is as underdetermined as
it possibly can be. In addition, inverse problems are well known to
be nonunique. The nonuniqueness of electromagnetic inverse problems
have been well documented in the literature [1–10] and will not be
considered here. Rather, we shall investigate the effectiveness of the
localized approximations as originally proposed by Habashy et al. [11],
and extensions thereto. As a vehicle for study, we consider a one
spatial dimension problem involving scattering from a lossy dielectric
slab, herein referred to as the slab problem.

The one-dimensional integral equation that describes the functional
relationship between observed (or measurable) electromagnetic phe-
nomena outside of the one-dimensional slab and its constitutive elec-
tromagnetic parameters seems deceptively simple. The difficulty is
embedded in the integrand of the integral equation. This integrand
is the product of the unknown total internal electric fields, a Green’s
function, and the unknown contrast in complex conductivity (or per-
mittivity). Additionally, the total internal electric field is functionally
dependent on the slab complex conductivity profile. This renders the
problem nonlinear. The starting point in obtaining a solution is find-
ing an acceptable accurate approximation to the internal electric field.
The first efforts in this direction were by Born [12] and Rytov [13].
The potentials and limitations of the two approximations have been
reviewed extensively in the electromagnetic literature [14, 11, 16, 17].
Beyond the well known approximations of Born and Rytov, Habashy
et al. [11] proposed a nonlinear localized approximation based on the
recognition that the Green’s function has a singularity (in multidimen-
sional problems) when computing the total internal electric field at the
source point. Hence for internal fields that are smoothly varying, the
field at the source point can be approximated by the field at the ob-
servation point. This approximation allows the internal electric field
to be explicitly determined from the Green’s function and the complex
conductivity contrast. As pointed out by Torres-Verdin and Habashy
[18], the technique is more difficult to apply in one-dimensional prob-
lems where the Green’s function singularity degenerates into a localized
peak or maximum.

Herein, we modify the localized approximation by introducing two
iterative techniques in order to partially circumvent the difficulties in
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one-dimension. In the first technique we iterate the governing equation
once before adopting the localized approximation in [11], while in the
second case we apply the iteration once after the localized approxima-
tion. We also develop a generalization of the iterative techniques using
the extended Born approximation.

The first part of this paper deals with the evaluation of the effective-
ness of the localized approximation (and modifications) in improving
and/or enhancing accurate simulation of the total internal electric field.
The second part deals with the reconstruction of the slab conductiv-
ity profiles from noise contaminated synthetic data using the local-
ized approximations and the modifications. We have adopted Occam’s
method [37, 20] in our inversion for its robustness and versatility. It is
a least-squares method that produces the “smoothest” model based on
minimizing the integral of the squares of the first or second derivative
of the complex conductivity profile with respect to the slab axis. A
generalization of the method has been proposed by Smith et al. [38].

In the next section, we present the formulation of the localized ap-
proximation with the two extensions. In addition, we extend the Tran-
tenella approximation [19, 21] to include lossy profiles. (In their study
Trantanella et al. [21] modified the Born approximation by includ-
ing both a forward and a reflected wave approximation to the internal
fields.)

In section 3 , we perform numerical simulations for piecewise con-
stant and linear complex conductivity profiles. These results are evalu-
ated against exact solutions from transmission-line theory. We provide
representative results from exhaustive numerical study on the influence
of both displacement and conduction currents.

In section 4 , we give a brief description and formalism of Occam’s
method with some reconstruction results performed on noisy synthetic
data. In the last section we draw some conclusions from our work and
point to the direction of future work.

2. INTEGRAL EQUATION OF THE SLAB PROBLEM

The geometry of the problem is as shown in Figure 1. The integral
equation that describes the electric field is given by

Ey(z) = Ein
y (z) +

kb
2jεb

∫ d

0
q(z′)g(z, z′)Ey(z′)dz′ (1)

which is valid everywhere in space. Here the subscript b refers to the
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Figure 1. Dielectric slab with complex permittivity.

background medium and q(z) = εs(z)− εb is the relative permittivity
profile of the slab. All other quantities have their usual meanings. The
Green’s function g(z, z′) is defined for the 1-dimensional slab problem
to be

g(z, z′) = e−jkb|z−z
′| (2)

In the Habashy approximation [11], the field at the source point is ap-
proximated by the field at the observation point for observation points
limited to within the scatterer. In this way we can rewrite the integral
equation as

Ey(z) = Ein
y (z) +

kb
2jεb

∫ d

0
q(z′)g(z, z′)Ey(z)dz′

+
kb

2jεb

∫ d

0
q(z′)g(z, z′)[Ey(z′)− Ey(z)]dz′

(3)
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and we obtain after some algebraic manipulation

Ey(z) = Γ(z)
[
Ein
y (z)

+
kb

2jεb

∫ d

0
q(z′)g(z, z′)[Ey(z′)− Ey(z)]dz′]

]
(4)

where Γ(z) is defined by

Γ(z) =
[
1− kb

2jεb

∫ d

0
q(z′)g(z, z′)dz′

]−1

(5)

In the Habashy approximation, the internal electric field, Ey(z) is
given by

Ey(z) ≈ Γ(z)Ein
y (z) (6)

with error given by

Γ(z)
[

kb
2jεb

∫ d

0
q(z′)g(z, z′)[Ey(z′)− Ey(z)]dz

]
(7)

In our attempt to extend the domain of validity of the above approx-
imation, we employ two iterative techniques. In the first case which
we call the Adopley approximation, we iterate the integral equation
once before employing the localized approximation. In the second case
which we call the Extended Habashy approximation, we iterate the
localized approximation once. Specifically, the internal field in the
Adopley approximation is written as

Ey(z′) = Ein
y (z′) +

kb
2jεb

∫ d

0
q(ξ′)g(z′, ξ′)Ey(ξ′)dξ′ (8)

When this is substituted back into the integral equation, we obtain

Ey(z) = Ein
y (z) +

kb
2jεb

∫ d

0
q(z′)g(z, z′) [ Ein

y (z′)

+
kb

2jεb

∫ d

0
q(ξ′)g(z′, ξ′)Ey(ξ′)dξ′ ] dz′ (9)

We incorporate the Habashy approximation by replacing Ey(ξ′) with
Ey(z) in the above equation to obtain

Ey(z) = Ein
y (z) +

kb
2jεb

∫ d

0
q(z′)g(z, z′)Ein

y (z′)dz′

+ Ey(z)
(

kb
2jεb

)2 ∫ d

0
dz′

∫ d

0
q(z′)g(z, z′)q(ξ′)g(z′, ξ′)dξ′ (10)
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We then solve for Ey(z) to get

Ey(z) =
[
Ein
y (z) +

kb
2jεb

∫ d

0
q(z′)g(z, z′)Ein

y (z′)dz′
]

Γ(z) (11)

where Γ(z) is given by

Γ(z) =

[
1 +

(
kb

2jεb

)2 ∫ d

0
dz′

∫ d

0
q(z′)g(z, z′)q(ξ′)g(z′, ξ′)dξ′

]−1

(12)

The error introduced is then given by

Γ(z)
(

kb
2jεb

)2 ∫ d

0
dz′

∫ d

0
q(z′)g(z, z′)q(ξ′)g(z′, ξ′)

(
Ey(ξ′)− Ey(z)

)
dξ′

(13)
For the Extended Habashy approximation we begin with the Habashy
approximation by writing Ey(z′) as Γ(z′)Ein

y (z′) . When we substitute
this into equation (4) we obtain

Ey(z) = Γ(z)Ein
y (z)

− Γ2(z)Ein
y (z)

(
kb

2jεb

∫ d

0
q(z′)g(z, z′)dz′

)

+ Γ(z)
(

kb
2jεb

∫ d

0
q(z′)g(z, z′)Γ(z′)Ein

y (z′)dz′
)

(14)

This can be manipulated into a more compact form as

Ey(z) = Γ(z)Ein
y (z) [2.0− Γ(z)]

+
kb

2jεb
Γ(z)

∫ d

0
q(z′)g(z, z′)Γ(z′)Ein

y (z′)dz′ (15)

In the final modification applied to the localized approximation,
we project both the forward and backward waves onto the scattering
coefficient. We model the internal field for an incident plane wave as

Ey(z) = Γ(z)(Ae−jkbz + Bejkbz) (16)

where A and B are constants to be determined. The external field
then becomes

4Ey(z) = e−jkbz+

kb
2jεb

ejkbz
∫ d

0
q(z′)Γ(z′)e−jkbz

′
(
Ae−jkbz

′
+ Bejkbz

′
)
dz′ (17)
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for z < z′ . We match the internal and the external fields at the
boundary z = 0 to compute A and B as

A =
χa

χa(Γ(0)− 1
2GF (q))− 1

2GF (q)χb
(18)

B =
χb

χa(Γ(0)− 1
2GF (q))− 1

2GF (q)χb
(19)

where

χa = Γ(0)−Qq(0) +
1
2
GF (q) (20)

χb = Qg(2kb)−
1
2
GF (q) (21)

Qg(αkb) =
∫ d

0
q(z′)Γ(z′)e−jαkbz

′
dz′ (22)

G = Γ(0)2
kb

2jεb
(23)

Here F (q) is the Fourier Transform of q .

2.1 Generalized Local Approximation

We now present a generalization of the local approximation using
the Extended Born approximation. We shall show that some of the
modifications can be recovered as special cases of this generalization.
In the formulation, we adopt the following generic form of the integral
equation:

E(z) = Eb(z) +
∫ d

0
σ̄(z′)G(z, z′)E(z′)dz′ (24)

where G(z, z′) is the Green function and the support of σ̄(z) is (0, d) .
In this notation, the Green function G(z, z′) for the one-dimensional
problem is

G(z, z′) =
kb

2jσ̄b
e−kb|z−z

′| (25)

The Extended Born approximations are accomplished by repeated it-
eration of the integral equation, namely,

E(z) =
N−1∑

0

En(z) + eN (z) (26)
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where En(z) and eN (z) are

En(z) =
∫ d

0
σ̄(z′)G(z, z′)En−1(z′)dz′ (27)

eN (z) =
∫ d

0
σ̄(z1)G(z, z1)dz1

∫ d

0
σ̄(z2)G(z1, z2)dz2∫ d

0
σ̄(zN−1)G(zN−2, zN−1)dzN−1∫ d

0
σ̄(zN )G(zN−1, zN )E(zN )dzN (28)

with E0(z) = Eb(z) . Only the first N − 1 terms in the summation
are kept with eN (z) defining the residual error. eN (z) , the residual
error, can alternately be expressed as

en(z) =
∫ d

0
σ̄(z′)G(z, z′)en−1(z′)dz′ (29)

with e0(z) = E(z) . We may apply the localized approximation to
equation (28) or equation (29) to derive two different results as follows:

2.2 First Approximation

We apply the localized approximation repeatedly to equation (28)
such that

E(zN ) ≈ E(zN−1) ≈ s ≈ E(z2) ≈ E(z1) ≈ E(z) (30)

and we obtain
eN (z) = ΛN (z)E(z) (31)

where ΛN (z) is the N-tuple integral given by

ΛN =
∫ d

0
σ̄(z1)G(z, z1)dz1

∫ d

0
σ̄(z2)G(z1, z2)dz2s∫ d

0
σ̄(zN−1)G(zN−2, zN−1)dzN−1∫ d

0
σ̄(zN )G(zN−1, zN )dzN (32)
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Substituting equation (31) into equation (26), we get for the internal
electric field

Eint(z) ≈ ΓN (z)
N−1∑

0

En(z) (33)

where
ΓN (z) = [1− ΛN (z)]−1 (34)

For N = 1 we recover the Habashy approximation and for N = 2 we
recover the Adopley approximation.

2.3 Second Approximation

We can effect the localized approximation on equation (29) as

en(z) ≈ Ω(z)en−1(z) (35)

where

Ω(z) =
∫ d

0
σ̄(z′)G(z, z′)dz′ (36)

The residual error eN (z) becomes

eN (z) ≈ [Ω(z)]N E(z) (37)

The internal electric field is then easily shown to be

Eint(z) ≈ ΓN (z)
N−1∑

0

En(z) (38)

where
ΓN (z) =

[
1− [Ω(z)]N

]−1
(39)

Once again we recover the Habashy approximation for N = 1 . How-
ever we do not recover the Adopley approximation when N = 2 .

We shall investigate and evaluate the effectiveness of the localized
approximation (and modifications) in improving and/or enhancing ac-
curate simulation of the total internal electric field. The only setback
is that the degree of nonlinearity for the inverse problem as a func-
tion of the slab permittivity profile also increases. The feasibility of
any particular approximation will then weigh heavily on our ability to
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devise an efficient method that can extract the slab profile without dis-
proportionate increase in computation cost. In the inversion studies,
we employ Occam’s inversion technique [37].

We shall also make comparisons with the Trantanella method which
we have extended to include the case of complex conductivity. Briefly
in the Trantanella method [19, 21], the internal electric field assumes
the form

Ey(z′) = Ae−jkbz
′
+ B

kb
2jεb

∫ d

0
q(ξ)e−jkbξe−jkb|z

′−ξ|dξ (40)

where A and B are constants determined from the continuity of the
tangential fields at the boundary z = 0 . The constants A and B are
readily evaluated to obtain for z < 0 [19, 21]

Ey(z) = e−jkbz +
kb

2jεb
ejkbz

Q2(2kb)

Q(2kb)
(
1− kbd

2jεb
qav

)
− χ

(41)

where

χ =
kbd

2εb
qav2ejkbd

(
cos(kbd)−

sin(kbd)
kbd

)
,

Q(2kb) ≡
∫ d

0
q(ξ)e−2jkbξdξ,

qav ≡
∫ d

0
q(z)dz.

The major approximation in the Trantanella formulation is assuming
the same propagation constant for the slab and background media.
Before we embark on any full scale inversion scheme we first reformu-
late the slab problem in terms of complex conductivity (σ) given by
σ̄ = σ + jεωεo . From the expression derived earlier for the integral
equation we can readily show that

Ey(z) = Ein
y (z) +

kb
2jσ̄b

∫ d

0
σ̄(z′)g(z, z′)Ey(z′)dz′ (42)

Here σ̄(z) = σ̄s(z)− σ̄b and the subscripts s and b refer to slab and
background respectively.
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Figure 2. Magnitude and phase plots of internal electric field.
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Figure 3. Effect of background and slab loss-tangents on electric field
accuracies.
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Figure 4. Effect of relative magnitude of loss-tangents on electric field
accuracies.
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3. NUMERICAL RESULTS

We present some numerical simulations of the total internal electric
field for the piecewise constant and linear complex permittivity or con-
ductivity profiles. These are compared against exact simulation results
from transmission-line theory. Each individual model has been tested
extensively to evaluate the influence of conduction and displacement
currents.

Figures 2 and 3 show the internal electric field simulations of the
models against the exact internal field for the constant profile. In
Figure 2, the parameters are selected to obtain a loss-tangent of 1.8
for the slab and 1.8×10−3 for the homogeneous background medium.
The dielectric constant of both the homogeneous background medium
and the slab is 1.0 . We note that the Habashy model provides the
least accurate results. The Trantanella model gives the best result,
with perfect match at z = 0 . We note also that the Extended Habashy
model gives much better results than the Habashy model. In Figure 3
we increase the background conductivity to 0.10s/m and that of the
slab to 1.0s/m . The Adopley model yields very poor results in the
magnitude plots. However, the phase information from the Adopley
model is competitive with the other models. We observe good results
for the Extended Habashy and the Trantanella models. Figure 4 shows
the internal field simulation of models against the exact field for loss-
less dielectric slab of linear profile. We set ε − slope at 0.5/m . All
approximations except the Habashy model predict the internal electric
field very accurately both in magnitude and phase.

4. INVERSION ALGORITHM

We adopt the Occam’s inversion [37] procedure which is based on the
notion that any model implemented should be as simple or as smooth
as possible. This particular inversion method provides the smoothest
model possible within a predefined acceptable data misfit. As measured
data is inevitably contaminated with noise, it is unrealistic and in fact
undesirable to demand a perfect fit. Indeed seeking a perfect match
for measured data introduces phantom structures into the model.

We now present a formal derivation of the model. We define the
following quantities:
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m model parameter vector of length N

F [m] the forword model
d observed data vector of length M

R1 =
∫

(dm/dz)2

R2 =
∫

(d2m/dz2)2

νj estimated error associated with datum dj

We predict the measured data through a discrete model as d
¯j

= Fj [m]
and define the acceptability of the model prediction to the actual values
with a weighted Least-square error

X 2 =
M∑
j=1

(
dj − Fj [m]

νj

)2

(43)

where as defined earlier νj is the uncertainty in the jth datum. The
mathematical problem is then, presented with a set of data dj with
associated uncertainties νj , find a model m1 that minimizes R1 or
R2 while X 2 is kept below some predefined threshold value. This is
a nonlinear optimization problem and there is no guarantee that some
mi will reduce X 2 to a low enough value. However, we assume that
with some constraints on the model parameters consistent with the
physics of the problem, we can obtain a good enough model that will
provide a reasonable fit to the observed data.

From constraint theory, we apply the Lagrangian multiplier to define
our cost function U as

U = ||δm||2 + µ−1
{
||Wd−WF [m]||2 − χ2

∗
}

(44)

where the first term of U is the discrete form of the roughness and
the second term is the misfit weighted by the Lagrangian multiplier.
W is M ×M diagonal matrix W = diag{1/ν1, 1/ν2, s1/νM} . The
uncertainties νj are assumed to be zero-mean independent Guassian
processes. Thus X 2 has a χ2 distribution with expected value of M .
In nonlinear analysis we compute F [m] to the first order due to a
perturbation of the model m

F [m0 + ∆] = F [m0] + J
¯0∆ + ε (45)
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where ε is a vector with magnitude of o||∆|| and J
¯0 is s the Jacobian

defined by J
¯0 = ∇mF [m0] and ∆ = m −m0 . The implicit assump-

tion is that F [m0] is differentiable about the base model m0 . If we
approximate F [m1] by F [m0] + J

¯0∆1 and define m1 as the model
that minimizes U , then we obtain from linear theory[

µδT δ + WJ
¯0)

T (WJ
¯0)

]
m1 = (WJ

¯0)
T (W d̂)

where d̂ = W (d − F [m
¯ 0] + J

¯0m0) . We then generate an iterative
scheme by selecting µ to yield the desired misfit from computation.
m1 is then used to compute m2 until the scheme converges, if at all.
It may be shown that if the system converges, it solves the original
minimization problem with the final solution independent of the start-
ing values, provided the minimum is unique. However in the present
work we have adopted a modified iterative scheme [37, 20] which is as
follows: Suppose we have the kth iterate; then we define the vector

mk+1(µ) =
[
µδT δ + WJ

¯k
)T (WJ

¯k
)
]−1

(WJ
¯k

)T (Wd̂k)

Next a 1-D line search is employed to find µ that minimizes the true
misfit given by

Xk+1(µ) = ||Wd−WF [mk+1(µ)]||

This is because any initial guess is usually far from the true model and
whatever value of µ selected, Xk is always greater than χ∗ . After a
number of minimizations µ is selected for Xk to match χ∗ exactly.
We present below some results of our numerical inversion studies using
the above inversion algorithm.

4.1 Numerical Inversion Studies

We next present some results from extensive numerical inversions
performed using the formulation developed in Section 4. The points
z = 0 and z = d are referred to as the measurement boundaries. Also
the actual space occupied by the slab profile within the measurement
boundaries we refer to as the slab region. All inversion results presented
for the constant profile are for a slab region of size d/2 , symmetrically
located between the measurement boundaries. This is because we con-
sider this particular profile arrangement, which we term “inclusion”
profile, as a realistic approximation to some practical situations.
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Figure 5. Relative performance of models in “Inclusion” profile re-
construction.

Figure 6. Frequency effect on “Inclusion” profile reconstruction.
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Figure 7. Inverse profile reconstruction.

Figure 8. Background complex conductivity effects on profile recon-
struction.
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In all of our inversion experiments, we employ the scattered electric
field at the measurement boundary z = 0 , which is equivalent to the
reflection coefficient. For the piecewise constant profile we generate the
synthetic measured data using the transmission-line formulation. The
data is then contaminated with Gaussian white-noise of zero mean
and 5% standard deviation. This is used for all of our inversions.
Data is sampled at frequencies distributed logarithmically between a
minimum frequency of 10.0Hz and a maximum frequency fm which
is selected individually for each inversion. We select the maximum
frequency based on the maximum frequency at which the models ac-
curately simulate the noiseless data.

Figures 5 and 6 portray the relative performances of the different
approximation models. In Figures 5 and 6, the maximum frequency of
reconstruction is 0.10MHz and 1.0MHz respectively. At the lower
frequency, the Extended-Habashy model predicts the best results. We
observe also that the Habashy model produces slightly better results
than the Adopley model. However, for reconstruction at the higher
frequency shown in Figure 6, the Adopley model produces the overall
best results. One should observe in these two figures that the resolution
of the profile reconstruction is sharper at the higher frequency. This
is found to be generally true. Hence, reconstructions should be done
at the highest frequency for which convergence is possible. We also
note that, at the higher frequency, the Habashy model yields the least
resolution for the reconstructed profile. The Habashy model tends to
give higher reconstructed values at the higher frequency.

In Figure 7 the “inclusion” is reversed to produce a depression in
the conductivity profile. The three models indicate the conductivity
depression quite accurately. However we observed some distinct dif-
ferences in each model performance. The Adopley model predicts the
conductivity profile at the slab leading edge better than the Habashy
and the Extended-Habashy models. However, at the slab trailing edge,
the Habashy and the Extended Habashy predict better results. The
Extended-Habashy predicts the σ depression with a little shift to the
left while the Adopley and the Habashy predict with a little shift to
the right. In Figure 8 we investigate the effect of background conduc-
tivity on model performance. The three models predict roughly the
same results. The Habashy model predicts a peak value a little less
than the other models. However we also observe that all the models
predict peak values less than the actual peak values at the maximum
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frequency of 1.0MHz employed in the investigation.

5. CONCLUSION

The integral equation that describes the one-dimensional electromag-
netic wave propagation is deceptively very simple. The “hidden” dif-
ficulty occurs because the elements in the integrand of the integral
equation are nonlinearly interdependent. Specifically, the total inter-
nal field is a function of the difference between the scatterer and back-
ground complex conductivity profiles. The localized approximation as
was originally proposed has been extended herein and performances
evaluated.

We note from our numerical simulations that, for low contrast be-
tween the background and slab complex conductivities, all the approxi-
mations give excellent results. Generally, for very low-loss systems the
Adopley approximation provides the best results. When the system
becomes very lossy the Habashy and the Extended Habashy provide
the best results, with a slight edge on accuracy with the Extended
Habashy model if numerical noise is negligible. The Trantanella ap-
proximation provides very good results at the incident edge of the slab.
This we attribute to the formulation. We note that using more terms
in the Generalized localized approximation does not guarantee better
accuracy. In fact using more than one term can only be justified for
very low-loss systems. For high-loss systems the original Habashy ap-
proximation provides the best results. Generally, all approximations
perform well at moderate frequencies of simulations. However we note
deterioration in accuracies at very high frequencies. We also find that
the maximum frequency of accurate field simulation increases with de-
crease in conductivity contrast.

We have presented some reconstruction results using (Occam’s) in-
version algorithm on contaminated synthetic data generated from
transmission-line theory. The reconstructions are promising. We note,
however, that we could not reconstruct very sharp contrasts in con-
ductivity profiles exactly. This is because Occam’s inversion method
is L2 norm dependent. In general for very low-loss profiles the Ado-
pley model gives the best reconstruction. For high contrast in profile
conductivities between the homogeneous background and the slab, the
best reconstructions are from the Habashy and the extended Habashy
models. We note that the Adopley model diverges when the conductiv-
ity contrast becomes too large. Also, we observe that the contrast level
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for accurate reconstruction for the Adopley model decreases with in-
crease in background conductivity. Concerning speed of performance,
the Habashy model is the fastest. We note that the Extended Habashy
model becomes very slow when the number of unknowns exceeds 20 .
This we attribute to the numerical computation of the internal field.
The Adopley model performs at moderate speed, but slower than
Habashy.
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