
Task Scheduling for Context Minimization in
Dynamically Reconfigurable Platforms

Nei-Chiung Perng and Shih-Hao Hung

Department of Computer Science and Information Engineering
National Taiwan Univeristy

106 Taipei, Taiwan
{d90011,hungsh}@csie.ntu.edu.tw

Abstract. Dynamically reconfigurable hardware provides useful means to re-
duce the time-to-prototype and even the time-to-market in product designs. It also
offers a good alternative in reconfiguring hardware logics to optimize the system
performance. This paper targets an essential issue in reconfigurable computing,
i.e., the minimization of configuration contexts. We explore different constraints
on the CONTEXT MINIMIZATION problem. When the resulting subproblems
are polynomial-time solvable, optimal algorithms are presented.

1 Introduction

Dynamically reconfigurable hardware (DRH) allows partial reconfigurations to pro-
vide different functionalities over a limited number of hardware logics, compared to
the popular Application-Specific Integrated Circuit (ASIC) approach. It was recently
raised by many researchers that the DRH technology is very suitable to deal with the
dynamism of multimedia applications [1, 2]. In such applications, instructions might be
partitioned into coarse-grained tasks with a partial order and loaded onto dynamically
reconfigurable devices for executions! Reconfigurability has recently become an impor-
tant issue in the research community of embedded systems especially for FPGAs [3–6].
An FPGA configuration context, also referred to as a context, is the basic element to
load a hardware description of a task. A multi-context system is a system with more than
one FPGA chips or an FPGA chip with its configurable logic blocks being partitioned
into several (equal-sized) areas. Although multi-context systems allow simultaneous
task executions on different contexts, many implementations only allow the loading of
one task at a time in reality [7].

One way to avoid the waiting time of task loadings is to pre-load proper hardware
descriptions before the run time. In particular, Hauck [8] presented the concept of con-
figuration prefetching in which the loading duration was overlapped with computations
to reduce the overheads. Harkin et al. [9] evaluated nine approaches of hardware/soft-
ware partitioning to provide insights in the implementation methodology for reconfig-
uration hardware. A genetic algorithm (GA) was also presented by the same authors
for run-time reconfiguration [10]. Yuh et al. [11] developed a tree-based data structure,
called T-tree, for a temporal floorplanning to schedule all the reconfigurable tasks with a
simulated-annealing-basedalgorithm. Ghiasi et al. [12] proposed an efficient optimal al-
gorithm to minimize the run-time reconfiguration delay in the executions of applications

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357341488?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


on a dynamically adaptable system under assumptions on several restricted implemen-
tation constraints. Noguera and Badia [2] introduced a two-version dynamic scheduling
algorithm for reconfigurable architectures with or without a prefetching unit. Resano et
al. [13] proposed a way to revise a given task schedule by considering reconfiguration
to minimize the latency overheads.

This paper targets one essential implementation issue in the reconfigurable comput-
ing: the minimization of the required number of FPGA configuration contexts, where
the deadline and precedence constraints of an application are given. We consider the op-
timization problem without a given schedule (that comes with fixed execution intervals).
The NP-completeness of the CONTEXT MINIMIZATION problem is first proved. Sev-
eral additional constraints on the loading time and the execution time of a task and the
precedence constraints of tasks (and their resulting subproblems) are explored. Optimal
algorithms are presented for subproblems that are polynomial-time solvable. The ob-
jective is provide insights on how and why difficult the CONTEXT MINIMIZATION
problem is.

The rest of this paper is organized as follows: Section 2 defines the CONTEXT
MINIMIZATION problem. Section 3 explores several subproblems under several addi-
tional constraints. Optimal algorithms for subproblems that are solvable in polynomial
time are presented. Section 4 is the conclusion.

2 Problem Definition

In this paper, we are interested in the derivation of a reconfiguration plan � with the
objective to minimize the number of required FPGA configuration contexts in a multi-
context FPGA platform. The reconfiguration plan should be derived based on a given
task set T , a partial order of task precedences ≺, and a common deadline D. Each
task τi in a task set T is denoted as τi = (ei, li), where ei is the required execution
time, and li is the loading (configuration) duration to load task τ i onto a context. A
precedence constraint τi ≺ τj in the partial order ≺ requires that task τj can only
start its execution after the completion of task τi. A precedence constraint might exist
because the latter task needs to read from the output of the former task. We are interested
in the minimization of the maximum time span of the task execution in T . The problem
is modeled as a performance requirement, i.e., the common deadline D. Any solution
to the targeted problem is a reconfiguration plan �, in which we have a loading time
�T(τi), an execution starting time �S(τi), and a configuration context ID �C(τi) for
each task τi. A solution should also satisfy the given partial order of task executions
and the common deadline. The problem is formally defined as follows.

Problem 1 (CONTEXT MINIMIZATION). Given a set T of n tasks (τi = (ei, li) ∈
T, 1 ≤ i ≤ n) with a partial order ≺ and a common deadline D, the problem is to find
a reconfiguration plan � with the minimum number of required FPGA configuration
contexts without violating the partial order of task executions and the common deadline.

A reconfiguration plan is feasible if and only if the following three conditions are
satisfied: The first condition requires each FPGA context being loaded in time. The
second condition requires that any two tasks should not use the same context in any



overlapped time interval. The third condition requires the loading of contexts should be
done one by one. The three conditions are defined formally as follows:

Condition 1 (In-Time Loading) ∀τi, �T(τi) + li ≤ �S(τi) and �S(τi) + ei ≤ D.

Condition 2 (Non-Overlapping Configuration Contexts) ∀ (τ i, τj) pair, �C(τi) �=
�C(τj) if any two time intervals (�T(τi),�S(τi) + ei] and (�T(τj),�S(τj) + ej] have
a non-null intersection.

Condition 3 (Mutual Exclusion on Loading) ∀ (τi, τj) pair, �T(τi) + li ≤ �T(τj)
or �T(τj) + lj ≤ �T(τi).

A reconfiguration plan is optimal if it is feasible, and the number of its required
contexts, i.e., the largest ID of the assigned contexts, is equal to the minimum number
of required contexts of all feasible reconfiguration plans. We shall show later that this
optimization problem is NP-complete.

3 Problem Properties

In this section, we prove the NP-completeness of the CONTEXT MINIMIZATION
problem and later explore subproblems in which polynomial-time solutions exist. For
the sake of clarity, we transform this optimization problem into an equivalent decision
problem by providing a bound on the number of FPGA configuration contexts. The
decision version of the CONTEXT MINIMIZATION problem is to find a solution with
the number of required contexts no larger than a given number M .

3.1 NP-Complete Subproblems

We shall show the NP-completeness of two subprograms of the CONTEXT MIN-
IMIZATION problem under two constraints: (1) The execution time of each task is
identical, i.e., ∀i, ei = E. (2) The loading duration of each task is negligible, i.e.,
∀i, li = 0. Before we show the NP-completeness of the two subproblems, we shall
first define the PRECEDENCE CONSTRAINED SCHEDULING (SS9 in [14]), that is
NP-complete:

Given a set T of tasks, the execution time ei of every task τi ∈ T is 1, a given
number M ∈ Z+ of processors, a partial order≺ of tasks ∈ T , and a deadline D ∈ Z +,
the problem is to derive a schedule σ over the M processors so that the deadline and
the partial order of task executions are satisfied. In other words, ∀τ i, τj ∈ T , τi ≺ τj

implies σ(τj) ≥ σ(τi) + ei, where σ(τi) denotes the starting time of task τi.

Theorem 1. The CONTEXT MINIMIZATION problem under the constraint ∀i, ei = E
and li = 0 is NP-complete, where ei and li denote the execution time and the loading
duration of task τi, respectively.

Proof. This subproblem is indeed the PRECEDENCE CONSTRAINED SCHEDUL-
ING problem. �



Theorem 2. The CONTEXT MINIMIZATION problem under the constraint ∀i, li = 0
is NP-complete, where li denotes the loading duration of task τi.

Proof. The correctness of this theorem follows directly from the fact that the problem
stated in Theorem 1 is a special case of this problem. �

Theorem 3. The CONTEXT MINIMIZATION problem is NP-complete.

Proof. The correctness of this theorem follows directly from the fact that the problem
stated in Theorem 2 is a special case of this problem. �

3.2 Subproblems in P
This section is meant to explore three subproblems of the CONTEXT MINIMIZATION
problem that have polynomial-time solutions. It is to gain the insight on why and how
difficult the problem is.

A Task Set of Independent Tasks Although the CONTEXT MINIMIZATION prob-
lem is NP-complete, the problem would become tractable under certain constraints.
Suppose that all of the tasks are independent, i.e., ≺= ∅, and ∀i, e i = E and li = L
(i.e., the same execution time and loading duration for every task). The problem has
optimal algorithms with a polynomial time complexity.

Algorithm 1

Input: A task set T (∀τi ∈ T, τi = (E, L)), ≺= ∅, a deadline D, and M contexts
Output: A feasible reconfiguration plan �
1: � = 0.
2: while T is not empty do
3: Remove an arbitrary task τi from T .
4: Locate context Mj with the earliest idle time Ij .
5: �T(τi) = max{Ij ,�}.
6: �S(τi) = �T(τi) + L.
7: �C(τi) = j.
8: � = �T(τi) + li.
9: if �S(τi) + E > D then

10: Return failure.
11: end if
12: end while

The subproblem is shown being P-solvable by presenting a polynomial-time algo-
rithm Algorithm 1: The input of the algorithm includes a task set, a common deadline,
and an integer constant M that denotes the number of FPGA configuration contexts.
Because of the mutual exclusion requirements on context loading (Condition 3), the
algorithm maintains the earliest possible time for the next context loading, i.e., 
. 

is initialized as 0 initially (Step 1). Each iteration of the loop between Step 2 and Step



12 is to schedule the loading of a task onto a context. The algorithm picks up a ready
task arbitrarily (Step 3) and load the task onto the context with the earliest available
time (Step 4). The loading time, starting time, and context ID of the task are updated
accordingly (Steps 5-7). The earliest possible time for the next context loading is then
updated (Please see Step 8 and Condition 3). The algorithm reports a failure if any task
misses the deadline (Steps 9-11). The time complexity is O(n × log M).

Theorem 4. Algorithm 1 is optimal in the sense that it always derives a solution if any
feasible solution exists.

Proof. The correctness of this theorem follows directly from the fact that all tasks are
of the same execution time and loading duration and share the common deadline. �

Figure 3.2 shows four optimal reconfiguration plans of four tasks, where the num-
ber M of FPGA configuration contexts ranges from 1 to 4. An interesting packing of
tasks is shown in the figures, and the impacts of the mutual exclusion constraint, i.e.,
Condition 3, are clearly illustrated. Note that the shaded rectangles denote the loadings
of tasks onto contexts, and white rectangles denote task executions.

Fig. 1: Four reconfiguration plans over four different numbers of contexts

Lemma 1. Algorithm 1 needs no more than MB = max{n, �E
L �+1} contexts to derive

a feasible reconfiguration plan, where n is the number of tasks.

Proof. The correctness of this lemma follows directly from the facts that loading dura-
tions can not be overlapped with each another, and a loading duration can be overlapped
with any execution time as long as the three feasibility conditions are satisfied. �

Lemma 1 provides an upper bound on the maximum number of contexts over that
Algorithm 1 could derive a feasible reconfiguration plan. Figure 2 shows reconfigu-
ration plans for two task sets, i.e., one with E ≤ L and the other with E > L,



where different numbers of FPGA configuration contexts are tried. Note that when
n × (L + E) ≤ D, only one context is needed to derive a feasible reconfiguration
plan.

Fig. 2: Reconfiguration plans of two task sets over different numbers of contexts

Although we show that the CONTEXT MINIMIZATION problem becomes tractable
when ≺= ∅, and ∀i, ei = E and li = L, one question remains. That is how difficult
the problem is if we relax some of the above constraints! Suppose that we still have
tasks being independent, i.e., ≺= ∅, but every task might have a different execution
time, i.e., ei �= ej for some τi, τj ∈ T . Even if we let ∀i, li = 0, the CONTEXT
MINIMIZATION problem is intractable because the problem is indeed the MINIMUM
MULTIPROCESSOR SCHEDULING problem, which is a well-known NP-complete
problem [14].

A Task Set with a Tree Partial Order As shown in Theorem 1, the CONTEXT MIN-
IMIZATION problem is NP-complete when ∀i, e i = E and li = 0. However, the
CONTEXT MINIMIZATION problem becomes tractable when all tasks are indepen-
dent, i.e., ≺= ∅. In this section, we shall show that the CONTEXT MINIMIZATION
problem remains tractable when ≺ is of a tree, and ∀i, e i = E and li = 0, regardless of
whether it is an intree or an outtree (Figure 3).

We shall present an optimal algorithm based on the Critical Path (CP) rule [15].
A critical path of a partial order is defined as a path with the maximum number of
tasks in a chain that follow the precedence constraints of the order. Note that when the
completion time of a task on a critical path is delayed, the latest completion time of the
tasks in the task set is delayed. Figure 3 shows an intree and an outtree. The path from
the top-left node to the sink node of the intree in Figure 3 is an example critical path,
and there are two critical paths in the intree. The CP rule provides a way to assign tasks
priorities, where a task in the front of a critical path is assigned a higher priority, as
shown in Figure 3. In fact, the priority assignment of tasks follows a topological order.
Tie-breaking is done in an arbitrary way.



Fig. 3: An intree/outtree for some precedence constraints

Algorithm 2

Input: A task set T (∀τi ∈ T, τi = (E, 0)), ≺ as a tree, a deadline D, and M contexts
Output: A feasible reconfiguration plan �
1: Assign priorities to tasks according to the CP rule.
2: S = { τi : τi ∈ T does not have any predecessor }.
3: while S is not empty do
4: Remove the task τi with the highest priority from S.
5: Locate context Mj with the earliest idle time Ij .
6: �T(τi) = �S(τi) = Ij .
7: �C(τi) = j.
8: S = S ∪ {τj}, where τi ≺ τj if all of the predecessors of τj have been scheduled.
9: if �S(τi) + E > D then

10: Return failure.
11: end if
12: end while

Algorithm 2 derives a feasible reconfiguration plan whenever possible: Tasks are
first assigned priorities according to the CP rule (Step 1). Initially, S is set as the set
of ready tasks in T (Step 2), where a ready task is a task with all of its preceding tasks
in the partial order complete. Each iteration of the loop between Step 3 and Step 12 is
to load a task onto a proper context. The ready task with the highest priority is loaded
onto the context with the earliest possible idle time. The loading time and the starting
time of the task is set as the earliest possible idle time of the context (Step 6), where ∀i,
li = 0. The context ID of the task is then set (Step 7). After the task is scheduled, any
ready task resulted from the scheduling join the ready task pool (Step 8). If the deadline
is violated, then the algorithm reports a failure (Steps 9 and 10). The time complexity
of Algorithm 2 is O(n2).

Theorem 5. Algorithm 2 is optimal in the sense that it always derives a solution if any
feasible solution exists.

Proof. The optimality of the algorithm is based on the proof of the CP rule in [15]. �

A Task Set with E ≤ L As shown in the previous section, the CONTEXT MINI-
MIZATION problem becomes more tractable when a partial order is restricted in a tree



Fig. 4: Reconfiguration plans of a task set with E ≤ L, where different numbers of
contexts are used.

fashion, compared to that shown in Theorem 1. Another question is whether we could
trade the partial-order constraint with any other constraint to keep the CONTEXT MIN-
IMIZATION problem being tractable. In this section, we shall show that the CONTEXT
MINIMIZATION problem remains tractable by the constraint ∀i, e i = E, li = L, and
E ≤ L. In such a case, the partial order among tasks could be arbitrary.

An optimal algorithm for this problem is as the same as Algorithm 1 except two
minor modifications: (1) Step 3: Remove any arbitrary ready task τ i ∈ T , and (2) Step
4: Use the context Mj which is idle in the last iteration. The algorithm is referred to as
Algorithm 3. The time complexity of Algorithm 3 is O(n).

Theorem 6. Algorithm 3 is optimal in the sense that it always derives a solution if any
feasible solution exists.

Proof. The optimality of the algorithm is based on the fact that the minimum number
of the required contexts must be 1 or 2, unless there is no feasible solution. If the sum-
mation of loading durations and execution times of all tasks is less than the common
deadline, i.e., n × (L + E) ≤ D, the answer is 1; Otherwise, the answer is 2. �

Figure 4 illustrates the idea of the proposed algorithm and provides further expla-
nation of the above theorem. As shown in the figure, there are three reconfiguration
plans of a task set derived by Algorithm 3, where the number of contexts ranges from
2 to 4. Because of the mutual exclusion requirements on context loadings (i.e., Condi-
tion 3), only two contexts are needed to load tasks in turn. The execution time of each
task on one context is contained in the loading duration of another task on the other
context, where these two tasks are scheduled one after another. We shall point out that
the CONTEXT MINIMIZATION problem would become much more intractable when
constraints of Section 3 are relaxed.



4 Conclusion

In this paper, we explore different constraints on the CONTEXT MINIMIZATION
problem, and provide the complexity proofs of NP-complete subproblems and the op-
timal algorithms of subproblems in P . We are currently investigating heuristic-based
greedy algorithms for the CONTEXT MINIMIZATION problem. We will further ex-
plore the problem on the reconfigurable platforms allowing one-dimension allocation.

References

[1] Kneip, J., Schmale, B., Moller, H.: Applying and implementing the mpeg-4 mul-
timedia standard. IEEE Micro 19(6) (November-December 1999) 64–74

[2] Noguera, J., Badia, R.M.: Multitasking on reconfigurable architectures: Microar-
chitecture support and dynamic scheduling. ACM Transactions on Embedded
Computing Systems 3(2) (May 2004) 385–406

[3] De Micheli, G., Gupta, R.K.: Hardware/software co-design. Proceedings of the
IEEE 85(3) (March 1997) 349–365

[4] DeHon, A., Wawrzynek, J.: Reconfigurable computing: What, why, and implica-
tios for design automation. In: Proceedings of the 36th ACM/IEEE Conference
on Design Automation. (1999) 610–615

[5] Hauck, S.: The roles of FPGA’s in reprogrammable systems. Proceedings of IEEE
86(4) (April 1998)

[6] Wolf, W.: FPGA-Based System Design. Prentice Hall (2004)
[7] Xilinx Inc.: XAPP151 Virtex Series Configuration Architecture User Guide.

(v1.7) edn. (October 2004)
[8] Hauck, S.: Configuration prefetch for single context reconfigurable coproces-

sors. ACM/SIGDA International Symposium on Field-Programmable Gate Ar-
rays (1998)

[9] Harkin, J., McGinnity, T.M., Maguire, L.P.: Partitioning methodology for dy-
namically reconfigurable embedded systems. IEE Proceedings on Computers and
Digital Techniques 147(6) (November 2000) 391–396

[10] Harkin, J., McGinnity, T.M., Maguire, L.P.: Modeling and optimizing run-time
reconfiguration using evolutionary computation. ACM Transactions on Embedded
Computing Systems 3(4) (November 2004) 661–685

[11] Yuh, P.H., Yang, C.L., Chang, Y.W.: Temporal floorplanning using the T-tree for-
mulation. In: Proceedings of ACM/IEEE International Conference on Computer-
Aided Design. (2004)

[12] Ghiasi, S., Nahapetian, A., Sarrafzadeh, M.: An optimal algorithm for minimiz-
ing run-time reconfiguration delay. ACM Transactions on Embedded Computing
Systems 3(2) (May 2004) 237–256

[13] Resano, J., Mozos, D., Catthoor, F.: A reconfigurable manager for dynamically
reconfigurable hardware. IEEE Design and Test of Computers 22(5) (2005)

[14] Garey, M.R., Johnson, D.S.: Computers and Intractability. W. H. Freeman and
Company (1979)

[15] Pinedo, M.: Scheduling Theory, Algorithms, and Systems. second edn. Prentice
Hall (2002)


