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ABSTRACT 

This article commences with a definition of slow increasing function and moves on to delineate a few properties 
of slow increasing functions. Besides, several applications in some problems of number theory using the theory of slow 
increasing functions are also presented to show how useful these functions prove in solving complex problems. 
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1. INTRODUCTION 

Slow increasing functions are defined as follows: 
 
1.1. Definition  

Let :f ) ( ), 0,a⎡⎣ ∞ → ∞  be a continuously 

differentiable function such that 
0f >′ and lim ( )

x
f x

→∞
=∞ . Then f  is said to be a slow 

increasing function (s.i.f. in short) if 
( )lim 0

( )x
xf x
f x→∞

′ =

 Write { }:  is a s.i.f. .F f f=  

 
1.2. Examples 

(i) ( ) log , 1f x x x= >  is a s.i.f. 
Note that lim ( ) lim log

x x
f x x

→∞ →∞
= = ∞  and 

1( ) , 1f x x
x

= ∀ >′  and f ′  is continuous  

Moreover 
( ) 1lim lim 0

( ) logx x

xf x x
f x x x→∞ →∞

′
= × =  

 
(ii) ( ) loglog ,f x x x e= >  is also a s.i.f. 
 
2. SOME PROPERTIES 
 
2.1. Theorem 

Let ,f g F∈  and let 0, 0cα > > be two 
constants then we have  
 

(i) f c+  (ii) f c−  (iii) cf  (iv) fg  (v) f α  (vi) f gο  
(vii) log f (viii) f g+  all lie in F . 
 
Proof 

Given that ,f g F∈ and 0, 0cα > >  be 
constants. 
 

Proof of (i), (ii), (iii), and (iv) follows the definition 1.1 
 

(v) Let h f α=   
 

Note that lim ( ) lim ( ) ,
x x

h x f x α
→∞ →∞

= =∞  and 
1( ) ( ) ( ) 0,h x f x f xαα −= >′ ′  and h′  is continuous

  

Moreover 
 

1( ) ( ) ( )lim lim( ) ( )x x
xh x x f x f x
h x f x

α

α
α −

→∞ →∞

′ ′=
( )lim 0.

( )x
xf x
f x

α
→∞

′= =
  

 

Hence h f Fα= ∈  
 

(vi) Let . ( ) ( ( ))h f g i e h x f g xο= =  
 

Note that lim ( ) lim ( ( )) ,
x x

h x f g x
→∞ →∞

= =∞  and 

( ) ( ( )) ( ) 0,h x f g x g x= >′ ′ ′  and h′  is continuous 
 

Moreover 
 

( ) ( ( )) ( ) ( ) ( ( )) ( )lim lim lim 0.
( ) ( ( )) ( ( )) ( )x x x

xh x xf g x g x g x f g x xg x
h x f g x f g x g x→∞ →∞ →∞

′ ′ ′ ′ ′= = × =
 

 

Hence h f g Fο= ∈  
 

(vii) Let logh f=  
 

Note that lim ( ) lim log ( ) ,
x x

h x f x
→∞ →∞

= =∞  and 

( )( ) 0,
( )

f xh x
f x
′= >′  and h′  is continuous

 
 

Moreover 
( )

( ) ( ) ( ) 1lim lim lim 0.( ) log ( ) ( ) log ( )x x x

f xxxh x f x f xxh x f x f x f x→∞ →∞ →∞

′
′ ′= = × =

  
 
Hence logh f F= ∈  
 

(viii) Let h f g= +  

For sufficiently large x , we have  0 xf xf
f g f

′ ′≤ ≤
+

 and  

 0 xg xg
f g g

′ ′≤ ≤
+  



                                             VOL. 8, NO. 7, JULY 2013                                                                                                                      ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2013 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
481

By adding the above, we get ( )0 lim lim lim 0
( )x x x

xh x xf xg
h x f g→∞ →∞ →∞

′ ′ ′≤ ≤ + =  

 
( )lim 0

( )x
xh x
h x→∞

′∴ =
 
Hence h f g F= + ∈  

 
2.2. Theorem 

Let , .f g F∈  Define ( ) ( )h x f xα=  and 
( ) ( ( ))k x f x g xα=  for each ,x  then , .h k F∈  

 
Proof 

Given that , .f g F∈  Define ( ) ( )h x f xα=  
and ( ) ( ( ))k x f x g xα=  for each .x  
 

Let ( ) ( )h x f xα=  
 

Note that lim ( ) lim ( ) ,
x x

h x f xα
→∞ →∞

= =∞  and 
1( ) ( ) 0,h x f x xα αα −= >′ ′  and h′  is continuous

  

Moreover 
 

1( ) ( ) ( )lim lim lim 0( ) ( ) ( )x x x
xh x xf x x x f x
h x f x f x

α α α α

α α
α α

−

→∞ →∞ →∞

′ ′ ′= = =
 
 

 

Hence ( ) ( )h x f xα=  is s.i.f. 
 

Let ( ) ( ( ))k x f x g xα=   
 

Note that  lim ( ) lim ( ( )) ,
x x

k x f x g xα

→∞ →∞
= = ∞  and 

  

1( ) ( ( )) ( ) ( ) 0k x f x g x x g x x g xα α αα −′ ′ ′⎡ ⎤= + >⎣ ⎦  
and 

k′ is continuous
  

Moreover 
1( ( )) ( ) ( )( )lim lim

( ) ( ( ))x x

xf x g x x g x x g xxh x
h x f x g x

α α α

α

α −

→∞ →∞

′ ′⎡ ⎤+′ ⎣ ⎦=

 

 
( ) ( ( )) ( ) ( ( )) ( )lim lim 0

( ( )) ( ( )) ( )x x

x g x f x g x x g x f x g x xg x
f x g x f x g x g x

α α α α

α αα
→∞ →∞

′ ′ ′
= + × =  

 
Therefore ( ) ( ( ))k x f x g xα=  is s.i.f. Hence ,h k F∈  
 
2.3. Theorem 

Let ,f g F∈  be such that 

( ) ( )lim  and 0.
( ) ( )x

f x d f x
g x dx g x→∞

⎡ ⎤
= ∞ >⎢ ⎥

⎣ ⎦
 Then .f F

g
∈  

 
Proof  

Given that 
( ) ( ), , lim  and 0
( ) ( )x

f x d f xf g F
g x dx g x→∞

⎡ ⎤
∈ = ∞ >⎢ ⎥

⎣ ⎦
 

 

Let ( )( )
( )

f xh x
g x

=  and 2

( ) ( ) ( ) ( )( )  
( )

f x g x f x g xh x
g x

′ ′−′ =
 

 

Moreover 

2
( ) ( ) ( ) ( )

( )( ) ( ) ( )lim lim lim lim 0
( ) ( ) ( )( )

( )
x x x x

f x g x f x g xx
g xxh x f x xg x

h x f x g xf x
g x

→∞ →∞ →∞ →∞

′ ′⎛ ⎞−
⎜ ⎟′ ′ ′⎝ ⎠= = − =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Hence 
f

F
g
∈  

 
2.4. Theorem 

Let :h ) ( ), 0,a⎡⎣ ∞ → ∞  be a continuously 

differentiable function such that ( ) 0h x′ >  and lim ( )
x

h x
→∞

= ∞
 

(i) Define ( ) (log )g x h x= . Then ( )lim 0
( )x

h xg F
h x→∞

′∈ ⇔ =  

(ii) Define ( )( ) h xk x e= . Then lim ( ) 0
x

k F xh x
→∞

∈ ⇔ =′
 

 
Proof 

Given that ( ) 0 and lim ( )
x

h x h x
→∞

> =∞′  

(i) Define ( ) (log )g x h x=  then 
(log )( ) h xg x

x
′

′ =  

Suppose g F∈  then g satisfies ( )lim 0
( )x

xg x
g x→∞

′
=

               
i.e. 

(log )

lim 0
(log )x

h xx
x

h x→∞

′

=
  

(log )lim 0
(log )x

h x
h x→∞

′
⇒ =  

Put logt x= so that x t→∞⇒ →∞  
( )lim 0
( )t

h t
h t→∞

′
∴ =

      

i.e.   
( )lim 0
( )x

h x
h x→∞

′
= .

 

Conversely suppose 
( )lim 0
( )x

h x
h x→∞

′
=  

Put xt e= so that = log  and   x t x t→∞⇒ →∞    
( ) (log )lim lim 0
( ) (log )x t

h x h t
h x h t→∞ →∞

′ ′
⇒ = =

 
 

Now 
( ) (log ) ( )lim lim lim 0.
( ) (log ) ( )t t x

tg t h t h x
g t h t h x→∞ →∞ →∞

′ ′ ′
= = =

  
 

Hence g F∈  
 

(ii) Like proof of (i) 
 
2.5. Theorem 

If f F∈  then 
log ( )lim 0.

logx

f x
x→∞

=  
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Proof 

Given that ,f F∈        
( )
( )log ( )lim lim   
1logx x

f x
f xf x

x
x

→∞ →∞

′⎛ ⎞
⎜ ⎟
⎝ ⎠=
⎛ ⎞
⎜ ⎟
⎝ ⎠    

(byL’Hospital’s rule) 

'( )lim 0
( )x

xf x
f x→∞

= =
 

log ( )i.e. lim 0
logx

f x
x→∞

= .
 

 
2.6. Theorem 

f F∈  if and only if to each 0α > there 

exists xα such that 
( ) 0,d f x x x

dx x αα
⎡ ⎤ < ∀ >⎢ ⎥⎣ ⎦

 

 
Proof 

We have    
1

2 1

( ) ( ) ( ) ( ) ( )
( )

d f x f x x f x x f x xf x
dx x x x f x

α α

α α α

α α
−

+

′ ′⎡ ⎤−⎡ ⎤ = = −⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
 

Suppose  f F∈  then 
'( )lim 0
( )x

xf x
f x→∞

⇒ =  

i.e.  For each 0 there exists  such that x x xα αα > ∀ >  
 

And '( ) 0 ,
( )

xf x
f x

α− <
 

x xα∀ >  
( ) 0,d f x

dx xα
⎡ ⎤⇒ <⎢ ⎥⎣ ⎦  

x xα∀ >
 

 
To prove the converse assumes that the condition 

holds.  
Let 0α > be given. Then there exist xα such 

that x xα∀ >  

We have, by hypothesis 
( ) 0d f x

dx xα
⎡ ⎤ <⎢ ⎥⎣ ⎦  

this implies that  

'( ) 0 ,
( )

xf x
f x

α− <

 

x xα∀ >
 

 
( ). . 0 as 

( )
xf xi e x
f x
′

→ →∞
 

'( )lim 0.
( )x

xf x
f x→∞

⇒ =
  

Therefore .f F∈  
 
2.7. Theorem 

If f F∈  then 
( )lim 0

x

f x
xβ→∞

= , for all 0β >
 

 
Proof 

 For anyα with 0 α β< < , we get by Theorem 2.6, 

( ) 0,d f x
dx xα

⎡ ⎤ <⎢ ⎥⎣ ⎦  
for all x xα∀ >  for some xα

 

This implies that 
( )f x
xα  

is decreasing for x xα>  

Hence 
( )f x
xα

 bounded above, say, by M  

That is, there exists M > 0 such that 
( )0 ,f x M
xα

< < x xα∀ >
 

( ) ( ) 1lim lim 0
x x

f x f x
x x xβ α β α−→∞ →∞

= =
 

 
2.8. Note  

We know that each f F∈ is an increasing 
function. Moreover, by the above theorem, it is clear that 

( )lim = 0, >0
x

f x
xβ β

→∞
∀ . This shows that the increasing 

nature of f is slow. In other words, f does not increase 
rapidly. This justifies the name given to the members of F. 

From the above theorem, we have the following 
results: 
 
2.9. Theorem 

If f F∈  then 
( )lim 0

x

f x
x→∞

=
 

and 

lim ( ) 0.
x

f x
→∞

′ =
 

 
Proof 

In Theorem 2.7 put 1β = , toget 
( )lim = 0

x

f x
x→∞

. 

If f F∈ , then 
( )lim 0

( )x

xf x
f x→∞

′
=  

Since 
( )lim =0 

x

f x
x→∞  

we must have lim ( )=0.
x

f x
→∞

′
 

 
2.10. Theorem 

Let f F∈ , then for any 1α >− andβ ∈ , the 

series 
1

( )
n

n f nα β
∞

=
∑  diverges to∞ .

 
 
Proof 

We write ( )1

1 1

1( ) ( )
n n

n f n n f n
n

α β α β
∞ ∞

+

= =

=∑ ∑
 

we know that the series 
1

1
n n

∞

=
∑  diverges to ∞  
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Given 1 1 0α α> − ⇒ + >
  

If 0β ≥  then 1lim ( )
n

n f nα β+

→∞
= ∞

 
If

 
0β > then  

1

lim lim    (from Theorem 2.7)
( )( )n n

n n
f nf n

n

α

ββ

α

+

−−→∞ →∞
= = ∞

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

1
i.e.  ( )  diverges to 

n
n f nα β

∞

=

∞∑
 

 
An important byproduct of the above theorem is 

the following result. 
 
2.11. Theorem 

Let .f F∈  Then for any 1α > −  andβ ∈ , 

1

( )
lim 1.

( )
1

x

a

x

t f t dt

x f x

α β

α β

α

+→∞
=

⎛ ⎞
⎜ ⎟+⎝ ⎠

∫
 

 
Proof 

From Theorem 2.10, we have 
1lim ( )

n
x f xα β+

→∞
= ∞

 
1

lim ( ) ,    1,  
1x

x f x
α

β α β
α

+

→∞
⇒ = ∞ ∀ > − ∀

+  

From Theorem 2.10, we have 
1

( )
t

t f tα β
∞

=

= ∞∑
 

lim ( )
x

x
a

t f t dtα β

→∞
⇒ = ∞∫

 

Consider 
1

( )
lim

( )
1

x

a

x

t f t dt

x f x

α β

α β

α

+→∞ ⎛ ⎞
⎜ ⎟+⎝ ⎠

∫

 

1
1

( )lim
( ) ( ) ( )

1
x

x f x
xx f x f x f x

α β

α
α β ββ

α

+→∞ −

=
′+

+     

(By L’Hospitals’s rule) 

 
( )lim 1

( )( ) 1
1 ( )

x

x f x
xf xx f x
f x

α β

α β β
α

→∞
= =

′⎛ ⎞
+⎜ ⎟+⎝ ⎠

 

 
2.12. Definition 

Let [ ) ( ), : , 0,f g a ∞ → ∞  

(i) If 
( )lim 1,
( )x

f x
g x→∞

=  then f  is said to asymptotically 

equivalent to g . We describe this by writing f g .
 (ii) ( )f g= Ο Means f Ag≤ for some 0.A >  In this 

case we say that f  is of large order .g  

(ii) ( )f gο=  Means 
( )lim 0
( )x

f x
g x→∞

= . In this case we 

say that f  is of small order .g  
 
2.13. Examples 
 
(i) Consider ( ) ,nf x x=  ( ) ,ng x x x= +  for all 0x >  

and 
( )lim lim 1
( )

n

nx x

f x x
g x x x→∞ →∞

= =
+

 

Therefore .f g  
 

(ii) (10 )x x= Ο  Because 
1 1 (10 ).

10 10 10
x x x
x
= ⇒ =  

 

(iii) 21 ( )x xο+ = Because 2

1lim 0.
x

x
x→∞

+
=

 
 

As a result of Theorem 2.11, we get the following 
results as particular cases.

 

 
2.14. Theorem  

Let .f F∈  Then we have the following 
statements.  

(i)  ( ) ( )
x

a

f t dt xf xβ β∫
     

 

 
(ii)  ( ) ( )

x

a

f t dt xf x∫
 

1(iii)  
( ) ( )

x

a

xdt
f t f x∫  

 
Proof 

Let f F∈  
(i) Put α = 0 in Theorem 2.11, we get

 
( )

lim 1
( )

x

a

x

f t dt

xf x

β

β→∞
=

∫
 

( ) ( )
x

a

f t dt xf xβ β⇒ ∫  
 
(ii) Put α = 0, β = 1 in Theorem 2.11, we get
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( )
lim 1

( )

x

a

x

f t dt

xf x→∞
=

∫
 

( ) ( )
x

a

f t dt xf x⇒ ∫  
 
(iii) Put α = 0, β = -1 in Theorem 2.11, we get

 1
( )

lim 1

( )

x

a

x

dt
f t

x
f x

→∞
=

∫

  

1
( ) ( )

           

x

a

xdt
f t f x

⇒ ∫
 

 
2.15. Theorem 

Let .f F∈  Then 

(i) 
( )lim 1,

( )x

f x c
f x→∞

+
=

 
For any c∈  

(ii) If ( )f x′  is decreasing then 
( )lim 1,
( )x

f cx
f x→∞

=  for any 

c∈  
 
Proof  

Let f F∈  
 
(i) Case (a). Suppose 0c >  

By Lagrange’s mean value theorem, There exists 
a ( ),t x x c∈ +  such that 

( ) ( ) ( ) ( )f x c f x x c x f t′+ − = + −
  

( ) ( ) ( )    0
( ) ( )

f x c f x cf t
f x f x
+ − ′

⇒ ≤ =  

( ) ( ) ( )     0 lim lim
( ) ( )x x

f x c f x cf t
f x f x→∞ →∞

+ − ′
⇒ ≤ = , ( ),t x x c∈ +  

( )    lim 1 0
( )x

f x c
f x→∞

+
⇒ − = , since lim ( ) 0

x
f x

→∞
′ =

  
(by Theorem 2.9) 

( )    lim 1.
( )x

f x c
f x→∞

+
⇒ =  

 
Case (b). Suppose 0c <  

By Lagrange’s mean value theorem there 
exists ( ),t x c x∈ +  such that 

( )( ) ( ) ( )f x f x c x x c f t′− + = − −
 

( )( ) ( )    0
( ) ( )

f x f x c cf t
f x f x
− + ′

⇒ ≤ = −  

( )( ) ( )     0 lim lim
( ) ( )x x

f x f x c f tc
f x f x→∞ →∞

− + ′
⇒ ≤ =− , ( ),t x c x∈ +  

( )  lim 1 0
( )x

f x c
f x→∞

+
⇒ − = , since lim ( ) 0

x
f x

→∞
′ =

    
(by Theorem 2.9) 

( )   lim 1.
( )x

f x c
f x→∞

+
⇒ =  

 
(ii) Case (a). Suppose 1c >  

By Lagrange’s mean value theorem there 
exists ( ),t x cx∈  such that 

( ) ( ) ( ) ( )f cx f x cx x f t′− = −
    

( ) ( ) ( 1) ( )    0
( ) ( )

f cx f x c xf t
f x f x
− ′−

⇒ ≤ =  

( ) ( ) ( )
0 lim ( 1) lim

( ) ( )x x

f cx f x xf t
c

f x f x→∞ →∞

′−
⇒ ≤ = − , ( ),t x cx∈  

 
And ( )f x  is decreasing     ( ) ( )f x f t′ ′⇒ >  

There fore
( )

lim 1 0
( )x

f cx

f x→∞
− = , since lim ( ) 0

x
f x

→∞
′ =

 
(by Theorem 2.9) 

( )   lim 1.
( )x

f cx
f x→∞

⇒ =  

 
Case (b). Suppose 1c <  

By Lagrange’s mean value theorem there 
exists ( ),t cx x∈  such that 

( )( ) ( ) ( )f x f cx x cx f t′− = −
     

( )( ) (1 ) ( )     0
( ) ( )

f x f cx c xf t
f x f x
− ′−

⇒ ≤ =  

( )( ) ( )
0 lim (1 ) lim

( ) ( )
,

x x

f x f cx xf t
c

f x f x→∞ →∞

′−
⇒ ≤ = − ( ),t cx x∈  

And ( )f x  is decreasing     ( ) ( )f x f t′ ′⇒ >  

There fore
( )lim 1 0
( )x

f cx
f x→∞

− = ,  

since lim ( ) 0
x

f x
→∞

′ =
               

(by Theorem 2.9) 

( )lim 1.
( )x

f cx
f x→∞

⇒ =  

 
2.16. Theorem  

Suppose f F∈  is such that ( )f x′  is 

decreasing. If 1 20 c c< ≤  and g  is a function such that                        

1 2( )c g x c≤ ≤ then 
( ( ) )lim 1.

( )x

f g x x
f x→∞

=  
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Proof 
Suppose  is such that ( ) is decreasingf F f x′∈  

If 1 20 ( )c g x c< ≤ ≤  1 2    ( ) ( ( ) ) ( )f c x f g x x f c x⇒ ≤ ≤  
since f  is decreasing 

1 2( ) ( )( ( ) )      
( ) ( ) ( )

f c x f c xf g x x
f x f x f x

⇒ ≤ ≤
  

1 2( ) ( )( ( ) )    lim lim lim
( ) ( ) ( )x x x

f c x f c xf g x x
f x f x f x→∞ →∞ →∞

⇒ ≤ ≤  

( ( ) )    1 lim 1
( )x

f g x x
f x→∞

⇒ ≤ ≤             (By Theorem 2.15)  

( ( ) )   lim 1.
( )x

f g x x
f x→∞

⇒ =  

 
3. APPLICATIONS OF SLOW INCREASING  
    FUNCTIONS TO SOME PROBLEMS OF    
    NUMBER THEORY 

This section details some applications in 
problems pertaining to number theory. 

We begin with the following important definition. 
 
3.1. Definition 

Let f F∈ . Through out ( )na denotes a strictly 
increasing sequence of positive integers such that 
 

1 1a >  and lim 1 for some 1.
( )
n

sn

a s
n f n→∞

= ≥                         
 

 

i.e.   ( )s
na n f n  

 

There exist several such sequences.  
For example ,n na p=  the sequence of prime 

numbers in increasing order, ( ) logf x x=  and 1s = . 

By prime number theorem we have lim 1
log

n

n

p
n n→∞

=  

 
3.2. Theorem 

Let ( ) ( ): , 1,f a ∞ → ∞  be a s.i.f. ( 1)a >  

and ( )( )lim  
( )

x

x
b

tf t dt a b
f t

β

→∞

′
= ∞ <∫ . Suppose ( )na  be 

the sequence of positive integers such that 
( )( )  1s

na n f n s ≥ .                        (1) 
Then  

1 2. ... 1lim .
n

n
sn

n

a a a
a e→∞

=  

Proof  

Given that ( ) ( ): , 1,f a ∞ → ∞
 

be a s.i.f. 

( 1)a >  and ( )( )lim  
( )

x

x
b

tf t dt a b
f t

β

→∞

′
= ∞ <∫  

And  
( )( )  1s

na n f n s ≥  

  log log log ( ) (1)na s n f n ο⇒ = + +  

If n′ is positive integer in interval [ ),a ∞  
Then  
 

log log log ( ) (1)
n n n n

k
k n k n k n k n

a s k f k ο
′ ′ ′ ′= = = =

= + +∑ ∑ ∑ ∑     (2) 

Since log x is increasing and positive in ( ),a ∞  
Now  
 

log log (log )
nn

k n n

k xdx n
′= ′

= + Ο∑ ∫  

log (log )n n n n= − +Ο  
 

log ( )n n n nο= − +                                                     (3) 
 

On the other hand if 0ε >  we have for all 
n n′≥  the inequality (1)ο ε<  

Therefore for n n′> , we have  
 

(1) (1)
( 1) 2

n n

k n k n n n
n n n

ο ο
ε ε′= ′= ′− +

≤ < ≤
∑ ∑

  

i.e. (1) ( )
n

k n
nο ο

′=

=∑                                                     (4)    

 

We find that 
 

log ( ) log ( ) (log ( ))
nn

k n n

f k f x dx f n
′= ′

= +Ο∑ ∫  

  
( )log ( ) (log ( ))

( )

n

n

xf xn f n dx f n
f x′

′
= − +Ο∫             (5) 

 
We know that  
 

log ( ) ( )lim lim
( )n x

f n f n
n f n→∞ →∞

′
=           (By L’Hospital’s rule) 

 
( ) 1lim 0.

( )n

nf n
f n n→∞

′
= × =  
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   (log ( )) ( )f n nο⇒ Ο =                                            (6) 
 
Now  
 

( )
( ) ( )lim lim 0

( )

x

n

x x

tf t dt
f t xf x

x f x
′

→∞ →∞

′
′

= =
∫

     (By L’Hospital’s rule) 

 
( )   ( )

( )

n

n

xf x dx n
f x

ο
′

′
⇒ =∫                                             (7) 

 
From (5), (6) and (7), we get 
 

log ( ) log ( ) ( )
n

k n
f k n f n nο

′=

= +∑                              (8) 

 
From (2), (3), (4) and (7), we get 
 

1

log ( log ( )) log ( ) ( ) ( )
n

k
k

a s n n n n n f n n nο ο ο
=

= − + + + +∑  

 

1
   log log log ( ) ( )

n

k
k

a sn n sn n f n nο
=

⇒ = − + +∑
   

(9) 

 

But  
 

1 2
1
log log log ... log

n

k n
k

a a a a
=

= + + +∑
 

 

1 2log ... na a a=    1 2
1

... exp log
n

n k
k

a a a a
=

⎛ ⎞
⇒ = ⎜ ⎟

⎝ ⎠
∑  

 

1
1 2

log
    ... exp

n

k
kn

n

a
a a a

n
=

⎛ ⎞
⎜ ⎟
⎜ ⎟⇒ =
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑

 
 

1

log
log log ( ) ( )exp exp

n

k
k

a
sn n sn n f n n

n n
ο=

⎛ ⎞
⎜ ⎟ − + +⎛ ⎞⎜ ⎟⇒ = ⎜ ⎟
⎜ ⎟ ⎝ ⎠
⎜ ⎟
⎝ ⎠

∑   (By 9) 

 

( )exp log log ( ) (1)sn s f n ο= − + +

( )exp log ( ) (1)s sn f n eο −= +  

( )exp log ( ) (1)s

s

n f n
e

ο+
=

( )s
n

s s

an f n
e e

 

 

Therefore 1 2... nn
n s

aa a a
e  

1 2... 1    
n

n
s

n

a a a
a e

⇒
 

1 2... 1   lim .
n

n
sn

n

a a a
a e→∞

⇒ =  

 
In view of the above theorem and prime number 

theorem implies the following. 
 
3.3. Theorem  

Let np  be the sequence of prime numbers. Then  
 

1 2... 1   lim .
n

n

n
n

p p p
p e→∞

⇒ =  

 
Proof 

In theorem 3.2 put n na p= , ( ) logf x x=  

and 1s = . 
Let ,n kc  be the sequence of integers which have 

in their prime factorization k  prime factors. Rafael 
Jakimczuk [ ]4  proved that  

( ), ( 1)
( 1)! log
log log

n k k
k n nc

n −

−
 

As a result of previous theorem, we have the 
following result. 
 
3.4. Theorem 
  

1, 2, ,

,

. ... 1lim .
n

k k n k

n
n k

c c c
c e→∞

=  

 
Proof 

In Theorem 3.2 put , ,n n ka c=   

( ) ( 1)!logf x k n= −  and 1s = . 
 
 
CONCLUSIONS 

We apply the results discussed in this article to 
look into some of the applications in number theory. 
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