
An Energy Reduction Scheduling Mechanism for a 
High-Performance SoC Architecture 

Slo-Li Chu 

Department of Information and Computer Engineering,  
Chung Yuan Christian University, Chung-Li, Taiwan, R.O.C. 

slchu@cycu.edu.tw 

Abstract. Continuous improvements in semiconductor technology are 
supporting new classes of System-on-a-Chip (SoC) architectures that combine 
extensive processing logic with high-density memory. Such architectures are 
generally called Processor-in-Memory (PIM) or Intelligent Memory (I-RAM) 
and can support high-performance computing by reducing the performance gap 
between the processor and the memory. The PIM architecture combines various 
processors in a single chip. These processors are characterized by their 
computation, memory-access and power consumption capabilities. Therefore, a 
novel parallelizing system, SAGE II, has been developed to identify their 
capabilities and dispatch the most appropriate jobs to them in order to exploit 
the advantages of PIM architectures. However, the SAGE II system only can 
deal with performance issues but power consumption is gradually becoming an 
important issue of current computing systems. This paper provides a new low-
power transformation mechanism, called Energy-Oriented Power Reduction 
Scheduling (EOPRS), to extend the capability of SAGE II system. It can reduce 
the power consumption for the Processor-in-Memory system without losing 
execution performance. The detailed EOPRS transformation technique is 
presented later. The experimental results of several benchmarks are also 
discussed. 

Keywords: EOPRS, SAGE II, SoC, Processor-in-Memory, Power Reduction 

1   Introduction 

In current high-performance computer architectures, processors run many times faster 
than the computer's main memory. This performance gap is often referred to as the 
Memory Wall [2]. This gap can be reduced using the System-on-a-Chip (SoC) 
strategy, which integrates the processor(s) and memory on a single chip. Accordingly, 
many researchers have considered integrating computing logic and high density 
DRAM on a single die [3, 5, 8, 10] as so-called Processor-in-Memory (PIM) or 
Intelligent RAM (IRAM). This class of architectures constitutes a hierarchical hybrid 
multiprocessor environment that involves host (main) and memory processors. The 
host processor (P.Host) is more powerful but have a deep cache hierarchy and higher 
latency when accessing memory. In contrast, memory processors (P.Mem) are 
typically less powerful but have a lower latency in memory access. With respect to 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357341521?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2      Slo-Li Chu 

energy consumption, host processor consumes more energy than memory processors 
when computing and accessing memory. These capability differences make 
parallelization and energy reduction more difficult. 

The main problems addressed are how to dispatch appropriate tasks to these 
various processors according to their characteristics, to reduce their execution time, 
energy consumption, or both, and how to partition the original program so that it can 
be executed on these heterogeneous processor mixtures. Accordingly, an automatic 
source-to-source parallelizing and optimizing system, SAGE II (Statement- Analysis- 
Grouping- Evaluation II) is designed and implemented. The main difference between 
SAGE II and other parallelizing systems is that it uses statement rather than iteration 
as the basic unit of analysis. By integrating statement splitting, weight evaluation and 
several scheduling mechanisms, SAGE II can automatically analyze Fortran source 
program; partition it into statements; generate a Weight Partition Dependence Graph 
(WPG), determine the weight of each block in the WPG, and schedule these blocks to 
improve the performance by dispatching the most suitable blocks for execution on 
host and memory processors. To extend the capability of reducing power 
consumption of software running on the SoC architecture, this study presents a novel 
scheduling technique, called Energy-Oriented Power Reduction Scheduling (EOPRS), 
for to reduce the energy consumed for the one-P.Host and one-P.Mem configuration 
without losing performance. The remainder of this paper is organized as follows: 
Section 2 introduces the related work. Section 3 describes the PIM architecture we 
adopt. Section 4 describes SAGE II system. Section 5 provides the EOPRS 
mechanism. The experimental results are shown in Section 6. Finally, conclusion is 
given in Section 7. 

2   Related Work 

Since energy limited the growth of the mobile computers and embedded computing 
devices, it is very important to reduce the consumption of energy and increase battery 
lifetimes. Therefore the analysis and optimization of the energy consumed by all 
components become important not only for battery-powered personal devices, but 
also for large computing systems.  

Current work on energy saving using software can be classified into two 
categories. In one, special architecture is required to support the software. For 
example, an additional mini cache between the I-Cache and the CPU core called the 
“L-Cache” or “I-Filter” can be used [1, 5, 6]. Such mini cache buffers only the reused 
instructions within loops. It consumes less energy than I-Cache and so eliminates the 
fetching of unnecessary instructions fetching, reduce signal switching activity and 
dissipated energy. It requires compilers to cooperate to the rearrange original codes to 
ensure that it fits the L-Cache. However, it also has the disadvantage of requiring a 
special architecture. 

Another category of work considers instruction-level scheduling mechanisms to 
reduce energy consumption [4, 7, 9, 12]. If a previously executed instruction differs 
from the present instruction, the control circuit must activate different hardware 
functional units. Switching consumes energy, so appropriately reordering instructions 



An Energy Reduction Scheduling Mechanism for a High-Performance SoC Architecture      3 

in a program reduce the energy consumption. This method need to measure the inter-
instruction effects and establishes an energy transition cost table, before performing 
instruction-level scheduling according to the cost of switching. However, such a 
method has two disadvantages. First, the source program must be written in a low-
level language such that the scheduler cannot understand all of the behavior of this 
program, limiting the application of high-level transformation techniques, such as 
tiling. Second, the cost of switching instructions is only around 2% ~ 10% of the base 
cost of the instructions; therefore the energy reduction is not significant. 

3   The Processor-in-Memory Architecture 

Figure 1 depicts the organization of the PIM architecture evaluated in this study. It 
contains an off-the-shelf processor, P.Host, and a PIM chip. The PIM chip integrates 
one memory processor, P.Mem, with 64 Mbytes of DRAM. This architecture is 
derived from FlexRAM [5]. The tiny memory processors (P.Array) in the original 
FlexRAM are omitted to reduce the complexity of analysis. The techniques presented 
in this paper involve a one P.Host and one P.Mem configuration, and can be extended 
to support multiple P.Mems. 

Table 1 and Table 2 list the main architectural parameters of the PIM architecture. 
P.Host is a six-issue superscalar processor that allows out-of-order execution and runs 
at 800MHz, while P.Mem is a two-issue superscalar processor with in-order 
capability and runs at 400MHz. There is a two-level cache in P.Host and a one-level 
cache in P.Mem. P.Mem has lower memory access latency than P.Host since the 
former is integrated with DRAM. Thus, computation-bound codes are more suitable 
for running on the P.Host, while memory-bound codes are preferably running on the 
P.Mem to increase efficiency. 

The PIM chip is designed to replace regular DRAMs in current computer systems, 
and must therefore conform to a memory standard that involves additional power and 
ground signals to support on-chip processing. One such standard is Rambus, so the 
PIM chip is designed with a Rambus-compatible interface. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Major parameters of the PIM architecture.  

P.Host P.Mem Bus & Memory 
Working Freq: 800 MHz Working Freq: 400 MHz Bus Freq: 100 MHz 
Dynamic issue Width: 6 Static issue Width: 2 P.Host Mem RT: 262. 5 ns 
Integer unit num: 6 Integer unit num: 2 P.Mem Mem RT: 50. 5 ns 
Floating unit num: 4 Floating unit num: 2 Bus Width: 16 B 
FLC_Type: WT FLC_Type: WT Mem_Data_Transfer: 16 
FLC_Size: 32 KB FLC_Size: 16 KB Mem_Row_Width: 4K 
FLC_Line: 64 B FLC_Line: 32 B  
FLC_Replace policy: LRU FLC_Replace policy: LRU  
SLC_Type: WB SLC: N/A  
SLC_Size: 256 KB   
SLC_Line: 64 B   
Replace policy: LRU   
Branch penalty: 4 Branch penalty: 2  
P.Host_Mem_Delay: 88 P.Mem_Mem_Delay: 17   

* FLC stands for the first level cache, SLC for the second level cache, BR for branch, 
RT for round-trip latency from the processor to the memory, and RB for row buffer. 



4      Slo-Li Chu 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

4   The SAGE II System 

Most current parallelizing compilers focus on transforming loops to execute iterations 
concurrently, in a so-called iteration-based approach. This approach is suited to 
homogeneous and tightly coupled multi-processor systems. However, it has an 
obvious disadvantage for heterogeneous multi-processor platforms because iterations 
have similar behavior but the capabilities of heterogeneous processors are diverse. 
Therefore, a different approach is adopted here, using the statements in a loop as a 
basic analysis unit, called statement-based approach, to develop the SAGE system. 

SAGE II (Statement-Analysis-Grouping-Evaluation II) is an automatic 
parallelizing compiler, which partitions and schedules an original program to exploit 
the specialties of the host and the memory processor. At first, the source program is 
split into blocks of statements according to dependence relations. Then, the Weighted 
Partition Dependence Graph (WPG) is generated, and the weight of each block is 
evaluated. Finally, the blocks are dispatched to either the host or the memory 
processors, according to which processor is more suitable for executing the block. 
The major difference between SAGE II and other parallelizing systems is that it uses 
a statement rather than an iteration as the basic unit of analysis. This approach can 
fully exploit the characteristics of statements in a program and dispatch the most 
suitable tasks to the host and the memory processors. 

Table 3 presents a simple example to demonstrate the advantages of statement-
based parallelization. The program is fully parallelizable and can be partitioned into 
statements or iterations. The table lists the assumed statement weights for the P.Host 
and P.Mem. Table 4 shows five parallelization cases and their execution times. The 
first two involve executing the program solely on P.Host and P.Mem, respectively. 
Case 3 parallelizes the program using conventional parallelizing compilers, such as 
SUIF [2] or Polaris [2] to identify the parallelizable loops and dispatch them for 
execution on P.Host and P.Mem. This approach only achieves good speedup for 
processors with homogeneous capabilities (including memory access latency, 
computing power, and so on). In case 4, the iterations are dispatched to the processors 

Host Processor
Core

L1 Cache

L2 Cache

P.Host

Rambus
(Memory Bus)

Memory
Processor

Core

L1 Cache

DRAM
Cells

P.Mem

PIM Chip
 

 

Fig. 1.  Organization of the PIM architecture. 

Table 2.  Power consumption parameters of 
the PIM architecture. 

 P.Host P.Mem 
Integer Unit  ALU        

Shift         
Mult/div  
Branch     

194.46 
194.46 
210.45 
194.46 

ALU 
Shift 
Mult/div 
Branch 

97.23 
97.23 

105.23 
97.23 

Load/Store 
Unit 

Load        
Store        

194.46 
194.46 

Load 
Store 

97.23 
97.23 

Floating point 
Unit 

Add/Sub 
Mult 
Div 

210.45 
210.45 
210.45 

Add/Sub  
Mult       
Div        

105.23 
105.23 
105.23 

Clock energy 957 26.24 

 



An Energy Reduction Scheduling Mechanism for a High-Performance SoC Architecture      5 

according to the processors' capabilities, but the compiler does not consider the 
discrepancies among processors in executing statements. Case 5 uses the statement-
based analysis approach (i.e., optimized by SAGE II). This approach outperforms all 
the others since it dispatches statements to P.Host and P.Mem by accounting for the 
characteristics of statements and the capabilities of processors, motivating the 
development of the SAGE II system for asymmetric multiprocessor environments. 
The compiling sequence of the SAGE II is shown in Figure 2. The major stages are 
described later. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.1   Statement Splitting and WPG Construction [2] 

Statement Splitting splits the dependence graph by Node Partitioning as introduced in 
[2]. WPG Construction constructs the Weighted Partition Dependence Graph (WPG), 
to be used in the subsequent stages of Weight Evaluation, Wavefront Generation and 
Schedule Determination. 

The definitions relevant to Statement Splitting are introduced in the literature [2]. It 
is ignored for the page limitation but still listed the Statement Splitting algorithm 
(Algorithm 1) to partition the loops: 

 
Algorithm 1. (Statement Splitting Algorithm) 
 
Given a loop L = (i1, i2, …. in) ( s1, s2, …. sd)  
Step 1: Construct dependence Graph G by analyzing subscript expressions and index

pattern. 
Step 2: Establish a node partition Π on G as defined in Definition 2. If there are large

Table 3. A fully parallelizable program. 

Program Weight 
for *PH 

Weight for 
*PM 

  DO I = 1 to N 
S1: A= A mod B 
S2: C= D[I]+E 
S3: F= G[I]+H[I] 
  ENDDO 

 
3 
5 
6 

 
6 
1 
2 

*PH stands for host processor and PM for memory 
processor. 

Table 4.  Five parallelizing cases and their 
execution times. 

 Description Execution Time 

1 

Host processor 
operates solely 

Latency = 
[PH(S1)+PH(S2)+PH(S3)]*# of 
iterations  
= (3+5+6)N = 14 N 

2 

Memory processor 
operates solely 

Latency 
=[PM(S1)+PM(S2)+PM(S3)]* # 
of iterations  
= (6+1+2)N = 9 N 

3 
Host and memory 
processors cooperate in 
symmetric workload  

Latency = max((3+5+6)* 0.5N, 
(6+2+1)* 0.5 N) = 7 N 

4 

Host and memory 
processors cooperate in 
asymmetric workload 
by parallelizing the 
iteration space of the 
loop 

The workload is dispatched based 
on the capability ratio of PH and 
PM obtained from Case 1 and 
Case2, i.e., PH: PM = 9:14. 
Hence, latency=14* (9/(9+14))N= 
5.48 N 

5 

Host and memory 
processors cooperate in 
asymmetric workload 
by SAGE optimization  

Latency = max (PH(S1) * N, 
PM(S2,S3)*N) = 3 N  (Here S1 is 
more suitable for P.Host, but S2 
and S3 are more suitable for 
P.Mem.) 

 

 Wavefront
Generation

  Schedule
Determination

Subroutine
Generation

Source
Program

Subroutine
for

P.Host

Subroutine
for

P.Mem

Weight
Evaluation

Statement
Splitting

 WPG
Construction

 

Fig. 2. The sequence of compiling stages in 
SAGE II. 



6      Slo-Li Chu 

blocks caused by control dependence relations, convert control dependence into
data dependence first [2], and then partition the dependence graph. 

Step 3: On the partition Π, establish a weighted partition dependence graph
WPG(B,E) defined in Definition 3. 

4.2   Weight Evaluation 

Two approaches to evaluating weight can be taken. One is to predict the execution 
time of programs by profiling the dominant parts [2]. The other considers the 
operations in a statement and estimates the program execution time by looking up an 
operation weight table [2]. The former method called code profiling may be more 
accurate, but the predicted result cannot be reused; the latter called code analysis can 
determine statements for suitable processors but the estimated program execution 
time is not sufficiently accurate. Hence, the Self-Patch Weight Evaluation scheme 
was designed to combine the benefits of both approaches. It integrates these two 
approaches together by analyzing code and searching weight table first to estimate the 
weight of a block. If the block contains unknown operations, the patch (profiling) 
mechanism is then activated to evaluate the weights of unknown operations. The 
obtained operation weights are added into the weight table for next look-up. For a 
detailed description of this scheme, please refer to [2] 

5   Energy-Oriented Power Reduction Scheduling Mechanism 

5.1   Algorithm Description 

This paper has proposed an automatic source-to-source parallelizing compiler, SAGE 
II (Statement- Analysis- Grouping- Evaluation), which integrates statement splitting, 
weight evaluation, scheduling and optimizing mechanisms. However, the best 
execution schedule in terms of performance is not usually the same as the best 
execution schedule in terms of energy. This section focuses on reducing the energy 
consumption of PIM architecture. For the reason mentioned in the previous 
descriptions, statements are adopted as the analyzing units. Each statement unit has a 
delay weights and an energy weight for P.Host and P.Mem, respectively, and will be 
assigned to the most suitable processor according to these weights. Here we introduce 
the Energy-Oriented Power Reduction Scheduling, EOPRS, which allows the user to 
specify the energy limit. If the energy limit is met, the scheduler will use the 
performance-oriented principle to schedule the blocks. For simplicity, this paper 
considers only the system with a single P.Host and single P.Mem. The rest of this 
section presents the mechanisms in detail. Section 6 presents the experimental results.  

This EOPRS approach enables the user to adjust the energy reduction ratio to get 
more speedup. In this approach, the energy weights and delay weights of each block 
in the WPG are determined first. Then the execution order for each block is 
determined according to their dependence relations. The blocks that can be executed 



An Energy Reduction Scheduling Mechanism for a High-Performance SoC Architecture      7 

simultaneously are assigned to a wavefront. Then the scheduler dispatches blocks in a 
single wavefront according to their energy weights, minimizing the energy 
consumption. According to the energy specified by the user, the maximum energy 
acceptable consumption, called the “deadline” is determined herein. The deadline is 
given by minimum energy consumption + (original energy consumption - minimum 
energy consumption) * (1 - energy reduced limit %). Then, the mechanism can 
automatically adjust schedule sequence to obtain the maximum potential speedup, 
such that the energy consumption is less than the maximum acceptable. The details 
mechanism of this approach is presented in Algorithm 2. 

 

Algorithm 2: Energy-Oriented Power Reduction Scheduling  
 

[Input] 
WPG=(P, E): the order of blocks and weights are determined. 
Percent: the percent user want to constrain. 

[Output] 
An execution wavefront schedule WF= {Wf1, Wf2, ….} where Wf1={PH(ba...bb), PM(bc...bd)} in which PH(ba...bb) 
means that blocks ba...bb will be assigned to PHost in wavefront i, PM(bc...bd) means that blocks bc...bd will be assigned 
to PMem in wavefront i.  

[Intermediate] 
W: a working set of blocks to be visited.  
max_pred_O(bi): the maximum execution order for all bi’s predecessor blocks.  
min_pred_O(bi): the minimum execution order for all bi’s predecessor blocks. 
wf_tmp: working sets of blocks for wavefront scheduling. 
ph_tmp(h), pm_tmp(m): working arrays to store the blocks for wavefront scheduling. 
ph_d_wei(h), pm_d_wei(m) working arrays to store the total delay weights of blocks . 
ph_e_wei(h), pm_e_wei(m) working arrays to store the total energy weights of blocks . 
max_wf: the maximum number of wavefront.  
PHEW_origin(max_wf): the energy weight of bi for Phost each wavefront. 
Deadline(max_wf): the deadline of each wavefront. 
PHDW(bi): the delay weight of bi for PHost. 
PMDW(bi): the delay weight of bi for PMem. 
PHEW(bi): the energy weight of bi for PHost. 
PMEW(bi): the energy weight of bi for PMem. 

[Method]   
for each  bi ∈P do /*Initialization and weight determination for each blocks */ 

Oi = 0; evaluate PHDW(bi), PMDW(bi), PHEW(bi) and PMEW(bi) by weight evaluation; 
end for 
W = P;  
for each bi with no predecessors do /* Execution order assignment */ 

Oi = 1; W = W – { bi }; 
end for 
done = False; max_wf=0; 
while done = False AND W ≠ φ do  

done = True         
for each  bi ∈ W do  

if min_pred_O(bi) = 0  then done = False 
else  

Oi = max_pred_O(bi)+1; W=W-{ bi }; max_wf = max(max_wf, Oi); 
end if 

end for 
end while 
energy_temp = 0 
for j = 1 to max_wf 

wf_tmp=ph_tmp=pm_tmp={φ};h=m=Opt_energy(j)=PHEW_origin(j)=Deadline(j)=0; 
ph_d_wei(j)=ph_e_wei(j)=pm_d_wei(j)=pm_e_wei(j)=0;  
store all of bi whose Oi = j  in wf_tmp;  
for each  bi∈ wf_tmp 

if  PHEW(bi ) - PMEW(bi) ≤ 0 
h = h + 1; Store bi in ph_tmp (h); 



8      Slo-Li Chu 

ph_d_wei(j)=ph_d_wei(j)+PHDW(bi ); ph_e_wei(j)=ph_e_wei(j)+PHEW(bi ); 
else  

m = m + 1; Store bi in pm_tmp (m);  
pm_d_wei(j)=pm_d_wei(j)+PMDW(bi ); pm_e_wei(j)=pm_e_wei(j +PMEW(bi ); 

end if 
PHEW_origin(j)=PHEW_origin(j)+PHEW(bi ); 
Opt_energy(j) = Opt_energy(j) + Min(PHEW(bi ), PMEW(bi )); 
Sort ph_tmp (h) in decreasing order by PHDW(bi );  
Sort pm_tmp (m) in decreasing order by PMDW(bi);  

end for 
Deadline(j)=Opt_energy(j)+(PHEW_origin(j)–Opt_energy(j))*(1–Percent); 
Deadline(j)=Deadline(j)+energy_temp; p = q = 0; done = FALSE;  
if  ph_d_wei(j) ≥ pm_d_wei(j) 

for p =1 to h 
ph_e_wei(j) = ph_e_wei(j) – PHEW ( ph_tmp(p)) 
pm_e_wei(j) = pm_e_wei(j) + PMEW ( ph_tmp(p)) 
ph_d_wei(j) = ph_d_wei(j) – PHDW ( ph_tmp(p)) 
pm_d_wei(j) = pm_d_wei(j) + PMDW ( ph_tmp(p)) 
if  ph_e_wei(j) + pm_e_wei(j) ≤ Deadline(j) 

ph_tmp = ph_tmp – {ph_tmp(p)}; pm_tmp = pm_tmp + {ph_tmp(p)}; 
else 

pm_d_wei(j) = pm_d_wei(j) – PMDW ( ph_tmp(p)) 
ph_d_wei(j) = ph_d_wei(j) + PHDW ( ph_tmp(p)) 
pm_e_wei(j) = pm_e_wei(j) – PMEW ( ph_tmp(p)) 
ph_e_wei(j) = ph_e_wei(j) + PHEW ( ph_tmp(p)) 

end if 
end for 

else 
for q =1 to m 

ph_e_wei(j) = ph_e_wei(j) + PHEW ( pm_tmp(q)) 
pm_e_wei(j) = pm_e_wei(j) – PMEW ( pm_tmp(q)) 
ph_d_wei(j) = ph_d_wei(j) + PHDW ( pm_tmp(q)) 
pm_d_wei(j) = pm_d_wei(j) – PMDW ( pm_tmp(q)) 
if  ph_e_wei(j) + pm_e_wei(j) ≤ Deadline(j) 

pm_tmp = pm_tmp – {pm_tmp(q)} 
ph_tmp = ph_tmp + {pm_tmp(q)}  

else 
ph_d_wei(j) = ph_d_wei(j) – PHDW ( pm_tmp(q)) 
ph_e_wei(j) = ph_e_wei(j) – PHEW ( pm_tmp(q)) 
pm_d_wei(j) = pm_d_wei(j) + PMDW ( pm_tmp(q)) 
pm_e_wei(j) = pm_e_wei(j) + PMEW ( pm_tmp(q)) 

end if 
end for 

end if 
energy_temp=Deadline(j)–( ph_e_wei(j)+pm_e_wei(j)); Wfj ={ph_tmp, pm_tmp }; 

end for 

6. Experimental Results 

This experiment focuses on the one-P.Host and one-P.Mem configuration of PIM 
architecture to evaluate the energy reduction scheduling mechanism mentioned in 
Section 5. The energy consumption parameters of this PIM architecture can be found 
in the Table 2. 

The evaluated applications include five programs - swim from SPEC95, cgemm 
from BLAS3, ft and cg from the serial version of NAS, and mdg from Perfect 
Benchmark. Table 5 shows the results of the experiment. "Std-" denotes that the 
applications are executed on P.Host alone; "Opt-" denotes that the applications are 
transformed by the one-P.Host and one-P.Mem performance scheduling mechanism 
mentioned in literature [2] for execution on one P.Host and one P.Mem 



An Energy Reduction Scheduling Mechanism for a High-Performance SoC Architecture      9 

simultaneously; "Ene-" denotes that the applications are transformed by "Energy-
Oriented Energy Reduction Scheduling" as mentioned in Section 5 with the energy 
reduced ratio set to 70%. 

In Table 5, swim, cg, and cgemm exhibit good speedup "Opt-" case because they 
all can be partitioned into many blocks for scheduling to P.Host and P.Mem, 
according to the characteristics of blocks and processors. Also, they can achieve a 
good energy reduction ratio; ft can obtain good speedup "opt-" case but some 
performance in "Ene-" case is lost because its block sizes are very different. 
Scheduling these blocks is difficult when the power reduction ratio is set to 70%. In 
contrast, mdg is intrinsically sequential. It can only be partitioned into several large 
blocks, preventing the generation of load-balance schedules, so the speedup of "Opt-" 
case is only 1.08. The EOPRS can further reduce the energy but the speedup is 
decreased to 0.45. Thus, the user can select different scheduling approaches according 
to their requirements. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7. Conclusions 

In this paper, we presented a new program transformation technology, Energy-
Oriented Power Reduction Scheduling, EOPRS. Integrated with SAGE II system, 
EOPRS reduces the energy consumption on the PIM System. This approach allows 
the user to set the speedup limit. If the speedup limit is met, then the scheduler will 
use the energy reduction principle to schedule the blocks. Results of the experiments 
demonstrate the capabilities of the extended SAGE II system. In the experiment, the 
energy consumption was reduced by up to 36.37%. The author believe that the 
techniques proposed here can be extended to run on DIVA, EXECUBE, FlexRAM, 

Table 5.  Experimental results of five benchmarks. 

benchmark form Execution cycles Speedup Energy 
consumption (joule) 

Energy 
Reduce Ratio 

Std- 228289321 1.00 43.49 0 
Opt- 116669760 1.96 35.29 18.85% 

swim 

Ene- 262401518 0.87 28.18 35.20% 
Std- 91111840 1.00 19.58 0 
Opt- 51230772 1.78 14.73 24.77% 

cg 

Ene- 67993910 1.34 12.66 35.34% 
Std- 257528272 1.00 50.26 0 
Opt- 147769271 1.74 38.63 23.14% 

cgemm 

Ene- 238641808 1.07 33.02 34.30% 
Std- 544099032 1.00 111.9 0 
Opt- 368981380 1.47 86.59 22.62% 

ft 

Ene- 549370943 0.99 74.41 33.50% 
Std- 174506369 1.00 65.5 0 
Opt- 160335813 1.08 63.95 2.37% 

mdg 

Ene- 385931357 0.45 41.68 36.37% 

 



10      Slo-Li Chu 

and other high-performance SoC architectures by slightly modifying the code 
generator of the SAGE system. 

Acknowledgement 

This work is supported in part by the National Science Council of Republic of China, 
Taiwan under Grant 94-2213-E-033-032- 

References  

[1] Bajwa, R. S., et al.: Instruction Buffering to Reduce Power in Processors for Signal 
Processing. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 
Vol.5(4). IEEE, (1997) 417-424. 

[2] Chu, S. L., Huang, T. C.: SAGE: A Comprehensive Parallelizing Framework for 
Processor-in-Memory Architectures. Journal of Systems Architecture. Vol. 50 (1). 
Elsevier Science, (2004)  1-15.  

[3] M. Hall, et al,: Mapping Irregular Applications to DIVA, a PIM-Based Data-Intensive 
Architecture. Proc. of 1999 Conference on Supercomputing. ACM, (1999). 

[4] Horowitz, M., Indermaur, T., Gonzalez, R.: Low-Power Digital Design. Proc. of 
Symposium on Low Power Electronics. 8-11, (1994). 

[5] Kang, Y., et al.: FlexRAM: Toward an Advanced Intelligent Memory System. Proc. of 
International Conference on Computer Design. (1999). 

[6] Kin, J., et al.: The filter cache: an energy efficient memory structure. Proc. of Thirtieth 
Annual IEEE/ACM International Symposium on Microarchitecture. (1997) 184-193. 

[7] Lee, L. H., Moyer, B., Arends, J.: Instruction Fetch Energy Reduction Using Loop 
Caches for Embedded Applications with Small Tight Loops. Proc. of 1999 International 
Symposium on Low Power Electronics and Design. (1999) 267-269. 

[8] Oskin, M., Chong, F. T., Sherwood, T.: Active Page: A Computation Model for 
Intelligent Memory Computer Architecture. Proc. 25th Annual International Symposium 
on Computer Architecture. (1998) 192 –203. 

[9] Parikh, A.., et al.: Energy-Aware Instruction Scheduling. Proc. of 7th International 
Conference on High Performance Computing-HiPC (2000) 335-344. 

[10] Patterson, D., et al.: A Case for Intelligent DRAM. IEEE Micro, IEEE (1997) 33-44. 
[11] Press,W. H., et al., Numerical Recipes in Fortran 77. Cambridge University Press (1992). 
[12] Raghunathan, A., Jha, N. K., Dey, S.: High-Level Power Analysis and Optimization. 

Kluwer Academic Publishers, (1998). 
[13] Tiwari, V., Malik, S., Wolfe, A.: Power Analysis of Embedded Software: a First Step 

Towards Software Power Minimization. IEEE Transactions on Very Large Scale 
Integration (VLSI) Systems, Vol. 2 (4). IEEE (1994) 437-445. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


