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Abstract— This paper presents work in the field of hard
realtime robotics and machine control. We analyse the re-
quirements of a hybrid realtime control task specification
allowing the integration of discrete and continuous control
tasks. We propose an application independent task structure
providing data flow consistency under simulataneous access
by different control layers. We provide an execution flow
mechanism to guarantee execution time determinism, yet
allowing flexibility to react to a changing environment. We
use state machines for process monitoring and a thread-safe
realtime event system to communicate changes. The tasks
can be distributed over a network and communicate using
interfaces or manipulate streams of data in the loop. The
presented task structure is applied to a real world example.

Index Terms—realtime control, monitoring, architecture,
distribution

I. INTRODUCTION

Realtime systems (machines) are designed to perform
tasks on many levels. The specification of the task is
tightly coupled with the system, since the system defines
the operations it can perform. Consider a hybrid robot-
machine tool setup where the robot assists in placing the
workpiece. At the lowest level, both robot and machine
tool perform a positioning task, using a positional feedback
controller. At a higher level, a movement path is planned
for robot and machine tool without collisions. Between
movements, operations are performed on the workpiece,
which requires synchronisation. At an even higher level,
the task is to produce a series of these workpieces in a
shop floor and so on. Many intermediate tasks may be
present: measuring quality of work, evaluating the status
of the machines, collecting data for the logs etc.

A. Task Composition

In a simple, non reactive system, the task is no more
than a sequence of commands which dictate the system to
perform the operations. When the system operates in a non
deterministic environment, the task’s complexity increases
because it must try to react to all possible situations.
Furthermore, the task acts as a controller by solving “goals”
in one or more domains, e.g. the discrete logic domain or
continuous state space domain.

Tasks requiring “intelligence” of the system to reach
the goals, need sufficient intelligent controllers. If this
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intelligence is not present in the system, the task itself
must specify how the goal must be reached. The task itself
behaves then again like an intelligent system which defines
higher level operations it can perform. This cascading of
task-system allows to specify high level tasks in reasonable
complex environments. Tasks can be executed in parallel
on all levels. Well known examples are behaviour based
controllers [4], distributed control [15] and manufacturing
plants.

B. Task Determinism and Safety

In realtime systems, tasks must meet time deadlines
in a deterministic way. Time determinism is measured in
two ways: with a maximum latency and maximum jitter.
Latency is the time a task needs to complete, jitter is
the variation, over time, between the lowest and highest
latency. The positional controller, for example, needs low
latency to minimise dead time and low jitter to eliminate
unwanted excitations.

Process safety is another critical part of the task. The
task must be guaranteed that its data are always consistent
and correct. A task will want to specify what action must be
taken if these guarantees no longer hold and communicate
this to a higher level. A well known example is when the
controller detects an exceeding tracking error. It might take
local actions as well as signal this event to a higher level
task.

C. Design

With the addition of each task on any level, various
design issues arise. How should a task be specified to define
goals in multiple domains? How should a task be specified
to allow time and process determinism? How should a task
define its operations? How should a task communicate with
other tasks? How should a task be specified in order to be
scalable, i.e. allow many tasks concurrently? How should
a task define how it reacts to changes?

To solve these problems, frameworks [1], [5], [7], [8],
[17], [18] have been created with the aim to solve one
or more of the above design issues. These issues are
mostly called “forces” [9] in software design and have
each their influence on the design, pulling it in different
directions (Fig. 1). It is hard to balance all the forces,



Safety Closed

Determinism; Centralised
Linear execution of Actions

Discrete, Task Continuous,
Logic Contro Specification tate Space Control
Function Blocks Controllers and Path Planners
Grafcet Part Programs
Ladder G-Code

U

Decentralised
Reactivity, | Open

Flexibility Non linear execution of Actions

Fig. 1. Four major forces pull the specification in another direction.

since they are not neccessarily orthogonal. When a task
is specified in control, four major forces pull the task
specification in another direction: Should the specification
favour determinism or flexibility? Should it be specified
in the discrete domain or the continuous domain? We will
present a design that balances these four major forces into
a scalable task specification.

The work presented in this paper has been implemented
in the Open Robot Control Software (OROCOS) Frame-
work [6] and can verified by downloading the software,
distributed with a Free Software license, from the internet.

The Orocos project has the ambition to serve as a com-
mon platform for all advanced realtime feedback control
applications, where “advanced” means the following (the
rest of the text provides more details):

« Strict separation between data flow (processing of the
control data), execution flow (logic decision making),
and configuration flow (preparing an application to
run).

« Absolute attention for data consistency: the same data
(from sensors, controllers, motion generators, etc.) can
be accessed in different “threads” of a realtime appli-
cation, but all threads should always see consistent
data, i.e., the changes made to the data flow in one
thread should only be visible to other threads when
the full change is completed, while, at the same time,
the time determinism is guaranteed.

« Integration of discrete decision making with realtime
control: when one part of the application decides that
the control should switch to another “hybrid state”, all
parts of the application should switch in a coordinated
way.

o Synchronous and asynchronous events: different parts
of the applications must be able to signal other parts,
and react themselves to signals of these other parts.
Again, these reactions should take place at moments
that are consistent with the whole application.

This paper explains how the Orocos design takes all these
advanced control requirements into account.

The rest of the paper is organised as follows. We give
a short overview of hybrid control theory and discuss a

frequently used hybrid solution for machine and robot
control and show its shortcommings. Next we formulate
answers for the task design questions. We present a hybrid
task design for periodic or non periodic tasks and the
integration with discrete events. We apply this design to
build a reactive controller from bottom-up and formulate a
generic task model.

II. HYBRID REALTIME SYSTEMS CONTROL THEORY

Hybrid realtime systems are controlled in two domains.
The first domain contains the continuous characteristics of
the system, for example a position or velocity for which
control [14] defines a feedback controller which calculates
the steering signal, given a reference signal and a measured
signal. The second domain contains the discrete character-
istics of the system, for example homing signals, break
signals etc. When these discrete characteristics influence
the continuous characteristics, hybrid control theory [2]
defines a hybrid statespace controller which can change the
control algorithm on a given trigger. When discrete and
continous characteristics are decoupled, the logic control
theory defines finite state machines which monitor and
control the discrete state of the system.

A task calculates continuous and discrete reference
(“goal”) signals, which must be reached by the lower
level controller. The goal reference signals can change
because of external events, or in general, any change in
the environment which can be sensed (including elapsed
time).

A task specification thus integrates a) continous control
algorithms with b) discrete control logic in such a way that
it can act in or react safely, intelligently and determistic to
a changing realtime system.

III. MODERN HYBRID MACHINE CONTROLLERS

Industrial grade hybrid machine controllers often con-
tain a Programmable Logic Controller (PLC) for discrete
control and a Numerical Controller (NC) for continuous
control.

Logic Control : The last decade, PLCs were pro-
grammed in one of the IEC 61131 languages, allowing to
formulate input/output relations using a ladder diagram or
Graphcet diagram. A recent standard, IEC 61499 added
event based function blocks. The tasks in a PLC are
defined by the “wiring” of functions. Be it discrete logical
components as in the ladder diagram, or more sophisticated
IEC 61499 Function Blocks, the task to perform is specified
by connecting these parts in a particular order. This allows
high determinism, but changes are hard to make, i.e., what
a task does is not directly seen from the PLC program, it
only shows how the task is done. Loops and branches can
not be expressed in the PLC languages and a sequence of
operations is hard to express in the ladder PLC languages.

Motion Control : Trajectory planning, kinematics,
continous state space control and etc. are executed by
numerical motion controllers. A “part” program written in
G-code of the ISO 6983 standard is an example of the
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Fig. 2. Thread (a) executes task T1 and T2 which have equal periodicity.
Thread (b) has another priority and executes T3. T4 is an aperiodic task
with the same priority as T3.

specification for a motion control task and is the most com-
mon way to specify the operations a machine must execute.
Each line in the program contains an operation the machine
has to perform, such as moving with a velocity along a
trajectory, but without execution branches. It relies on a
PLC for delegating tasks with mainly a logic component
(like a tool change). Programs written in G-code are fully
deterministic, but totally unreactive. Only one program can
run in the controller. Errors must be detected by external
software or the PLC, which then aborts the program.

Although the PLC-NC controller solution performs well
in deterministic environments, it is not suitable for solving
online tasks. When looking at how the forces influence the
task specification, it can be seen that flexibility is sacrificed
for determinism and discrete and continuous control are
almost not integrated or interactive.

IV. TASK DESIGN

A task was defined as a set of goals which must
be reached by an intelligent controller. For example, the
Motion Controller presents the tool change as a task to the
PLC, while a tool change is programmed as a Grafcet task
in the PLC.

A. Parallel execution

Any sufficient advanced realtime system has to complete
multiple tasks in parallel, possibly at different priorities.
Computer science has invented threads to express paral-
lel “threads of execution” within one process. We have
mapped tasks to threads as such: a. Periodic tasks with
equal priority are executed in the same thread and in the
same order as they are started. b. A periodic task’s priority
is inversely proportional with the duration of one periodic
step, or lower. c. Non periodic tasks can have any priority.
d. Non periodic tasks are executed after all periodic tasks.
Fig. 2 shows the serialisation of tasks. The advantages of
this approach are: 1. Scheduling overhead is minimised
between tasks of equal priority. 5. Non periodic tasks do
not influence the time determinism of periodic tasks of the
same or higher priority. 3. Tasks with equal priority can
communicate data lock-free. 4. The order of equal priority
task execution is deterministic.
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Fig. 3. Task peers can interact in many ways. In the role to accept and to
solve goals, it accepts operations and emits events. In the role to delegate
goals, it commands other tasks and reacts to their events. The data flow
allows tasks to periodically process data in a chain.

B. Inter Task Communication

Allowing deterministic time task execution is the first
step in designing a machine controller. However, when
tasks of different priorities need to communicate data, some
form of locking is still needed. This would introduce non
deterministic execution times (jitter) to the executed tasks.
We have applied wait- and lock-free data exchange between
tasks [12]. We identify two kinds of data exchange: a.
periodical data exchange, which goes over a fixed interface
between two tasks, this forms the data flow. b. aperiodic
data exchange which is tied to the occurence of events, this
forms the execution flow. Fig. 3 shows how tasks commu-
nicate using events and an operation interface, constituting
the execution flow and periodical data exchange forming
the data flow. We call tasks which use these communication
forms “Peers”, as there is no imposed hierarchy. In the next
sections, we will explain the details of those two types of
data exchange.

V. DATA FLOW: DATA OBJECTS

When two peer tasks exchange a fixed set of data
periodically, in such a way that the second task processes
the data of the first task, a flow of data, from one task to
another can be observed. According to section IV, periodic
tasks of different priority need to guard the data exchange.
Lock free buffering techniques have been devised [3] to
take care of this issue. Orocos provides data objects to
encapsulate such buffering. Its interface has a set and get
method which encapsulate the data exchange and thus
provides a classic producer / consumer interface, with the
guarantee that the get method always returns the most
recent set value.

The kind of data exchanged through a data object is
application specific. Data objects are single writer multiple
reader.

VI. EXECUTION FLOW: EVENTS AND OPERATIONS

In this section, we define what an event is and how a
task can react if an event occurs. The reaction may start a
program which may request operations from other tasks.
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asynchronous reaction (event handler) with task T2, running in thread
(b). Both reactions are called on different moments in different threads.

A. Events and Reactions

An event can be described as a means to “publish”
any change of the state of a system, which might in turn
change the state of an observing system. Data may be
associated with events, providing additional information
about the state transition. For example, in Graphical User
Interfaces [13] the event “Button-Pressed” can contain data
denoting which button was pushed. In software, events
are implemented using the Observer software pattern [9]
and reusable implementations are freely available. We
extended [10] to accomodate for thread-safe asynchronous
event handling.

A task which is interested in the occurence of an event
must associate a reaction, also called handler or hook,
with the event. We allow synchronous, i.e. immediate,
reactions and asynchronous, i.e. deffered, reactions (Fig.
4). Immediate reactions are executed by the task raising
the event, deferred reactions are executed by the task
which owns the reaction. The latter thus takes the burden
of executing all reactions from the event emitter, and
introduces a delay to the reaction, proportional to task’s
priority. Another advantage of deferred reaction is that the
reaction is executed on a safe moment, when it can not
corrupt the parallel execution of the task.

When the task’s thread of execution is non periodic, the
task must specify at which moments it wants to execute its
deferred event reactions.

B. Operations and Commands

A task can define an operation interface of which other
tasks can make use to solve goals. It is possible that a task
defines no operation interface and that it solves built-in
goals when it is started. An example of this are the PLC
ladder programs, which goals are defined by wiring inputs
to outputs using logical operations. All operations must be
serialised over time, meaning that two operation requests
should never be executed simultaneously. This requires a
command infrastructure to do the serialisation.
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Fig. 5. A delegated command invokes an operation. On execution, it

can be accepted or rejected by the accepting task. A completion condition
checks if the requested operation is finished.

We define a command (Fig. 5) as the request from
one task to another to perform an operation with given
parameters. An example is a “move to” command with
the location to move to and velocity as parameters. A task
may reject the request, if it is still busy processing another
command or if the parameters are incorrect.

Because operation requests must be serialised, a task
must request an operation through a command and not
directly on the other task (like what a traditional functional
program would do). Commands are thus objects which
store the operation request and are executed after the other
commands in the pipeline. The execution is done by a
command processor within the task which manages the
command queue. The insertion of a command in the queue
is again wait- and lock-free [20]. If the command is ac-
cepted, it will take some time before it is completed. Each
operation defines a boolean condition which, when evalu-
ated, returns true if the command is done. This is called
the completion condition of the operation. For example,
the command to set the gain parameter of a proportional
controller, will most likely be immediately accepted and
immediately completed. On the other hand, a command
to move to a position may be accepted when there is no
other move command in progress and when accepted, is
completed when the position is reached. This method thus
allows synchronous and asynchronous commands.

VII. THE HYBRID TASK MODEL

The previous sections analysed the individual require-
ments of a task in the discrete and continuous domain. A
task (Fig 6), wether it is periodic or non periodic can be
decomposed in an interface, state machines, and programs.
This section will illustrate a synthesis of the presented
solutions in a generic task model with an example robot
setup.

A robot needs to pick and place an object, based on
a camera detection algorithm. We will implement the
positional control task and the pick and place task.

A. Positional Control

Positional control is done by a group of cooperating
tasks: reading and monitoring the position sensors, gen-
erating an interpolated setpoint, invoking the PID algo-
rithm and sending the results to the axis effectors. These
tasks are periodic and always done in this order at the
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Fig. 6. A Task’s public interface is composed of events, operations and
data objects. It executes a program which is monitored by a state machine.

same frequency. Following section IV, they are grouped
in one thread. They communicate positions and velocities
using the data objects of section V. The task’s activity
is located in a program. The PID task’s program will
read the values of the data objects, feed them to the PID
algorithm and writes the results to the outgoing data object.
A program can also contain a sequence of commands and
expressions, with branches and loops which are executed
by the command processor. Orocos provides a scripting
language which can convert programs online to a command
object tree which is used for realtime execution of program
scripts.

The correctness of the PID algorithm is monitored by
a state machine, which runs synchronously after the al-
gorithm. It can detect exceeding tracking errors, but also
reset the control parameters on startup. Each task can
have any number of programs and state machines running
in parallel, given that they work with commands. Like
programs, they can be defined in a script and loaded
at runtime. The positional control state machines export
the ‘PID tracking error’, ‘Interpolator position reached’,
‘Sensor range error’, ‘Gripper opened’, ‘Gripper closed’,
‘object grabbed’ and ‘emergency stop’ events.

The first three events form a link from the continuous
domain to the discrete event domain. This is an important
aspect of the hybrid task specification: the events publish
what happened, without exposing how it was detected,
allowing a reusable and extendable design.

The operations the tasks support are switch on, switch
off, move to position, reset, open gripper, close gripper
and emergency stop. Depending on the application, these
operations are called on the individual tasks or on a higher
level tasks which groups the positional control tasks. As
more programs are added, more operations will appear in
the interface, and more events will be exported. As men-
tioned in section VI-B, these operations will be serialised
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Fig. 7. The order of all functionality in one periodic step of a task. The
next command may only be processed if ready.

after the task has done its previous operation and it will
be processed right after a periodic execution step, thus not
interfering with whatever the task was doing (Figure 7).

B. Camera Detection Task

A Camera sensor is added. A non periodic task grabs
the image and detects the type of the presented object.
The task then emits the ‘object A detected’, ‘object B
detected’ or ‘no object detected’ events and waits again
until it is started. The priority of this task is lower than the
controller tasks so it does not interfere with the periodical
control. The only operation it supports is ‘start detection’
which starts the task’s detection program and it uses no
data objects.

The Camera Detection Task is suitable for network
distribution because the operation is asynchronous and an
event reports the result back. Standards like the Realtime
CORBA Event Service [11], [16] can be applied here
to make the task remote. The task interface allows to
distribute them over a network, while keeping time critical
functionality, i.e. the state machine, local.

C. Selection Task

This task uses the Positional Control and Camera De-
tection tasks. It uses a state machine to monitor the states
‘homed’, ‘moving without object’, ‘moving with object’,
‘taking object’, ‘releasing object’, ‘detecting object’ and
‘error detected’ with each monitoring constraints. For
example, ‘moving with object’ requires that the ‘object
grabbed’ event is emitted. If the state detects a failure,
it switches to the ‘error detected’ state which stops the
robot. Of course, more intelligent reactions can be defined
if more states are introduced.

The selection task defines the ‘run n times’ and ‘stop’
operations and exports the ‘operation n done’ event, which
informs other tasks about completed runs. The task has
one main program which is started when ‘runs n times’ is
requested. Each run, it starts a program which opens the
gripper, approaches the piece and closes the gripper. Next,
the main program waits for the 'object grabbed’ event and
then starts a program which moves the object in front of
the camera. The main program then waits for one of ‘object
A detected’, ‘object B detected’ or ‘no object detected’ and
invokes a program to drop the piece in the A, B or reject
container. After n runs, the completion condition of the
operation ‘run n times’ will evaluate to true and the owner
of the command will know that it is finished.



The line between program and state machine is some-
times very thin. When the program needs to perform mostly
sequential actions, it may be implemented with a state
machine, since multiple state machines can run in parallel
or hierarchically.

D. Task states

The task, state machine and program also have a state
of their own. The PID controller task can be loaded or
unloaded and started or stopped. A task must be loaded in
order to be started or accessed by other tasks. A task defines
functions which are called when its state changes, like
the PID controller task which will start its state machine
which monitors the tracking error. Some commands, like
the interpolators move command, may be rejected if the
task is not yet started.

A program has the same states of a task, but it can only
be loaded when the task is loaded and can only be started if
the task is started. The program to move the object in front
of the camera is started indirectly by the ‘object [A—B]
detected’ event. This event will first be intercepted by the
state machine which, if it occured in the correct state, starts
the program.

The state machine can be loaded when the task is loaded
and started when the task is started. Our state machines
have one initial and one final state and any number of
intermediate states. The initial state of the interpolator will
read the current positions and write them as reference
positions in its setpoint data object. It remains in that state
until it is started. After it is started, it periodically checks if
a move command was accepted and starts the interpolation
program if so. When the state machine is stopped, it makes
a transition to the final state, which may cause a safe stop
program to run. In the final state, it waits to be reset to the
initial state or it is stopped.

E. Task hierarchies

Once tasks rely upon each other to reach their goals, a
hierarchy is formed. The selection task uses the interpolator
task to move to a new setpoint. If a task uses the operations
of another task, the latter exists as a child of the first, and
it must be loaded first. This hierarchical constraint is not
present if a task relies on the events of another task, since
events decouple sender and receiver. If a task processes
a data flow, it requires a data object to read from which
must be produced by another task. The task itself produces
a new data object where other tasks down the line can read
from.

These connections between tasks can easily become
more complex than parent-child relations. The connections
can be set up when all the tasks are loaded. A task will only
start if no topological errors are present. This mechanism is
part of the configuration flow, but is not the subject of this
paper. Semantic errors, like out of range sensor readings,
can be detected by a state machine.

VIII. CONCLUSION

The proposed application independent task specification
allows advanced, concurrent, realtime tasks to communi-
cate and interact in a deterministic way. The task infras-
tructure is an enabling technology which makes hybrid
controller design easier to implement without enforcing
implementation restrictions. The controller tasks are hybrid
by design and provide a universal interface for communi-
cation. This interface also defines the granularity at which
distribution in control is possible.
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