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Introduction 
A cable in the form of a catenary is found in many engi­

neering structures such as suspension bridges, aerial trans­
mission lines, and underwater anchors for deep sea drilling 
platforms to name just a few. One underlying similarity among 
these mechanical structures is that the cable is intended to 
remain static. Motion of the cable is then of concern since this 
represents a departure from the intended state in which the 
structure would be employed. By understanding the cable dy­
namics, engineers are able to either accommodate the cable 
motion or seek suitable ways to quench or limit its oscillation. 

A significant problem concerning the oscillation of the cable 
is that of the galloping of aerial transmission lines. Galloping, 
which is a low-frequency, high-amplitude oscillation, has been 
a concern for many decades for overhead electric power trans­
mission line designers. Transmission line galloping occurs when 
ice or freezing precipitation adheres to a power line conductor. 
Owing to the ice build up, the cross-section of the conductor 
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becomes noncircular. A noncircular profile gives the conductor 
both aerodynamic lift and drag characteristics. Aerodynamic 
lift force can give rise to dynamic instability even at low wind 
speeds. When conditions are suitable for dynamic instability, 
spectacularly large-amplitude, low-frequency mechanical vi­
bration of the line occurs. Since galloping can cause various 
kinds of structural damage and power outages, each having 
its own associated cost and problems, many attempts have 
been made to stop galloping or at least minimize its amplitude. 
In order to design a better preventative or damping mechanism, 
a knowledge of the mechanics of galloping is required. 

A history of the means by which cable motion has been 
described begins with the wave equation which applies to any 
thin cable of symmetric cross-section in which both the tension 
and axial strain are constant. Routh (1905) presented the equa­
tions of motion of an inelastic chain having symmetric cross-
section (cable cross-sectional mass center coincides with the 
cable center). However, the mass per unit length in the example 
in Routh's text was sufficient so that the constant tension 
assumption was invalid. Also, only the in-plane motions were 
considered in Routh's analysis. The solution of the static ine­
lastic chain equations is the familiar catenary shape. Cheers 
(1950) used a small perturbation analysis for the cable motion 
which resulted in wave equation analysis. Equations of motion 
for an elastic cable of symmetric cross-section were presented 
by Shea (1955) and by Simpson (1963). The equations of mo­
tion, presented by Shea and Simpson, assume an absence of 
torsional motion. In both of these investigations, motion of 
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Fig. 1 Conductor geometry 

the cable in all three Cartesian coordinates was considered. 
In what appears to be the first work regarding the torsional 

motion of the conductor, Simpson (1972) presented equations 
of motion for a bundled conductor. These equations of Simp­
son governed the three Cartesian directions of motion as well 
as the axial twist. Thompson (1975) also considered the tor­
sional motion of a single conductor with the added assumption 
that no motion takes place in the cable axial direction. 

The bundled conductor work of Simpson (1972) included 
bending stresses. In most work involving single conductor mo­
tion, bending stresses have been excluded from consideration 
owing to the small cable radius and the large radius of the 
curvature of the line. An exception to this is Cheers (1950). 
Since the radius of the conductor bundle is much larger than 
the radius of a single conductor, bending stresses now become 
significant. Gawronski (1977) also treated bundled conductors; 
however, the axis of bending was assumed to pass through 
both conductors of his two conductor bundle which indicates 
that the bending stresses would not be greater than that found 
on a single conductor span. Gawronski was first to consider 
an axial-torsional coupling which linked the axial tension to 
the determination of torsional stiffness of the bundle. 

In this paper, the equations of motion of a single conductor 
span having an eccentric mass attached to the cable which 
provides no additional strength to the line are derived through 
Hamilton's principle. Validity of the equations will be checked 
through a virtual work argument. By invoking additional as­
sumptions such as the absence of ice, shallow catenary, and 
the lack of torsional motion, it is possible to compare the work 
presented here to the results produced by others. It will be seen 
that a term will appear in the equations of motion which is 
new to the galloping mechanics literature. This new term dem­
onstrates that the torsional motion and the Cartesian motion 
are coupled together even if there is no ice on the line. This 
new term stems from a constraint upon conductor orientation 
which reduces the number of degrees-of-freedom for motion 
of a differential portion of the cable from six to four, namely 
three Cartesian directions and axial twist. 

Mechanical Analysis 
The analysis of a galloping line begins with the presentation 

of the assumptions made in the derivation of the dynamic 
equations. The equations of motion will be determined by 
setting the first variation of the Lagrangian of the translating 
and rotating cable equal to the applied excitations. In order 
to facilitate the calculation of the kinetic and potential energies 

Fig. 2 Euler angle definitions 

necessary to construct the Lagrangian, two coordinate systems 
will be used. These coordinate systems and the transformations 
between these frames will be presented. While the calculation 
of the Lagrangian component energies is an application of 
familiar procedures, determination of the first variation in­
volves considerable effort. At this point of the analysis, de­
tailed steps of the computation of the first variation will be 
given. The analysis section will then conclude with the dynamic 
equations. 

Assumptions. Governing equations of motion for a gal­
loping cable are derived in accordance with several assump­
tions. All of these assumptions pertain either to mechanics of 
conductor motion or the materials and shapes peculiar to gal­
loping cables. These assumptions are as follows: 
1 The cable is an elastic string with constant mass per unit 
length and circular cross-section. 
2 The material used in the cable construction is isotropic with 
constant material properties. 
3 Bending stresses in a single conductor span are small owing 
to the large radius of curvature of the cable. 
4 Mass per unit length, cross-sectional area, shape, and angle 
of deposit of the eccentric mass is constant along the length 
of the cable. 
5 The only source of damping present in the mechanical 
system comes from wind drag. No damping forces arise from 
elastic hysteresis or relative conductor strand movement. 
6 The eccentric mass provides no additional axial, torsional, 
or bending stiffness to the cable. 

Coordinate Systems. The analysis will make use of two 
separate coordinate systems. Motion of the conductor center 
is described with respect to a frame fixed in space. Attached 
to the conductor center is a local frame which translates and 
rotates with respect to the fixed or global frame. The local, 
conductor centered frame is used to describe both the orien­
tation of the conductor cross-section and the angle of twist of 
the cable. The transformation between the fixed frame and 
the local frame is described in terms of Euler angles. 

Figure 1 illustrates the global coordinate system and a cross-
section of the aerial conductor. Vectors R and R„„ denote the 
position, with respect to the global frame, of the conductor 
center and the cross-sectional mass center, respectively. Vector 
rcm denotes the mass center with respect to the conductor cen­
ter, O. Vector e, is a unit vector tangent to the cable. Each of 
the vectors R, R„„, rcm, and e, are functions of the scalar 
parameter s which measures unstressed distance along the con­
ductor. The angle of twist of the cable is the angle 6. The point 
p is an arbitrary point on the cable cross-section. 

The three Euler angles \p, </>, and 6 describing the rotational 
transformation between the global frame and the local frame 
are illustrated in Fig. 2. The transformation is accomplished 
by first rotating about the global Z axis by \p to produce the 
Xx, Yu Zj frame. A rotation about the AVaxis by 4> produces 
the frame X2, Y2, Z2. The coordinate frame determined by X2, 

Journal of Applied Mechanics JUNE 1992, Vol. 59 / S225 
Downloaded From: https://appliedmechanics.asmedigitalcollection.asme.org on 07/01/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



y2. Z2 '
s i m P o r t a n t to the analysis since the .¥2-22 plane con­

stitutes the conductor cross-section. The angle 6 (which is the 
final Euler angle) measures conductor twist about the Y2 axis, 
and the Y2 (and Y3) axis is parallel to the conductor unit tangent 
vector e(. Details of the transformations will be included in 
the analysis as needed. 

The Lagrangian. Coordinate systems previously presented 
will now be used to develop expressions for the kinetic, grav­
itational potential, and elastic strain energies necessary to form 
the Lagrangian. 

Kinetic Energy. We will now determine the kinetic energy 
of a translating and rotating cable with an eccentric additional 
mass. Referring to Fig. 1, consider an arbitrary particle p on 
the conductor cross-section. The position vector to that particle 
with respect to the global coordinate system is 

Rp = R + rp (1) 

where r,, is the position of the particle with respect to the 
conductor center. The velocity of the particle in the fixed frame 
is given by 

Vp = R + co x rp = V + co x TP (2) 

where V is the velocity of the cable center in the global frame 
and the dot represents differentiation with respect to time. The 
vector to is the angular velocity of the conductor as seen by an 
observer in the fixed frame. The kinetic energy, KEP, of this 
particle which has mass mp, is 

1 (3, KEp = ^mp\\p\ 

The kinetic energy, KE, of a unit length of line is 

,1 KE=J]-mp\yp\
2 

p 

(4) 

where the sum is computed over all particles composing a unit 
length of the cable. Carrying out the operation of Eq.(4) pro­
duces 

KEJ-YJmp\V\1 + V.(uxYimprp) + \lLimp^XTp? 
p p P 

= -m\V\2 + mY-(o>xrcm) + -J]luoiioij (5) 
ij 

where m is the total cable mass per unit unstressed length 
determined by 

m = YAmp (6) 
p 

and where I,j are inertia tensor components computed as 
IU=Yjmp[5iJlrp]2-rPirpJ- (7) 

p 

Note that 5/y- is the Kronecker delta and that rPj and rp. are 
components of the vector rp. Likewise, co,- and coy are compo­
nents of the angular velocity co. Futhermore, it should be noted 
that all vector quantities in (5) are expressed in the fixed frame. 

The total kinetic energy of the line, KET, is determined by 
integrating (5) over the length of the line to yield 

„ nFL ,FL 

KET= mr 
2 Jo 

\R\2ds+m R.(co 
0 

x rcm)ds 

1 1 p(co X rp) • (co X rp)dA ds (8) 

where FL is the free, unstressed length of the line, AT is the 
total cross-sectional region of the line including eccentric mass, 
and p is the mass density which varies over the cross-section. 

Potential Energy. The potential energy is divided into two 

parts which consist of the gravitational potential energy and 
the elastic strain energy. We will treat each part separately. 

Gravitational Potential Energy. The gravitational poten­
tial energy is 

f PEg = - m g • (R + rcm)ds (9) 

where g is the gravitational acceleration vector. 

Elastic Strain Energy. The total elastic strain energy of the 
line is determined-by integrating the strain energy density over 
the entire region of the conductor. Before this can be accom­
plished, both the axial and torsional strains and the accom­
panying stresses must be expressed in terms of the conductor 
displacements. To this end we adopt the constitutive relation 
presented by McConnell and Zemke (1976) which, for the 
purposes of this work, is 

dd 
P = AEt + B— (10) 

ds 

for the axial tension P and 

dd 
T=Be + JG — 

ds (11) 

for the torsion T. In (10) and (11), AE and JG are the axial 
and torsional stiffness of the cable, respectively. A is the cross-
sectional area of the bare, unstressed cable. B represents the 
coupling between axial and torsional displacements owing to 
the stranded, wound nature of the cable construction. The 
axial strain e is 

3R 
ds 

1. (12) 

The constitutive model gives the strain energy as 

1 
SE- I

FL < ?.FL 

0 2 J0 

T— ds 
ds 

2J„ 
dd 

e Ts 
AE 

B 

B 

JG 
ds. (13) 

By combining the results of (8), (9), and (13), we can write 
the Lagrangian, L, of the line as 

L(R, R, Rs, R„ d, 6, ds) = KET-PEg-SE (14) 

where the subscript s denotes partial differentiation with re­
spect to s. 

The First Variation. Equations of motion for the cable 
originate from the determination of the first variation of (14). 
This process will produce a coupled system of one vector equa­
tion and one scalar equation for determination of cable dis­
placement R and twist 6. We will consider each of the 
component energies in turn beginning with the potential ener­
gies and concluding with the kinetic energy. 

Gravitational Potential Energy. The variation of the grav­
itational potential energy arises because of cable displacement 
and rotation. The first variation of PEg is 

~FL 

5PE„ = - m% •r — (R + rcm)5R + — (R + rcm)50 ds 

= -mg> [<5R + (<5/Sx !•„„)]* 

-mg 

„FL nFl 

5Rds-\ (Tcmxmg)-6fids. (15) 

where 6/3 is a rotational or pseudo vector formed by variations 
in the three Euler angles. The terms on the right side of (15) 
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will eventually contribute a gravitational force and a gravi­
tational moment about the conductor center. 

The vector 5/3 is readily obtained from the Euler transfor­
mation itself. Let rp be an arbitrary vector in the local frame. 
The corresponding representation in the global frame is the 
vector TP given by 

r P =[r ] r ; 

= [Rot(Z, n\Rot{Xu <t>)Wot(Y2, 0)]tp (16) 

where [Rot(w, v)] represents a rotation matrix formed by a 
rotation of angle v in the right-handed sense about axis w and 
[T] is the Euler angle transformation which converts vectors 
from representation in the local frame to their representation 
in the fixed frame. The variation of rp with respect to the Euler 
angles is given by 

5r„ ^[TW^iTm^rwliT^ 

( x r „ (IV) 

where the superscript T denotes matrix transpose. The result 
of the differentiation and matrix multiplication in (17) pro­
duces the pseudo vector 5/3 which is given by 

5P = 8tk + 5<t>Xl + 5de,= [D]5A (18) 

where X, is a unit vector which points along the Al'i-axis of 
Fig. 2. Note that by employing the same algebraic steps we 
could consider the time derivative of rp, a process which leads 
to the angular velocity pseudo-vector co given by 

w = jJ = j , k + i>Xi + 6e,= [D]k. (19) 

Here, [D] is the matrix 

[D] = [k « , e,] 

and A is the column vector 

k=W<$>d]T. 

(20) 

(21) 

Strain Energy. By determining the first variation of the 
strain energy, we will recover expressions which contain the 
axial and torsional stiffness terms. The variation of the strain 
energy is found, after setting the first variation of R and 6 at 
the ends of the line to zero, as 

8SE= -r P dR 

1 + e ds 
•8R + —(T)86 

ds 
ds. (22) 

Kinetic Energy. The task remaining in finding the first 
variation is the consideration of the kinetic energy. Its variation 
is 

c'2 p ' 2 r F i i 

+ S\ \ \ PR-(uxrp)dAdsdt 

p'2 p '2p«- l 
5 KETdt = b\ -mR>Rdsdt 

J,, J,, J0 2 

^{<*xrp).(uXTp)dAdsdt. (23) 

After computing the variation, integrating by parts, and 
finally setting the variations of R at either end point in time 
to zero, the first term on the right of (23) becomes 

-mR-Rdsdt=-\ mR-5Rdsdt. (24) 
t\ Jo ^ Jq Jo 

The next two terms can be manipulated into the intermediate 
form of 

rn P 
J/i J0 •'AT 

R • (w x rp) + - (<o x TP) • (co x r ^ dAdsdt 

,t2 »FL 
I m(atXrcm + o}X(aXrcm))-8Rdsdt 

J/i •'o 

J '2 f f p 
p(rpx(R + (uxrp)))-8u dAdsdt 

t\ Jo •'AT 

!

'2 rFL. p 
p(TpX{(R + uXTp)xu,))>8$ dAdsdt. (25) 

<] Jo J.47-

The first term on the right of (25) is in the desired form; the 
last two terms require further attention. 

At this point of the derivation there are two directions which 
we can follow. The first is to write the variation of w as 

dco „ • doo „. 
5a> = - T 5 A + - T 5 A 

3A aA 
(26) 

which is the most direct way. The other path requires that we 
realize that 

— (5/3) = 5/3 +cox 50. (27) 

Now, (27) can be most easily verified by directly substituting 
the various quantities. The form of (27) arises since the last 
two Euler angles represent rotations around unit vectors which 
are themselves rotating. From (27) we now recognize that 

50 = 5^ = 4 (5/3)-cox5/3. (28) 
dt 

In completing the determination of the variations in (25) we 
can use either (26) or (28) to arrive at the same result; however, 
the algebraic complexity of using (28) is considerably less than 
the alternative. 

After substituting (28) into (25), integrating by parts, sub­
stituting the definitions of the inertia tensor and the center of 
mass, simplifying, and combining the end result with (24), the 
variation of the kinetic energy with respect to R and the Euler 
angles becomes 

p'2 p '2p^ 
8\KETdt=-\ [m(R + a x r c m + coX(coxr„„)).5R 

J/ , J , , On "11 "0 

+ (rcmxmR + Ia + ioxIoi)-8P]dsdt. (29) 

In order to finish this step we must expand 5/3 in terms of line 
displacement and twist. 

Determining the variation 5/3 as a function of the variations 
86 and 5RS is facilitated by using (18). This process produces 

l={D]SA = lD}^-8Rs + etde. (30) 

In order to evaluate the derivative 5A/9RS we note that the 
unit tangent to the line can be written as 

1 dR 
e,= -sini/'Cos<£i + cosi/'Cos<£j + sin$k = - — (31) 

1 + e as 
By equating components and computing differentials then it 
is possible, after considerable algebra, to demonstrate that 

and 

a$ 
dR5 

d4> 
dR, 

V 
{X2

S+Y]) 

-Zl\+e 

n (32) 

(33) 

where Z2 is a unit vector along the Z2-axis of Fig. 2. Substituting 
(32) and (33) into (30) finally produces 
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Fig. 3 Cable loading with elastic, external, and inertial forces 

1 
1+6 

x1zr-kxr7#^ 
(Xt+Yl

s)
xn 8Rs + t,86. (34) 

We can now complete the first variation of the kinetic energy 
by substituting (34) into (29), integrating by parts, and setting 
the first variation of R at the ends of the line to zero. Doing 
this gives 

f'2 cFLl C'2 c'2 |> 
5 KETdt = 

d I 1 

- m(R + a X r„„ + to x (to X r„„)) 

+ — I- ( - rcm X mR - la - to X (/to) 

- r 1+e 
k X l ( z ? + y 5 ) I / 2 " x.zl" • 5R 

+ [(-r„»xmR-/a-wx(/to))•e,]56» cfedr. (35) 

77;e Equations of Motion. By equating the variations of 
the Lagrangian with respect to R and 6 to the virtual work 
done by these external excitations, which are not represented 
through a potential, we produce the equations of motion. These 
are given by 

m(R + aX r„„ + to X (toX rc„,)) = Faer0 + mg 

- 1 — 
+ dS 1 + 6 

dR , .. 
P — + X,k 

(1+6) 

ds- V ' (X?+K?)1/2" 

and 

• ( r „ „ x r n g - r c m X m R - I a - o i X (/to)) 

sr 

(36) 

(r„„X/wg-r„„X/7?R-/a-toX (/w))«e, + — = -M a e r o (37) 
as 

where Faero and Maer0 are the external aerodynamic force and 
pitching moment, respectively. 

Verification. As an independent means of verifying the 
equations of motion, we use the principle of virtual work. The 
procedure to be followed is to consider the sum of the elastic, 
inertial, and gravitational forces and moments acting on a 
section of cable. The work done by the net force and moment 
in moving the entire cable through a virtual displacement 5R 
and 5/3, a displacement consistent with the constraints, is then 
set to zero. By factoring the various components of the virtual 
displacement, namely, 8X, 8Y, bZ, and 56 and by noting that 
these displacements are independent, the equations of motion 
are obtained. 

Figure 3 shows a small portion of cable with internal, ex­
ternal, and inertial loadings. The net force and moment will 
now be considered. Summing forces and ignoring the products 
of small terms provides 

J]T = As[A (Pe,) + mg + Faero - m (R 

+ aXr„„ + <ox(ioxrc„,))]. (38) 

The moment sum is 

J]M = As[A (7e,) + Macro + r„„ X mg 

- (/a + toX(Ito) + r c mxmR)]. (39) 

By letting As shrink to differential proportions, we can then 
compute the work, bW, done through a virtual displacement 
as 

8W=\ (jy-5n+jyiT5^)ds. (40) 

The constraint on the motion given by 

--TzrSRs + 86e, 
dR, 

(41) 

is now included. By substituting (41) into (40), integrating by 
parts, and finally setting the virtual displacement 5R at the 
end points to zero, produces 

^C[(2>-!(sM1|))- iR 

2_M'e,8 ds. (42) 

Since the displacements are consistent with the constraints, the 
virtual work vanishes. The displacements 5R and 88 are in­
dependent and arbitrary. The independence of the virtual dis­
placements leads to the conclusion 

*-* d s ^ dR, 
(43) 

and 

which produces the original Eqs. (36) and (37). 

(44) 

Comparisons With Previous Work 
Comparisons of the equations of motion given in (36) and 

(37) with results of other investigators are possible provided 
additional assumptions are made. It is instructive to see what 
additional assumptions are necessary in order to match the 
results of others since this provides an understanding of the 
assumption influence upon the equations of motion. 

Shallow Catenary Assumption. The first assumption to be 
invoked is that the sag-to-span ratio is small. The implication 
of this assumption is that the unit tangent to the line is every­
where horizontal and can be made to coincide with one of the 
fixed frame axes. Making the Y-axis coincide with the line 
means that the vector rcm is contained in the X-Z plane. Another 
influence of this assumption is that all torsional motion is about 
the Y-axis exclusively. 

Under this assumption the equations of motion simplify 
significantly. The translational part of the motion is governed 
by 

m {R + 0j x r„„ - 6 2rcm) = Faer0 + mg 

+ - ( — + ^ \ l + e Pds l ' k \Y,\ 

while the torsional equation becomes 

• (r„„xwR) 

dT 

(45) 

(r„„ x m g - r„„ x m R - Ide,) -e, + — = - Maero. (46) 
as 

If we make the additional assumption of no axial motion 
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of the cable, then Y vanishes. Under this circumstance, the 
rightmost term of (45) also vanishes. The equations now govern 
the torsional, vertical, and transverse (wind direction) motions 
of the cable. This particular set of circumstances was treated 
by Thompson (1975). The simplification of (36) and (37) agrees 
with his analysis. In Thompson's constitutive model, the pa­
rameter B is zero. 

Absence of Ice. If there is no ice attached to the cable, 
then the center of the conductor and the center of mass of the 
cable cross-section coincide. The vector r„„ vanishes, and under 
this condition the equations of motion become 

mR = Faero + mg + 

X,k7 

(X2
S+Y2

S)W2 

' ds 

Z2Xi •(/« + &) x(/«)) 

and 

(/a + to X CM) • e, = Maero + 
dT 
ds' 

(47) 

(48) 

The remarkable aspect of (47) and (48) is that the torsional 
motion and the vertical motion are coupled together. It was 
previously believed that in the absence of ice, the torsional 
motion would uncouple from the translational motion, since 
in the work of Nigol and Havard (1978), it was noticed that 
the torsional frequency of vibration aligned with the transla­
tional frequency after ice had accumulated on the cable. 

An important simplification occurs in the absence of both 
ice and torsional motion. Under this additional condition (47) 
becomes 

mR = Faero + wg + — 
P dR 

ds \ 1 + e ds 
(49) 

which was originally presented by Shea (1955) and by Simpson 
(1963). 

Ice-Free, Shallow Catenary Torsional Motion. Under these 
conditions, the moment balance expressed in (48) becomes 

dT 
I9 = M„ 

ds' 
(50) 

Simpson (1972) presented the torsional equation for a bundled 
conductor. According to Simpson, the torsional moment at­
tributed to stiffness is 

MT 
d I JG dd 

ds \ 1 + e ds 
(51) 

where no elastic axial-torsional coupling is assumed. Equation 
(51) is true for Simpson's analysis regardless of the number 
(even one) of conductors making up the bundle. In comparing 
(51) with the work presented here, namely, 

d dd 
M^dS(JGYs 

(52) 

we see that the difference is a factor of 1/(1 + e). By including 
the 1/(1 +e) factor in the constitutive Eqs. of (10) and (11), 
rederiving the equations of motion, and invoking the same 
assumptions which lead to (50), the equations of motion as 
presented by Simpson are not recovered. There were additional 
terms not included in Simpson's analysis. It was found that 

only by using the constitutive model of (10) and (11) were we 
able to determine a result which was consistent with the virtual 
work analysis. 

Conclusions 
Equations of motion on a thin cable consisting of several 

wound strands subject to aerodynamic and eccentric mass load­
ing have been derived. The equations of motion have been 
verified through a virtual work argument. By invoking suitable 
assumptions, simplifications of the presented work were shown 
to be in agreement with the work of previous investigators. 

The equations of motion for the case where no ice is attached 
to the conductor demonstrated that the translational and tor­
sional modes remained coupled. The presence of the coupling 
has not been known until now. In the galloping literature there 
is disagreement as to the initiating mode for galloping; i.e., 
does the instability stem from the torsional or vertical mode? 
The level of this disagreement is clearly seen in the two papers 
delivered by Nigol and Buchan (1981) and the following dis­
cussion. Nigol and his co-workers have demonstrated that given 
a conductor-ice geometry which is Den Hartog stable, an un­
stable system can be created by introducing a torsional oscil­
lation. A significant contribution of the present work is that 
it provides a new direction for studying the various sources of 
mechanical instability which may be present in an iced con­
ductor geometry. 
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