
Predicting Coherence Communication by Tracking Synchronization Points at Run Time

Socrates Demetriades† and Sangyeun Cho‡†

†Computer Science Department, University of Pittsburgh
‡Memory Division, Samsung Electronics Co.

{socrates,cho}@cs.pitt.edu

Abstract
Predicting target processors that a coherence request must be de-
livered to can improve the miss handling latency in shared memory

systems. In directory coherence protocols, directly communicating
with the predicted processors avoids costly indirection to the direc-

tory. In snooping protocols, prediction relaxes the high bandwidth
requirements by replacing broadcast with multicast. In this work,
we propose a new run-time coherence target prediction scheme that

exploits the inherent correlation between synchronization points in
a program and coherence communication. Our workload-driven
analysis shows that by exposing synchronization points to hardware
and tracking them at run time, we can simply and effectively track
stable and repetitive communication patterns. Based on this obser-
vation, we build a predictor that can improve the miss latency of a
directory protocol by 13%. Compared with existing address- and
instruction-based prediction techniques, our predictor achieves com-
parable performance using substantially smaller power and storage

overheads.

1. Introduction
Inter-thread communication in shared memory systems is realized by
allowing different threads to access a common memory space. This
model simplifies the concept of communication; however, it creates
important scaling challenges mainly due to the cache coherence prob-
lem [32]. Traditionally, shared memory architectures employ either
a directory- or a snooping-based protocol to keep the per-processor

caches coherent. Directories maintain a full sharing state for each
cache line and therefore can precisely direct each miss to its destina-
tions. The indirection to the directory adds, however, considerable
extra latency to cache misses that are serviced by other caches. Snoop-
ing protocols avoid the latency and storage overheads of a directory
by resorting to broadcasting messages on each miss; however, they

place significant bandwidth demands on the interconnect even for a
moderate number of processors.

A common approach to improving coherence communication
is to predict the processors that a coherence request must be de-
livered to. Accurate prediction would reduce the latency of a
cache miss by avoiding indirection to the directory, or reduce the
high bandwidth demands of broadcasting by using multicasting in
snooping protocols. Such predictions can be made by program-
mers (e.g., [1]), compilers [29, 47], or transparently by the hard-
ware [2, 3, 8, 11, 28, 30, 31, 33, 36, 39]. Given that compiler tech-
niques are limited to static optimization [29] and that the shared
memory model should be kept transparent while offering high perfor-
mance [39], a preferred communication predictor would dynamically
learn and adapt to an application’s sharing behavior and communica-

tion patterns.
Much prior work explored coherence target prediction using

address- and instruction-based approaches [2,3,8,27,28,30,36,39].
Address-based coherence prediction was first proposed by Mukherjee
and Hill [39], who showed that coherence events are correlated with

the referenced address of a request. To exploit the correlation, they

associate pattern history tables with memory addresses, train them
by monitoring coherence activity, and probe them on each request
to obtain prediction. Alternatively, instruction-based prediction, as
proposed by Kaxiras and Goodman [28], correlates coherence events

with the history of load and store instructions. This allows a more
concise representation of history information since the number of
static loads and stores is significantly smaller than that of accessed
memory blocks.

The basic design of address- and instruction-based predictor has

been extended further to mainly relax the large space requirements
of those approaches [8, 30, 36, 40]. However, the extensions still
require relatively large and frequently accessed prediction tables.
Furthermore, to attain high accuracy, they often keep long sharing
pattern history per entry or rely on multi-level prediction mecha-
nisms. Designs that exploit the spatial locality of coherence requests,

such as the ones based on macroblock indexing [36], have shown
improvements for both space efficiency and prediction accuracy, in-
dicating that predicting sharing patterns at very fine granularities
is not necessarily optimal. Nevertheless, the window for capturing
such opportunities is still tight to hardware-level observation, limiting
the scope in which communication localities can be expressed and
exploited.

In this work, we propose Synchronization Point based Prediction

(SP-prediction), a novel run-time technique to predict coherence re-
quest targets. SP-prediction builds on the intuition that inter-thread

communication caused by coherence transactions is tightly related
with the synchronization points in parallel execution. The main idea
of SP-prediction is to dynamically track communication behavior
across synchronization points and uncover important communication
patterns. Discovered communication patterns are then associated
with each synchronization point in the instruction stream and used to

predict the communication of requests that follow each synchroniza-
tion point.

SP-prediction is different than existing hardware techniques be-
cause it exploits inherent application characteristics to predict com-

munication patterns. In contrast to address- and instruction-based ap-

proaches, it associates communication patterns with variable-length,
application-defined execution intervals. It also employs a simple
history structure to recall past communication patterns when the
program execution repeats previously seen synchronization points.
These two properties allow a very low implementation cost and hard-

ware resource usage, yet delivering relatively high performance. In

summary, this work makes the following contributions:

• We examine the communication behavior as observed between syn-
chronization points for various multithreaded applications (Section 3).
Our characterization reveals prominent prediction opportunities by
identifying (1) strong communication locality during periods between
consecutive synchronization points and (2) predictable communica-
tion patterns across repeating instances of such periods.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357341063?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

0.0

0.2

0.4

0.6

0.8

1.0
communicating misses non−communicating misses

M
is

s
R

at
io

fm
m lu

oc
ea

n

rad
ios

ity

wate
r−n

s

ch
ole

sky fft
rad

ix

wate
r−s

p

bo
dy

tra
ck

flu
ida

nim
ate

str
ea

mclu
ste

r
vip

s

fac
es

im
fer

ret
de

du
p

x2
64

Figure 1: Ratio of communicating misses. (Note: Details on the evaluation
environment are given in later sections.)

• We propose SP-prediction, a run-time technique to accurately pre-
dict the destination of each coherence request using a small amount
of hardware resources. SP-prediction captures synchronization points
at run time and monitors the communication activity between them.
By doing so, it extracts a simple communication signature and uses
it to predict the set of processors that are likely to satisfy coherence
requests of the program interval, as well as requests that will occur
in future dynamic instances of the same interval (Section 4).
• We fully evaluate SP-prediction over a directory-based coherence
protocol on an elaborate chip multiprocessor (CMP) model (Sec-
tion 5). Our results show that SP-prediction can accurately predict
up to 75% of the misses that must communicate with other caches,
without adding excessive bandwidth demands to the baseline direc-

tory protocol (below 10% of what broadcasting would add). Correct
predictions translate into sizable reduction in miss latency (13% on av-
erage) and execution time (7% on average) compared to the baseline

directory protocol. Compared to existing address- and instruction-
based predictors, our approach achieves comparable performance,
albeit at significantly lower cost.

2. Background and Motivation
Communicating misses. Coherence communication occurs on every
memory request that must contact at least one other processor in order
to be satisfied. Those requests, also called communicating misses1,
are read/write misses or write upgrades (upgrade misses) on cache
blocks that have valid copies residing in non-local caches. Prior
studies have shown that many applications incur a large fraction of

such communicating misses [5, 36]. This fraction depends primarily
on application characteristics like working set size, data sharing,
and data reuse distance, as well as on cache parameters. Figure 1
shows results for the workloads studied in this work. On average,
communicating misses account for 62%, with considerable variation

among different applications. In general, applications with a high rate
of communicating misses benefit from coherence target prediction.
Coherence communication prediction. Predicting the communica-

tion requirements of a coherence request involves guessing a set of

processors sufficient to satisfy a given miss. A prediction scheme
may exploit the communication behavior of recent misses to predict
the next one, assuming that misses exhibit temporal communication
locality. For instance, a prior study has shown that the two most
recent destinations grab a cumulative 65% chance of sourcing the
data of the next miss [25]. Communication locality is better captured,
however, if misses are tracked based on the address they refer to, or

1
“Coherence request”, “coherence miss”, and “cache-to-cache miss” are

also commonly used names.

the corresponding static instructions, thus motivating the address-
and instruction-based prediction approaches.

Address-based prediction builds on the expectation that misses
to the same address (cache block) will have to communicate with
the processor that wrote on the same address previously, or the set
of processors that read from the same address recently. Tracking
misses in such fine granularity, however, adds significant area require-
ments. To reduce the overhead, a practical address-based predictor
is implemented with limited capacity (i.e., as a cache), or/and in-
dexed by blocks of larger granularity, e.g., a macroblock or page.
As for the case of macroblock indexing, it has been shown to in
fact improve both accuracy and space efficiency, since misses on
adjacent addresses are likely to have identical communication be-
havior [36]. Similar in concept and motivation, instruction-based
prediction resorts to the expectation that misses generated by the
same static instructions will have related coherence activity. This
compacts further the tracked information since the number of static
load and store instructions is much smaller than the number of data

addresses accessed.
The above prediction approaches are typically implemented as

hardware mechanisms that consume a considerable amount of re-
sources and are unaware of any application-level characteristics.
However, the way parallel applications are coded and structured
embodies intuition to create high-level understanding of how com-
munication activity occurs and changes through time. This work
examines the idea of exploiting such opportunity through the syn-
chronization points that exist in applications.
Synchronization points. The shared memory model eliminates the
explicit software management of data exchange between processors.
Nevertheless, race conditions between concurrent threads require
the explicit enforcement of synchronization points, through software

mechanisms, to ensure that operations on shared memory locations

are consistent. As a result, they naturally indicate points when certain
data private to a processor will become visible—and possibly be
communicated—to other processors. In what follows, we give a mo-
tivating example that shows how synchronization points partition the

execution of an application into intervals, capture the existing com-

munication locality in the application and, expose the repeatability
of those partitioned intervals throughout the execution.

Figure 2 plots how a processing core communicates with other
cores on a simulated 16-core CMP over (a) the whole execution (b)

different execution intervals, and (c) dynamic instances of a single
interval. By zooming into a granularity defined by synchroniza-
tion points (plot (b)), it becomes clearer that the spatial behavior of

the communication is strongly related to the specific intervals cho-
sen. The sharp changes in communication behavior at the interval
boundaries suggests that synchronization points are likely to indicate

directly when behavior changes, and potentially hint a predictor to
adapt faster to such changing behavior. In addition, the small set
of processors that are contacted during each interval suggest that
tracking the behavior on individual addresses or instructions within
the interval may not necessarily result in more accurate prediction.
Lastly, predictable communication patterns that may appear across
the dynamic instances of the same interval (plot (c)) create a new
scope of temporal predictability and a key opportunity to exploit the
repeatability of the communication behavior.

To illustrate how such variations in communication behavior are

manifested through shared memory programming practices, we list

a simple example code in the following. Shared data (ME and LE)

0

2000

4000

6000

8000

10000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Co
m

m
un

ic
at

io
n

 V
ol

um
e

Core ID

0

100

200

300

400

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Core ID

0

50

100

150

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Core ID

(a) (b) (c)

Figure 2: Communication Distribution of Core 0 in bodytrack: (a) As seen during the whole execution. (b) As seen during the execution of four consecutive
synchronization-defined sub-intervals. (c) As seen across five different dynamic instances of the same sync-defined interval.

are exchanged between parents, children and siblings in a tree-like
structure, which has its nodes arranged across multiple processors
in a balanced way. During interval A, processors act as leafs and
communicate data from processors where their parents and parents’
sibling nodes reside. However, during interval B, processors act as
inner nodes, hence the communication direction switches towards the
set of processors that hold their children. This shift can be success-
fully detected and exposed by the synchronization point separating

the two intervals.

Example Program Code
for nodes in this processor:

...

barrier(); // interval A begins

node is a leaf:

p = node.parent.LE[];

for some node.parent.sibling:

ps = node.parent.sibling.LE[];

...

barrier(); // interval A ends

... // interval B begins

node is a parent:

for each node.child:

node.LE[] = translate(node.child.ME[]);

...

barrier(); // interval B ends

3. Communication Characterization
The communication behavior of a core over a certain interval can be
characterized by the target cores with which it communicates (called

communication set) and the distribution of the communication volume
across that set. We have already shown examples of such distributions
in Figure 2. In this section, we first introduce simple notions about
synchronization point based intervals, and then we characterize the

communication behavior of those intervals for various workloads.

3.1. Synchronization based Epochs
Synchronization primitives are implemented by various software
libraries, often with different terminology and semantics, e.g., POSIX
threads, OpenMP. Nonetheless, their range and use are similar in
concept in most programming environments. We assume a POSIX
thread library in this work; however, our methodology is applicable
to other implementations.

A synchronization point (sync-point) is an execution point in which
a software synchronization routine is invoked. Each sync-point has a

type, e.g, barrier, join, wakeup, broadcast, lock, and unlock,
and a static and dynamic ID. The static ID identifies each sync-point

statically in the program code and corresponds to its calling location
(e.g., program counter) or the lock address in the case of a lock sync-

point. At run time, the dynamic ID uniquely identifies the multiple
dynamic appearances of sync-points that have the same static ID. The

...
BARRIER(A)
...
BARRIER(B)
 ...
 LOCK()
 ...
 UNLOCK()
...
...
BARRIER(C)
..
 LOCK()
 ...
 UNLOCK()
...
JOIN()

Barrier (A,1)

Barrier (B,1)

Barrier (A,2)

Barrier (B,2)

Barrier (A,3)

Barrier (B,3)

sync-epoch

sync-epoch

critical
section

sync-epoch

sync-epoch

Program Code Thread Execution

Figure 3: Static and dynamic sync-points and sync-epochs.

dynamic ID of a sync-point can be expressed with the corresponding

static sync-point ID and how many times it has been executed so far.
Next, we define synchronization epoch (sync-epoch) as the exe-

cution interval enclosed by two consecutive sync-points. Based on
this simple definition, on each sync-point, a new sync-epoch starts
and the previous sync-epoch ends. A sync-epoch is described by the
type, static ID, and dynamic ID of the beginning sync-point. Using

our terminology, a critical section could be simply a sync-epoch that

begins with a lock and ends with an unlock. A static sync-epoch
that is exercised multiple times during execution creates dynamic
instances of itself. Figure 3 depicts different sync-epochs and the
notion of static and dynamic ID.

3.2. Simulation Environment

For the characterization study in this section, we employ a 16-core
CMP model based on Simics full-system simulator [35]. The target
system incorporates 2-issue in-order SPARC cores with 1MB private

L2 cache, and a MESIF coherence protocol [23]. To track inter-core
communication, we collected L2 miss traces that contain the miss data
address, type, PC, and the target set of cores that must communicates
with. The traces also contain all sync-points along with their type
and static/dynamic IDs. Traces do not capture the effects of timing

and are used only for characterization purposes. A full evaluation of
our prediction scheme uses a detailed execution-driven performance
model and is described in Section 5.

We study benchmarks from the splash2 and parsec suites [7, 48].
Table 1 lists key statistics related to sync-epochs for each studied
benchmark. We use all available processor cores by spawning 16
concurrent threads in all experiments. For stable and repeatable
measurements, we prevent thread migration by binding each thread
to the first touched core. This was done except for dedup, ferret, and

x264, because they create more threads than the available CPUs and
rely on the OS for scheduling. Section 5.5 describes how our scheme
can handle thread migration.

Number of Cores

%
 C

om
m

un
ic

at
io

n
Vo

lu
m

e
(c

um
m

ul
at

ive
)

●

●

●

●

●

●
●

●
●

●
●

●
●

●
● ●

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

20

40

60

80

100
bodytrack

Number of Cores

%
 C

om
m

un
ic

at
io

n
Vo

lu
m

e
(c

um
m

ul
at

ive
)

●

●

●

●

●

●

●

●
●

● ● ● ● ● ● ●

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

20

40

60

80

100
fmm

Number of Cores

%
 C

om
m

un
ic

at
io

n
Vo

lu
m

e
(c

um
m

ul
at

ive
)

●

●

●

●

●
●

●
●

●
●

●
●

●
●

● ●

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

20

40

60

80

100
water−ns

●

sync−epoch
single−interval
static instruction

Figure 4: Average communication locality of bodytrack, water-ns and fmm: Each curve shows the average cumulative communication distribution as seen in
different granularities. Higher communication coverage for a given number of cores translates to better communication locality.

BENCHMARK # STATIC # STATIC PROGRAM # TOTAL DYN.
CRIT. SECT. SYNC-EPOCHS INPUT SYNC-EPOCHS

fmm 30 20 16K (particles) 2,789
lu 7 5 521 (matrix) 185

ocean 28 20 258 (grid) 2,685
radiosity 34 12 room 17,637
water-ns 20 8 512 (mol.) 1,224
cholesky 28 27 tk15.O 1,998

fft 8 8 256K (points) 22
radix 8 4 4M (keys) 35

water-sp 17 1 512 (mol.) 83
bodytrack 16 20 simsmall 456

fluidanimate 11 20 simsmall 8,991
streamcluster 1 24 simsmall 11,454

vips 14 8 simsmall 419
facesim 2 3 simsmall 3,826
ferret 4 6 simsmall 25
dedup 3 4 simsmall 508
x264 2 3 simsmall 56

Table 1: Sync-epoch statistics of benchmarks (per core average).

3.3. Communication Locality
The distribution of the communication volume characterizes the spa-
tial behavior of the communication during an interval and illustrates
whether it is “localized” to a certain set of targets. Examples of such

localization are clearly observable in the communication distribu-
tions of Figure 2. For instance, core 0 during the first sync-epoch in
example (b) communicates mostly with a single “hot” target, core 5,
while nine other targets are contacted sporadically.

The communication locality is expressed by measuring the amount
of communication volume that is covered by a certain number of
cores. Using the previous example, core 5 covers more than 90%
of the communication volume. Generally, if each individual miss
communicates with C targets on average and the overall volume of
the interval appears to be fully covered by C cores, then the interval
has a perfect locality. When comparing different intervals with a
similar C value, we can simply say that better locality exists as the
communication is concentrated to fewer destinations.

A question that arises is how good is this locality relative to various
granularities. For example, based on Figure 2(a), one could say that a
certain level of locality also exists at the whole execution granularity

since core 2 is “hotter” than the rest. To answer this question, Figure 4
shows the communication locality in applications, as captured by
three different granularities: The sync-epoch granularity, the whole

interval (as in Figure 2(a)), and the one that is based on static instruc-
tion indexing. Curves display average cumulative distributions over
the whole execution and each point in the curve directly measures
the average volume covered by a certain number of cores.

As the comparison shows, sync-epochs can capture the communi-
cation locality considerably better than a direct observation over the

0.0

0.2

0.4

0.6

0.8

1.0
1 2 3 4 >=5

%
 s

yn
c−

in
te

rv
al

s
fm

m lu
oc

ea
n

rad
ios

ity

wate
r−n

s

ch
ole

sky fft
rad

ix

wate
r−s

p

bo
dy

tra
ck

flu
ida

nim
ate

str
ea

mclu
ste

r
vip

s

fac
es

im
fer

ret
de

du
p

x2
64

Figure 5: Distribution of intervals based on their hot communication set size:

More than 78% of intervals have a hot communication set size of
smaller than or equal to 4.

whole execution, suggesting that localities in communication’s spatial
behavior are closely related to sync-epochs. Moreover, sync-epochs
often show better locality even to instruction-based granularity. This

implies that communication activity could possibly be tracked as
effectively as in traditional methods using sync-epochs—which is
a much coarser-grain granularity. The results indicate that, overall,
sync-epochs are attractive for extracting and exploiting repeatable
communication behavior.

To create a representative signature of the communication behavior
over each execution interval, we derive a hot communication set
for each sync-epoch. A core is considered hot if it draws more
than a certain amount of the total communication activity in the
interval. Hence, the hot set could be formed based on a threshold
over the communication distribution of the interval. The size of the

set represents the amount of the interval’s hot targets. Figure 5 shows,
for each application, the distribution of sync-epochs based on the size
of their hot communication set. The results consider a threshold of
10%, meaning that a core is considered hot if it is contacted by at least
10% of the total communication activity of the interval. In contrast to
Figure 4 where only the average number of the hot communication

set size is clear, the latter figure shows how this size varies among
the sync-epochs of the applications. Note that to further measure
how close the hot set size is to the optimal locality, one should also

consider the average communication set size per miss.

3.4. Dynamic Instances of Sync-Epochs
Sync-points are executed repeatedly and create a sequence of dy-
namic instances for each sync-epoch. As these instances exercise
the same or similar code and operate on the same (or related) data
structures, it is likely that they present behavioral similarities between
them [14]. Such similarities or variations may also be reflected on
the communication’s behavior, depending on how the shared data are
accessed in each instance, their sharing patterns, the level of deter-

dy
na

m
ic

 in
st

an
ce

s

(e,5)
(e,4)
(e,3)
(e,2)
(e,1)

1
2
3
4
5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
2
3
4
5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
2
3
4
5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
2
3
4
5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
2
3
4
5
6
7
8
9
10
11
12
13

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(a) (b) (c)

(d) (e)

Core ID Core ID

Core ID Core ID

Core ID dy
na

m
ic

 in
st

an
ce

s

dy
na

m
ic

 in
st

an
ce

s

dy
na

m
ic

 in
st

an
ce

s

(d,5)
(d,4)
(d,3)
(d,2)
(d,1)

(c,3)
(c,2)
(c,1)

(c,6)
(c,5)
(c,4)

(c,9)
(c,8)
(c,7)

(c,13)
(c,12)
(c,11)
(c,10)

dy
na

m
ic

 in
st

an
ce

s
(b,5)
(b,4)
(b,3)
(b,2)
(b,1)

dy
na

m
ic

 in
st

an
ce

s

(a,5)
(a,4)
(a,3)
(a,2)
(a,1)

Figure 6: Example hot communication set patterns across dynamic instances of a sync-epoch: (a) Stable pattern. (b) Change from one stable pattern to another.
(c) Repetitive pattern with stride 3. (d) Random pattern (critical section). (e) Combination of stable and random hot destinations.

minism, and possible machine artifacts, e.g., local cache capacity,
false sharing effects.

Here we present our general observations on how communication
activities appear in the dynamic sync-epoch instances in the exam-
ined applications. Our findings are derived from extracting the hot
communication set of every dynamic instance of a sync-epoch, and

characterizing how it changes from instance to instance.

Hot communication set patterns. Hot communication sets change
across the dynamic instances of a sync-epoch following predictable
or random pattern. We categorize the patterns into: Stable, repetitive,

random, or some combination of these. Figure 6 illustrates example
patterns by representing each hot communication set as a bit vector.

Stable hot communication sets occur when the majority of the
data consumed each time are provided by a single core. This case
is common in applications with stable producer-consumer sharing
aligned to sync-epoch granularity. Hot communication sets that
follow repetitive patterns are commonly found in fairly structured
parallel algorithms that exercise a different but finite number of data
paths on different sync-epoch iterations. For similar reasons, com-
munication sets may also demonstrate spatial-stride or next neighbor

patterns. In contrast, random patterns are usually caused by accesses

on migratory and widely shared data that are produced/consumed
in a non-deterministic order. Those occur when threads repeatedly
compete before they are granted the privilege to produce data that
will be shared (e.g., accesses within critical sections), or when the
data sharing sequences are dynamically determined by the parallel
algorithm (e.g., decisions made within critical sections). Patterns that
appear to combine various patterns are usually an artifact caused by
the granularity in which we track the communication (e.g., a long
sync-epoch may span across multiple functions and data structures,

each having different sharing patterns).

“Noisy” sync-epoch instances. Oftentimes, some dynamic instances
of a sync-epoch appear to have very low communication activity rela-
tive to other instances. This is usually caused by a control statement,
which forces specific instances to flow through different execution
paths that exercise code with relatively few accesses to shared data.

Such instances may not give a representative sample when forming

a hot communication set due to statistical bias; therefore, we treat
them as noise and exclude them from the dynamic pattern.

4. Sync-Epoch based Target Prediction
The existence of communication locality at the sync-epoch granu-
larity implies that misses within the sync-epoch are likely to com-
municate with processors in the hot communication set. Thus, the
hot set, if known, could be a relatively small and sufficient target
predictor for the majority of misses within the interval. Based on
this observation and, on evidences that many hot communication sets
are predictable, we propose SP-prediction, a run-time scheme that
exploits the temporal predictability within and across sync-epochs to

predict the communication destination of misses.
SP-prediction is different from other prior approaches that exploit

the temporal sharing patterns of misses in two fundamental ways.
First, it makes use of the communication locality over application-
specific execution intervals to predict for each miss in the interval,
with no reliance on the temporal communication locality between
consecutive misses. This is a significant advantage when communica-
tion locality is only seen among a broader temporal and spatial set of
misses. Second, it can recall communication patterns from the past at
a sync-epoch granularity and not for specific address or instruction.

This may allow the predictor to adapt quickly to old and forgotten
patterns without complex mechanisms and long history information.
4.1. Basic Idea of Run-Time Prediction
SP-predictor exploits sync-epochs’ communication locality to predict
the destinations of a miss. Each program thread is seen as a sequence
of sync-epochs, many of which are exercised multiple times during

program execution. Obtaining a predictor of the communication
behavior in a sync-epoch involves retrieving history information
from previously executed instances of the same sync-epoch, as well
as tracking the coherence communication of the currently executed

interval. Each private L2 cache controller would hold the obtained
predictor and accelerate miss-incurred communication by invoking a

prediction action in the standard coherence protocol on each miss.
Synchronization primitives are exposed to the hardware so that it

can identify the sync-epochs and sense their beginning and end. This
requires simple annotations in the related software library (or program
code) and corresponding support in the hardware. The hardware
design cost entails the addition of a new instruction that retrieves the

PC or lock address of the sync-point and forwards it to the coherence
controller. The insertion of the instruction in the code is trivial and
could be done by the library developer or automatically by a compiler.
We consider that such support is feasible in today’s hardware and
software, and similar implementations exist (e.g., [10, 45]).

EVENT ACTION

Sync-point captured

(sync-epoch begins)
- Store sync-epoch’s tag and type into SP-table.
- Reset all communication counters.

Data response on RD/WR-miss If the response comes from a remote node’s cache:
- Increment communication-counters[responder].

Invalidation Ack responses - Increment communication-counters[responders]
Sync-point captured

(sync-epoch ends)
- Extract hot communication set from counters
- Store the hot set as a signature to the SP-table

Table 2: Building communication signatures.

EVENT ACTION

Sync-point captured Retrieve d signature(s) from SP-table
Obtain predictor:
- If d=0 => extract current hot set (after warmup)
- If d=1 => last hot set
- If d=2 => last stable hot set
- If d>=2 => test for pattern (if supported)
- If sync-point is a lock => last d processors holding the lock
Forward predictor to the L2 controller

RD/WR-miss - Invoke a prediction action using the obtained predictor.
Confidence alert - Extract new hot communication set

- Replace predictor with new hot set

Table 3: Obtaining prediction.

4.2. Building Communication Signatures
Each processor monitors its communication activities by tracking
responses to misses that have invoked the coherence protocol. A
set of communication counters record the overall communication
towards each destination. Responses for read misses include the
data provider’s ID and increment the communication counter that
corresponds to the source processor. Responses for write and upgrade
misses include a bit vector capturing the invalidated processors and
increment the communication counters that correspond to the inval-
idated set. The communication counters are reset at the beginning
of each sync-epoch. Effectively, as the execution progresses within

the sync-epoch, the counters would reflect the processor’s communi-
cation spatial behavior up to the current execution point within the
sync-epoch. At the end of the sync-epoch, the hot communication
set is extracted from the counters and stored as a communication
signature (bit vector) in a history table called SP-table.

When the sync-epoch is a critical section, the communication
signature encodes only the ID of the processor that releases the lock.
This allows other critical sections that are protected by the same lock
to retrieve and use this information as their possible communication
target. Note that for noisy instances (Section 3.4), no communication
signature is stored. Table 2 summarizes how the communication
signatures are constructed during the execution.

4.3. SP-Table
SP-table is an associative table where each entry records a single,
per processor, static sync-epoch. Entries are indexed/tagged with the

static ID of the sync-epoch and the processor ID. For locks, entries

are tagged with the lock variable and are shared by all processors.
This allows all critical sections protected by the same lock (in the
same or different threads) to share the same communication history.

Each SP-table entry keeps a sequence of communication signatures.
This sequence has a bounded size d, the history depth. Whenever a

sync-point is encountered, SP-table is probed to store the signature

of the ending sync-epoch and retrieve the signature(s) of the next
sync-epoch. Updates involve shifting out the oldest signature and
shifting in the newest. For critical sections, updates occur just after

the lock is acquired. This ensures atomic updates in the shared entries
and avoids lookups of the table when a processor spins on a lock.

4.4. Obtaining Predictions
When a new instance of a previously seen epoch is detected, the
associated communication signature(s) are retrieved from SP-table

to generate a destination predictor for the misses that will occur in
the new instance. The obtained predictor for the sync-epoch will
be forwarded to the processor’s L2 cache controller and will trigger
an action to the coherence protocol on each miss. The state of the
predictor would be simply the previous communication signature or
some combination of previous signatures. A summary of how the
predictor is formed is given in Table 3. More specifically:
No history available (d = 0). If the sync-epoch is met for the first
time (or if no history table exists), then history information is not
available. In this case, the predictor uses a hot communication set
that is extracted from the communication counters while the sync-
epoch runs, after allowing some warm-up time, e.g., 30 misses. This

would essentially form a predictor that predicts requests based on the
activity recorded in the early stages of the interval.
Last hot communication set (d = 1). If only one history signature is
available so far (or if the table has history depth of one), then the pre-
dictor uses the last—and only available—communication signature

stored in the corresponding predictor entry.
Last stable hot communication set (d = 2). The intersection be-
tween communication bit vectors (bit-wise AND) returns the set of

destinations that remain stable across the instances. Our predictor
combines only the two most recent bit vectors, since this successfully
catches stable destinations across consecutive instances, as well as
adapts faster to changing stable patterns such as the one shown in
Figure 6(b).
Pattern-based hot communication set (d � 2). A longer history
of signatures available to a sync-epoch could capture further hot
communication set patterns such as the repetitive pattern shown in
Figure 6(c). Specifically, to capture such repeatable patterns, history
depth should be at least as large as the repetition distance (or stride)
of the pattern, e.g., d � 3 for the same example. Hardware could
detect a repetitive pattern by comparing a new bit vector with all the
stored bit vectors, saving the depth s of the one that matches, and
correctly predicting the next bit vectors using the one at depth s�1.
Our current predictor is tuned to detect only repetitive patterns of
stride-2, as it uses a history depth of no more than two.
Lock sync-point. If the captured sync-point is a lock, then the
retrieved signatures will indicate the sequence of processors holding
the lock last. A union of the available d signatures will therefore
form a prediction set that includes the last d processors that have held
the lock. The predictor may be further extended to return a union that
also includes the bit vector of the preceding sync-epoch, as coarse
critical sections are likely to benefit from it.

In order to detect and recover from pathological cases where the

predicted communication set does not provide correct prediction, we

employ a mechanism that sense low prediction confidence and adapts
to a new hot communication set. A recovery step is usually needed in
coarse sync-epochs, where communication’s spatial behavior could
oscillate within a sync-epoch instance. In our current design, the
confidence mechanism is a simple 4-bit saturating counter that incre-

ments on correct predictions and decrements otherwise. On each new
interval, the counter starts with a high confidence towards the pre-
dicted communication signature (counter is fully set) and triggers a

recovery step if the confidence level drops below a threshold (counter
is zero). To recover, we reconstruct the predictor by extracting the hot
communication set of the currently running interval, as it appears up
to the current point. The hot set is extracted based on the information
recorded in the communication counters that dynamically track the

communication activity of the interval.

4.5. Integration to the Coherence Protocol
SP-prediction requires additional functionality in the coherence proto-
col. However, it does not interfere with the base protocol and operates
on top of it. We briefly describe how our protocol arbitrates prediction
actions, verifies results, and recovers from mispredictions.2 As a base-
line protocol, we use a directory-based MESIF coherence protocol,

an extended version of MESI that effectively supports cache-to-cache
transfers of clean data [23]. Note that the prediction engine can
be integrated into any directory-based protocol, or any snoop-based
protocols that can recover from mispredictions [8, 36].
• Requesting node: When an L2 miss for a memory line occurs, a
prediction request is generated. The request is sent to the node(s) pre-
dicted to have the valid copy of the line and includes a bit identifying
it as predicted. The request is also sent to the directory along with a
bit vector identifying the predicted nodes.
• Directory: The directory node will receive the bit vector of pre-
dicted nodes for every miss and detect whether the targeted set was

sufficient or not. Upon detecting a misprediction, it will satisfy the
request as it would normally do, resulting in a miss latency similar
to the baseline protocol. If the request was for upgrade or write
miss with multiple sharers, the directory will invalidate the sharers
that were not predicted (if any), and reply to the requesting node,
indicating whether the predicted set was sufficient or not and which
sharers were correctly predicted.
• Predicted node: When a predicted request for a memory line arrives
at the cache controller, the line is searched in the L2 cache. If the line
is in Exclusive, Modified, or Forwarding state [23], then a copy of
the line is immediately forwarded to the requesting processor. Also,
an update message is sent to the directory indicating the new sharing

state of the cache line. If the line must be invalidated (i.e., due to
request for exclusive ownership), an Ack message is sent back to the

requesting processor after invalidation. Otherwise, the cache replies
with a Nack message.
• The requesting node will receive responses from the predicted
nodes, and also from the directory in case the request was for exclu-
sive ownership (write or upgrade miss). Upon receiving data, the
controller will perform line replacement as usual and, if the request
was a read, the miss will be completed. If the request was for exclu-
sive ownership, then it will be completed only after the response from
the directory and the necessary invalidation Acks from the correctly
predicted sharers have arrived (if any). Given that the directory is
always aware of the prediction result and can proceed as normal on

mispredictions, it is unnecessary for the requesting node to reissue
requests.

4.6. Discussion on SP-Table Implementation
SP-table can be implemented either in system software or hardware.
In the former case, the table is statically allocated at boot time by
the OS and kept at a certain memory location. Every sync-point will
invoke a trap to the OS, which will handle all necessary operations
on SP-table and return a predictor for the upcoming sync-epoch. In a
hardware embodiment, a slice of SP-table can be integrated with the
L2 cache controller on each processor and hold the information spe-
cific to that processor. Table entries that are shared by all processors
(for lock sync-points) could be either located at a centralized location

2More details on how the protocol handles race conditions and conflicts
can be found in similar extensions [2, 3, 8, 43].

Parameter Value
Proc. model in-order
Issue width 2
L2 Cache (private)
Line size 64 B
Size/Assoc. 1 MB, 8-way
Tag latency 2 cycles
Data latency 6 cycles
Repl. policy LRU

Parameter Value
L1 I/D Cache
Line size 64 B
Size/Assoc. 16 KB, 1-way
Load-to-Use lat. 2 cycles
Network-on-Chip
Topology 4⇥4 2D mesh
Router 2-stage pipeline
Main mem. lat. 150 cycles

Table 4: Simulated machine architecture configuration.

on chip, or distributed across the slices in an address-interleaved
fashion. All implementations assume that the sync-point’s PC, lock
address and the processor ID can be extracted at the processor, and the
necessary information can be piggybacked and transferred between
the hardware and software components involved.

SP-table has fairly low space requirements. Each slice requires as
many entries as the number of static sync-points in an application,
which is generally small (30 + 2⇠3 entries as shared portion).
Each entry may hold more than one signatures, depending on the
history depth (we allow no more than two in our evaluation). The
length of the signature (in bits) is equal to the number of processors
(e.g., 16-bits for a 16-core CMP). Each entry also has a 32- or 64-bit

tag (PC) depending on the machine’s architecture and an additional
bit indicating whether the entry is shared, i.e., a lock. Although each

SP-table slice is considered to work as fully-associative, a smaller
set-associativity array is also possible without much cost from set
conflicts. A 2 KB aggregate SP-table is adequate to hold all necessary
information for even the most demanding applications (including 32-

bit tags). As we will discuss later in Section 5, this size is significantly
smaller compared to address- or instruction-based tables.

The location and management of SP-table is an implementation
choice that has no significant performance implications, since it is
small and accessed relatively infrequently (only on sync-points). A

hardware implementation would generally be more appropriate if
sync-epochs are short, e.g., the application has very fine-grain locking.
In general, the SP-table design should be dictated by both the design

goals and the target application domain.

5. Evaluation
5.1. Methodology
To evaluate the performance of the proposed predictor, we extend
the system described in Section 3.2 with detailed timing models for
cache hierarchy and interconnect. The target system is a 16-core
tiled CMP with a 4⇥4 2D mesh network-on-chip (NoC), similar to

models used in recent studies and commercial developments [12, 46].

Each tile incorporates a processor core that has two levels of private
caches, coherence logic, and a NoC router. Coherence is maintained
through a distributed directory-based MESIF coherence protocol with
some extensions as described in Section 4.5. The NoC operates at
the processor core frequency and is a wormhole-switched network
with deterministic X-Y routing and Ack/Nack flow control. Table 4
summarizes our architecture configuration parameters.

For the SP-table, we consider a distributed hardware implemen-
tation and each entry can hold no more than two signatures (d = 2).

The SP-table is accessed only on sync-points and the access latency
is rarely in the critical path. Updates on communication counters
complete in a single cycle, and we account four cycles for extract-
ing a hot communication set. We present the performance of the
SP-predictor with respect to the baseline directory protocol and a

0

20

40

60

80

100
when d = 0 when d = 2 when Lock w/ recovery Ideal Case

%
 C

om
m

un
ic

at
in

g
M

is
se

s

fm
m lu

oc
ea

n

rad
ios

ity

wate
r−n

s

ch
ole

sky fft
rad

ix

wate
r−s

p

bo
dy

tra
ck

flu
ida

nim
ate

str
ea

mclu
ste

r
vip

s

fac
es

im
fer

ret
de

du
p

x2
64

ave
rag

e

Figure 7: SP-prediction accuracy: Percentage of communicating misses that
avoid indirection to the directory.

broadcast protocol. Results consider both serial and parallel sections,

although the predictor is effective only during parallel sections. To
fairly evaluate a broadcast snoop-based protocol, we assume a totally
ordered interconnect with the same configuration as the one with
directory. At the end, we compare our prediction approach against
a simple locality-based predictor and state-of-the-art address- and
instruction-based destination set predictors [36].

5.2. Prediction Effectiveness
Prediction is correct when the predicted set is sufficient to satisfy a

communicating miss, i.e., a superset of the sharing information in the
directory. The size of the predicted set—which is the size of the hot
communication set in our case—creates a trade-off between predic-

tion accuracy and bandwidth waste. The fewer the cores included in
the predicted set, the less the probability to communicate with the
correct cores(s) for each request. On the other hand, the more cores
in the predicted set, the more redundant messages will be sent, and

hence the more bandwidth will be added on the interconnect. In our
evaluated scheme, the size of the hot communication set depends
on the communication locality of each sync-epoch as explained in
Section 3.3, and adapts to the changing communication patterns as
described in Section 4.4.

Figure 7 shows the percentage of communicating requests pre-
dicted correctly. On average, the SP-predictor correctly predicts and
eliminates indirection to the directory for 77% of all communicating

requests, with 98% (x264) and 59% (radiosity) as the best and the
worst case, respectively. The crosses indicate the accuracy that the
SP-predictor could obtain ideally, if the hot communication set for
each sync-epoch was known a priori. The gap between the actual
and the ideal accuracy comes from the lack of predictability in some

sync-epoch instances and the sensitivity level of the recovery mecha-

nism. This gap may be bridged somewhat if off-line profiling offers
initial prediction information and the sensitivity level is adjusted
dynamically.

The percentage breakdown indicates the prediction accuracy when
different information was available to the SP-predictor. The bottom
stack accounts for correct predictions made when no information
from past sync-epoch instances was available. Such situations appear
in applications where major sync-epochs are not replayed (fft, radix
and ferret). In those cases, the predictor relies mostly on most recent

within-interval communication activity to predict miss targets. The

next two stacks correspond to misses correctly predicted based on
signatures from past sync-epochs, indicating separately those occur-
ring within critical sections. Applications with highly repeatable
sync-epochs such as ocean and streamcluster can take advantage of
the pattern-based prediction policy. Similarly, applications with fine-
locking such as water-ns and fluidanimate gain with highly accurate

BENCHMARK AVG. ACTUAL AVG. PREDICTED RATIO OF PREDICTED
TARGETS PER REQ. TARGETS PER REQ. TO ACTUAL

fmm 1.19 3.11 2.61
lu 1.01 2.46 2.46

ocean 1.08 3.15 2.94
radiosity 1.11 4.12 3.71
water-ns 1.41 2.53 1.80
cholesky 1.04 1.89 1.83

fft 1.01 2.37 2.36
radix 1.00 2.75 2.75

water-sp 1.58 2.75 1.75
bodytrack 1.13 2.8 2.49

fluidanimate 1.14 2.05 1.79
streamcluster 1.14 1.95 1.72

vips 1.01 2.06 2.05
facesim 1.04 2.56 2.47
ferret 1.01 1.14 1.13
dedup 1.10 2.34 2.15
x264 1.01 1.93 1.93

Table 5: Average actual and predicted set size.

predictions due to the ability of our predictor to retrieve the random
sequence in which threads execute the critical sections. On average,
those sync-epoch history-based predictions account for up to 40% in

prediction accuracy. Sync-epochs with unpredictable intervals will
eventually adapt their predictors based on the recovery mechanism
and correctly predict an additional 9% of requests on average.

Messages will be wasted if the predicted target set for a miss is
incorrect, or larger than the minimum sufficient target set. Table 5
summarizes the differences between the minimum and the predicted
average target set size. The minimum sufficient set size is generally
close to 1 since read requests—which are the majority—must always
contact only a single destination.3 By comparing separately the reads
and writes, we found that, on average, the predicted set includes 1.4
and 0.5 more targets per request respectively. More insight on how
the prediction affects the bandwidth demands is given by more detail
results presented later in this section.

The way the hot communication set is extracted (Section 3.3)
strongly affects the trade-off between latency and bandwidth. The
current policy leads to some bias towards higher bandwidth when
the locality is poor, since there are no strict bounds on the maximum

size of the set. In general, the policy can be tuned depending on
the design goals and requirements. For example, in a case where
bandwidth demands must be bounded to avoid exceeding a power
envelope, one could tune the policy to extract a hot set that does not
exceed a certain size.

5.3. Performance Results
Impact on miss latency. Correct predictions will satisfy misses with-
out paying the cost of indirection to the directory, thereby reducing

the average cache miss latency. Incorrect predictions are detected
by the directory, which will then satisfy the miss without noticeably
degrading the latency of the indirected miss. Figure 8 shows the
average miss latency achieved by the SP-predictor and the baseline

protocols. Average latency is calculated by treating each miss indi-
vidually, and results are normalized to the directory protocol. The
results show that on average, SP-prediction reduces miss latency by
13% relative to the directory protocol and attains up to 75% of what
the broadcast snooping protocol can achieve. Under the (true) as-
sumption that the NoC does not get severely congested, the broadcast
scheme approximates the ideal case in terms of miss latency.

The predictor predicts correctly and reduces the latency for both

read and write requests. A correctly predicted “read” has slightly
3The reported numbers assume a cache-to-cache transfer request for clean data to

have a sufficient set size of 1, which is not necessarily true in a MESIF protocol [23].

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1
Base Directory Broadcast SP−predictor

M
is

s
La

te
nc

y
(N

or
m

al
ize

d)

fm
m lu

oc
ea

n

rad
ios

ity

wate
r−n

s

ch
ole

sky fft
rad

ix

wate
r−s

p

bo
dy

tra
ck

flu
ida

nim
ate

str
ea

mclu
ste

r
vip

s

fac
es

im
fer

ret
de

du
p

x2
64

ave
rag

e

Figure 8: Average miss latency. (Note: Y-axis starts at 0.4.)

0

10

20

30

40

0

10

20

30

40

non−communicating misses
communicating misses

%
 A

dd
iti

on
al

 B
an

dw
id

th

fm
m lu

oc
ea

n

rad
ios

ity

wate
r−n

s

ch
ole

sky fft
rad

ix

wate
r−s

p

bo
dy

tra
ck

flu
ida

nim
ate

str
ea

mclu
ste

r
vip

s

fac
es

im
fer

ret
de

du
p

x2
64

ave
rag

e

Figure 9: Additional bandwidth demands of SP-prediction relative to the
base directory protocol.

higher impact compared to a correctly predicted “write”, as writes
may have multiple targets to reach and wait for acknowledgments.
Also, the prediction accuracy slightly declines as the number of the

targets increases. Nevertheless, write requests with multiple targets

are generally a small fraction of the overall misses, and their impact
on the overall reductions in latency is limited.

Marginal improvements in some applications (e.g., lu, radix) are

due to the limited fraction of communicating misses (recall Figure 1).
The smaller this fraction is, the fewer the opportunities for latency
reduction. Moreover, the high miss latency of non-communicating
misses (i.e., off-chip misses) will, in the end, overshadow the improve-
ments coming from accelerating on-chip, communicating misses. A
quick look at how this fraction varies across the applications directly

explains why the miss latency reduction is limited for each applica-

tion. Note that this also limits the effectiveness of the broadcasting

scheme. It is generally possible for a larger cache size to elevate the
fraction of communicating misses for memory bound applications,
and hence increase the impact of the predictor to the miss latency re-
duction. Sensitivity analysis of cache parameters and workload input
sizes (not reported in this work) have shown expected observations

and trends.
Impact on bandwidth requirements. To measure the impact of
target prediction on bandwidth, we track the number of bytes trans-

mitted on the NoC due to L2 cache misses. These include request
messages to predicted cores, request and update messages to the di-

rectory, and control and data responses. Figure 9 shows the additional
average bandwidth requirements of a coherence request, relative to

those of the baseline directory protocol. The results show that SP-
prediction increases the bandwidth requirements by 18% compared
to the baseline. The snooping protocol would have the highest band-
width demands since messages are broadcast to all targets on each
miss, whereas the directory protocol essentially approximates the
ideal case possible. Overall, SP-prediction keeps its additional band-

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1
Base Directory Broadcast SP−predictor

Ex
ec

ut
io

n
Ti

m
e

(N
or

m
al

ize
d)

fm
m lu

oc
ea

n

rad
ios

ity

wate
r−n

s

ch
ole

sky fft
rad

ix

wate
r−s

p

bo
dy

tra
ck

flu
ida

nim
ate

str
ea

mclu
ste

r
vip

s

fac
es

im
fer

ret
de

du
p

x2
64

ave
rag

e

Figure 10: Execution time. (Note: Y-axis starts at 0.4.)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Base Directory Broadcast SP−predictor

En
er

gy
 (N

or
m

iliz
ed

)
fm

m lu
oc

ea
n

rad
ios

ity

wate
r−n

s

ch
ole

sky fft
rad

ix

wate
r−s

p

bo
dy

tra
ck

flu
ida

nim
ate

str
ea

mclu
ste

r
vip

s

fac
es

im
fer

ret
de

du
p

x2
64

ave
rag

e

Figure 11: Energy consumed on NoC and cache lookups.

width requirements below 10% of what the broadcasting protocol
would additionally demand to the baseline directory protocol (the
actual bars for broadcasting are not shown due to the very large
difference).

Much of the additional bandwidth comes from the (always unfor-
tunate) attempts to predict non-communicating misses. This portion
is shown by the bottom stack and accounts for 70% of the overhead.
Applications with a large fraction of non-communicating misses will

therefore increase the bandwidth demands with no positive return
in latency. Prior work has shown that most of such attempts can
be detected and avoided by simple snoop filtering [38]. For exam-
ple, a simple low cost TLB-based snoop filter can detect ⇠75% of
them [17]. Thus, the use of orthogonal techniques can substantially
reduce the associated bandwidth overheads without compromising
the latency improvements.
Impact on execution time. Figure 10 depicts the overall improve-
ments in execution time as a result of reducing miss latency. SP-
prediction improves the execution time by 7% on average, with x264
seeing the best improvement (14%). Depending on the interconnect
design and control parameters, an excessive traffic could congest the

network and affect the performance negatively. In our simulated sys-
tem, congestion levels remain low for both, the prediction-augmented
directory protocol and base broadcast protocol. Marginal negative
impact was observed for broadcasting only in applications with very
small fraction of communicating misses.
Impact on energy. We estimate the energy impact of SP-prediction
using an intuitive analytical model that considers the dynamic energy
consumed on the interconnect and L2 cache snoops. For the network,
we assume that the energy consumed is proportional to the amount
of data transferred [4]. We also assume that the energy consumed in
a router is four times that consumed in the link. For cache snoops,
a single cache tag lookup energy is estimated using CACTI [21],
assuming a 32nm technology. Figure 11 presents the normalized

●

0 20 40 60 80 100

0
20

40
60

80
10

0

% Additional Bandwidth per miss

%
 M

is
se

s
in

cc
ur

in
g

in
di

re
ct

io
n

fmm

●

0 20 40 60 80 100
0

20
40

60
80

10
0

% Additional Bandwidth per miss

%
 M

is
se

s
in

cc
ur

in
g

in
di

re
ct

io
n

ocean

●

0 20 40 60 80 100

0
20

40
60

80
10

0

% Additional Bandwidth per miss

%
 M

is
se

s
in

cc
ur

in
g

in
di

re
ct

io
n

fluidanimate

●

0 20 40 60 80 100

0
20

40
60

80
10

0

% Additional Bandwidth per miss

%
 M

is
se

s
in

cc
ur

in
g

in
di

re
ct

io
n

dedup

●

SP−predictor
ADDR−predictor
INST−predictor
UNI−predictor
Directory

Figure 12: Performance/bandwidth trade-off comparison: The lower-left corner represents the best point on the trade-off space. The results are expressed
relative to the directory-based protocol, which is indicated with a “cross” symbol at the upper-left corner.

●

0 20 40 60 80 100

0
20

40
60

80
10

0

% Additional Bandwidth per miss

%
 M

is
se

s
in

cc
ur

in
g

in
di

re
ct

io
n ●

SP−predictor
ADDR−predictor
INST−predictor
UNI−predictor
Directory

unlimited size
4KB

●

Averages

Figure 13: The effect of space requirements to prediction performance: SP-
prediction and UNI-prediction are not affected since they have sig-
nificantly lower space requirements.

results. Enabling SP-prediction over a directory protocol increases
the energy requirements on network and cache lookups by 25%
in total. Yet, this is substantially less compared with the energy
requirements of snoop broadcasting (2.4⇥). Considering that a large

fraction of traffic and snoop overhead could be filtered, as discussed
previously, the new energy demands could be brought down to below
8%.

5.4. Comparison with other Predictors
We compare SP-prediction with address- and instruction-based pre-

diction, implemented according to the “group” destination set predic-
tion model proposed by Martin et al. [36]. In addition, we compare

with a simple locality-based predictor that uses no index, i.e., predicts
simply based on the coherence activity of previous misses, indepen-
dent of their address or instruction. For abbreviation we will refer
to them as ADDR-, INST-, and UNI-prediction, respectively. The
ADDR and INST prediction models use both external coherence
requests and coherence responses to train a predictor for each data
block or instruction. The UNI predictor uses only the coherence
responses, i.e., it is trained based on the targets of previous misses by
the same core.

All the predictors return a group of possible sharers, aiming high
prediction accuracy while making best efforts to keep the bandwidth

requirements small4. Each predictor entry incorporates a two-bit
counter per core that accumulates the recent activity towards each

4Other prediction policies such as “owner” or “group/owner” can also be used and
fairly compared as far as all predictors are tuned to the same base policy.

destination, and a train-down mechanism which ensures that the
predictor eventually removes inactive destinations [36]. For a 16-
core machine, each group predictor entry requires a total of 37 bits
(tag not included): 32 bits for the train-up counters and a 5-bit roll-
over counter for the train-down purposes. For SP-prediction, we
consider an SP-table with two signatures per entry (total of 33 bits)

as a fair setting for comparison. Note that SP-prediction requires
also a set of communication counters (1-byte each) and a predictor
register, which account for a fixed cost of 17 bytes per core.

Each predictor represents a point in the trade-off between latency
and bandwidth. To effectively visualize this trade-off, we plot results

on a two dimensional plane (Figures 12, 13). The horizontal dimen-
sion represents request bandwidth per miss (as additional to that
of the based directory). The vertical dimension represents latency,
measured as the percent of misses that require indirection. The cho-
sen metrics provide a desirable level of detail for deriving insightful
results for the performance of the predictors under consideration.

Figure 12 displays the results for the four predictors in four dif-
ferent applications for illustration. The results assume predictors
with an infinite number of table entries for their indexed tables, i.e.,

they do not consider space efficiency. Overall, SP-prediction lays
in the trade-off plane comparably to address- and instruction-based

prediction. Among the examples, fmm presents a case in which
SP-prediction outperforms all other predictors, achieving both higher
accuracy and lower bandwidth. In contrast, dedup presents a counter

case, where SP-prediction is weaker on the accuracy dimension. Ac-
curacy levels between ADDR and INST appear to be similar, with the
ADDR-predictor having more tendency towards lower bandwidth re-

quirements. UNI-prediction is shown to have lower accuracy, which
also negatively affects the bandwidth demands since incorrect predic-
tions place unnecessary messages on the interconnect.

Each scheme has, however, a very different space demands to meet
the illustrated maximum performance. A perfect ADDR-prediction

scheme suggests storage requirements in proportion to the size of
the memory blocks, which is prohibitively large. Common practice

is for ADDR to consider, instead, predictors per macro block (e.g.,
256-bytes in our implementation). This reduces the maximum space
requirements, and also improves further the predictor by capturing
spatial locality. However, even with macro-blocks, the number of
entries required to achieve the maximum performance is in the order

of Kilo. INST has been promoted for its low storage needs; how-
ever, it requires significantly more table entries than the SP-table
(equal to static load/stores). UNI-prediction requires only a single
prediction entry and represents the cheapest possible solution. The
SP-prediction’s storage requirements are inherently bounded by the

number of static sync-points of the application as shown in Table 1.

This corresponds to substantially lower space demands compared to
ADDR and INST. Assuming that the SP-table is easily implementable
in the software layer, its hardware space requirements can be largely
eliminated, reaching those of UNI-predictor.

To evaluate the sensitivity of the predictors to space requirements,
we implement them with limited number of table entries. Figure 13
compares the performance of different predictors when table entries
go from unlimited to a finite number of 512 (⇠4KB of storage space).
To simplify the illustration, we show only the average results for each
predictor, over all the studied applications. The results indicate that
limited space yields lower accuracy for ADDR and INSTR compared
to SP-prediction. Nonetheless, they present a corresponding decrease
in bandwidth, since prediction is attempted on fewer misses.

The prediction performance per space requirements is in a sense

the measure of how well the prediction information is encoded, or in

other words, the measure of a predictor’s space efficiency and cost.
Considering that SP-prediction requires significantly smaller storage

than ADDR and INST, we argue that the reported small performance
differences are insignificant when space and power requirements
are a primary design constraint, as is the clear case in modern and
emerging CMP implementations [19]. In conclusion, from the space
requirements perspective, an SP-predictor with ⇠256 entries can
achieve performance equivalent to INST with ⇠1K entries, or macro-
block ADDR with ⇠8K entries, on average.
5.5. Discussion
Predictor’s power consumption comparison. Prediction tables
consume static and dynamic power. Static power is proportional
to the table size, which is substantially smaller with SP-prediction.
Dynamic power is primarily affected by the associativity, and the
access frequency of the predictor tables. While the ADDR and INST

access their tables on every miss, SP-predictor keeps the prediction

set in a single register, and accesses the SP-table for updates only on

sync-points. This directly translates into power savings. Based on an

overall observation, the SP-table would be accessed once for every
⇠300 accesses of an ADDR- or INST-based table.
Thread migration. So far we have assumed that communication
signatures and predictors consist of bit vectors representing target
physical cores. If thread movements are allowed between cores, then

those representations should track a “logical core-ID” (e.g., thread-id)
rather than physical ID. The logical-to-physical destination mapping

must be known at the core side, and could be applied before or after
the formation of the predictor, depending on the coherence controller
implementation.
Projections for commercial workloads. Database, server, and OS
workloads are mostly based on lock synchronization and as a result
have less regular and predictable communication patterns [42]. The
proposed SP-predictor can effectively predict the communication
activity within critical sections since it can retrieve communication

signatures on lock points that include the cores (or the sequence of
cores) holding the lock previously in time. Results from applications

with a high count of critical sections (e.g., fluidanimate and water-ns)
show high prediction accuracy for the misses occurring within critical
sections (Figure 7). Therefore, although we have not performed
experiments on such workloads, we expect our predictor to work
reasonably well.
6. Related Work
Address and instruction-based indexing have been the basis of hard-
ware coherence predictors [27,28,31,39]. In the context of destination

set prediction, Acacio et al. [2] studied a two-level owner predictor

where the first level decides whether to predict an owner and the sec-

ond level decides which node might be the owner. In a similar work,
they study a single-level design to predict sharers for an upgrade
request [3]. Bilir et al. [8] studied multicast snooping using a “Sticky
Spatial” predictor. Martin et al. [36] explored different policies for
destination set predictors to improve the latency/bandwidth trade-off

under ordered interconnects. Other studies have further explored the
impact of predictor caches [40] and perceptron-based predictors [34].

There have been numerous other efforts to improve coherence per-

formance. Many protocols were developed or extended to optimize

for specific sharing patters, such as pairwise sharing [22], migratory
sharing [13, 44], producer-consumer sharing [11] and some mix of
those [20]. Dynamic self-invalidation was proposed to eliminate
the invalidation overhead [31,33]. Alternatively, software-driven ap-
proaches have proposed programming models or utilized compilers
to effectively prefetch or forward shared data to reduce miss laten-
cies [1, 29, 47]. A thorough characterization of data sharing patterns
and inter-processor communication behavior in emerging workloads
is presented in a work by Barrow et al. [5].

More recent work has exploited properties relevant to CMP archi-
tectures to accelerate coherence, such as core proximity and fast and

flexible on-chip interconnect. Brown et al. [9] describe an extension
to the directory-based coherence protocol where requests are first sent
to neighboring cores. Barrow et al. [6] propose adding new dedicated
links for forwarding the requests to the nearby caches, delegating
directory functions in case of proximity hits. Various other propos-
als, such as Token Coherence [37], examine novel approaches on
maintaining coherence in unordered interconnects without requiring
directory indirection. Eisley et al. [16] propose to embed directories
within the network routers that manage and steer requests towards
nearby sharers. Jerger et al. [18] propose a virtual tree structure to
maintain coherence in an unordered interconnect, with the root of
the tree acting as an ordering point for requests. In Circuit-Switch
Coherence [25], the same authors show how coherence predictors
can leverage existing circuits to optimize pairwise sharing between

cores. Similar to virtual tree coherence, DiCo-CMP [41] delegates
directory responsibilities to the owner caches.

Synchronization points have also been utilized by other recently
proposed techniques to direct hardware-level optimization. In Barri-
erWatch [14], the authors identify the relation between barriers and

time-varying program behavior and propose the use of this relation

to guide run-time optimizations in CMP architectures. Under the
MPI model, Ioannou et al. [24] propose tracking MPI calls to guide
phase-based power management in Intel’s MPI Cloud processor re-

search prototype. In heterogeneous architectures, locks and other
synchronization points may trigger scheduling/migration actions to

accelerate critical sections [45] and other critical bottlenecks [26].
Work on memory scheduling for parallel applications has also made
use of loop-based synchronization to effectively manage inter-thread

DRAM interference [15]. Lastly, exposing shared-memory synchro-
nization primitives to the hardware has been the underlying support
for software based coherence enforcement, e.g., [10].

7. Conclusions
This paper proposed and studied Synchronization Point based Co-
herence Prediction (SP-Prediction), a novel run-time technique for
predicting communication destinations of misses in cache-coherent
shared-memory systems. SP-prediction employs mechanisms that
capture synchronization points at run time, track the communication

activity between them, and extract simple communication signatures

that guide target prediction for future misses. SP-prediction is sub-
stantially simpler than existing techniques because it exploits the
inherent characteristics of an application to predict communication

patterns. Compared with address- and instruction-based predictors,

SP prediction requires smaller area and consumes less energy while
achieving comparative high accuracy. We anticipate that the syn-
chronization point driven prediction approach could be applicable
to further communication optimization cases, and this work will be

basis for future investigation towards this direction.

Acknowledgments
We thank our shepherd Prof. Milos Prvulovic, members of Pitt’s
XCG (formerly CAST) group, and the anonymous reviewers for their
constructive comments and suggestions. This work was supported
in part by the US NSF grants: CCF-1064976, CCF-1059283 and
CNS-1012070.

References
[1] H. Abdel-Shafi et al., “An evaluation of fine-grain producer-initiated

communication in cache-coherent multiprocessors,” in Proc. of the 3rd

IEEE Symp. on High-Performance Computer Architecture, 1997.
[2] M. E. Acacio et al., “Owner prediction for accelerating cache-to-cache

transfer misses in a CC-NUMA architecture,” in Proc. of Conf. on
Supercomputing, 2002.

[3] ——, “The use of prediction for accelerating upgrade misses in CC-
NUMA multiprocessors,” in Proc. Int’l Conf. on Parallel Architectures

and Compilation Techniques, 2002.
[4] A. Banerjee et al., “An energy and performance exploration of network-

on-chip architectures,” IEEE Trans. Very Large Scale Integr. Syst., 2009.
[5] N. Barrow-Williams et al., “A communication characterisation of

SPLASH-2 and PARSEC,” in Proc. Int’l Symp. on Workload Char-
acterization, 2009.

[6] ——, “Proximity coherence for chip multiprocessors,” in Proc. Int’l
Conf. on Parallel Aarchitectures and Compilation Techniques, 2010.

[7] C. Bienia et al., “The PARSEC benchmark suite: characterization and

architectural implications,” in Proc. Int’l Conf. on Parallel Architectures
and Compilation Techniques, 2008.

[8] E. E. Bilir et al., “Multicast snooping: a new coherence method us-
ing a multicast address network,” in Proc. Int’l Symp. on Computer
Architecture, 1999.

[9] J. A. Brown et al., “Proximity-aware directory-based coherence for
multi-core processor architectures,” in Proc. Int’l Symp. on Parallel
Algorithms and Architectures, 2007.

[10] J. B. Carter et al., “Implementation and performance of munin,” in Proc.
Int’l Symp. on Operating Systems Principles, 1991.

[11] L. Cheng et al., “An adaptive cache coherence protocol optimized for
producer-consumer sharing,” in Proc. of the Int’l Symp. on High Perfor-
mance Computer Architecture, 2007.

[12] S. Cho and L. Jin, “Managing distributed, shared l2 caches through
os-level page allocation,” in Proc. Int’l Symp. on Microarchitecture,
2006.

[13] A. L. Cox and R. J. Fowler, “Adaptive cache coherency for detecting
migratory shared data,” in Proc. of the 20th Int’l Symp. on Computer
Architecture, 1993.

[14] S. Demetriades and S. Cho, “Barrierwatch: characterizing multithreaded
workloads across and within program-defined epochs,” in Proc. of the

8th ACM Int’l Conf. on Computing Frontiers, 2011.
[15] E. Ebrahimi et al., “Parallel application memory scheduling,” in Proc.

of the 44th Annual IEEE/ACM Int’l Symp. on Microarchitecture, 2011.
[16] N. Eisley et al., “In-network cache coherence,” in Proc. Int’l Symp. on

Microarchitecture, 2006.
[17] M. Ekman et al., “TLB and snoop energy-reduction using virtual caches

in low-power chip-multiprocessors,” in Proc. of the 2002 Int’l Symp. on

Low power electronics and design, 2002.
[18] N. D. Enright Jerger et al., “Virtual tree coherence: Leveraging regions

and in-network multicast trees for scalable cache coherence,” in Proc.
Int’l Symp. on Microarchitecture, 2008.

[19] H. Esmaeilzadeh et al., “Dark silicon and the end of multicore scaling,”
in Proc. of the 38th annual Int’l Symp. on Computer architecture, 2011.

[20] H. Hossain et al., “Improving support for locality and fine-grain sharing
in chip multiprocessors,” in Proc. Int’l Conf. on Parallel Architectures

and Compilation Techniques, 2008.
[21] http://quid.hpl.hp.com:9081/cacti/, “CACTI 5.3.”
[22] IEEE Computer Society, “IEEE standard for scalable coherent interface

(SCI).” 1992.
[23] Intel Co., “MESIF protocol,” uS Patent 6922756.
[24] Ioannou and et al, “Phase-based application-driven hierarchical power

management on the single-chip cloud computer,” in Proc. of the Int’l
Conf. on Parallel Architectures and Compilation Techniques, 2011.

[25] N. D. E. Jerger et al., “Circuit-switched coherence,” in IEEE 2nd Net-
work on Chip Symp., 2008.

[26] J. A. Joao et al., “Bottleneck identification and scheduling in mul-
tithreaded applications,” in Proc. of the Int’l Conf. on Architectural
Support for Programming Languages and Operating Systems, 2012.

[27] S. Kaxiras and C. Young, “Coherence communication prediction
in shared-memory multiprocessors,” in Proc. Int’l Symp. on High-
Performance Computer Architecture, 2000.

[28] S. Kaxiras and J. Goodman, “Improving CC-NUMA performance using
instruction-based prediction,” in Proc. Int’l Symp. on High-Performance
Computer Architecture, 1999.

[29] D. A. Koufaty et al., “Data forwarding in scalable shared-memory
multiprocessors,” in Proc. Int’l Conf. on Supercomputing, 1995.

[30] A. Lai and B. Falsafi, “Memory sharing predictor: The key to a specu-

lative coherent DSM,” in Proc. Int’l Symp. on Computer Architecture,
1999.

[31] ——, “Selective, accurate, and timely self-invalidation using last-touch

prediction,” in Proc. Int’l Symp. on Computer Architecture, 2000.
[32] J. Laudon and D. Lenoski, “The SGI Origin: A CC-NUMA highly

scalable server,” in Proc. Int’l Symp. on Computer Architecture, 1997.
[33] A. R. Lebeck and D. A. Wood, “Dynamic self-invalidation: Reducing

coherence overhead in shared-memory multiprocessors,” in Proc. Int’l

Symp. on Computer Architecture, 1995.
[34] S. Leventhal and M. Franklin, “Perceptron based consumer prediction

in shared-memory multiprocessors,” in Int’l Conf. on Computer Design,

2006.
[35] P. S. Magnusson et al., “Simics: A full system simulation platform,”

IEEE Computer, 2002.
[36] M. M. K. Martin et al., “Using destination-set prediction to improve the

latency/bandwidth tradeoff in shared-memory multiprocessors,” in Proc.
Int’l Symp. on Computer Architecture, 2003.

[37] ——, “Token coherence. decoupling performance and correctness,” in
Proc. of the 30th Annual Int’l Symp. on Computer Architecture, 2003.

[38] A. Moshovos, “Regionscout: Exploiting coarse grain sharing in snoop-
based coherence,” in Proc. Int’l Symp. on Computer Architecture, 2005.

[39] S. Mukherjee and M. Hill, “Using prediction to accelerate coherence
protocols,” in Proc. Int’l Symp. on Computer Architecture, 1998.

[40] J. Nilsson et al., “The coherence predictor cache: a resource-efficient
and accurate coherence prediction infrastructure,” in Proc. of the Int’l
Parallel and Distributed Processing Symp., 2003.

[41] A. Ros et al., “A direct coherence protocol for many-core chip multipro-
cessors,” IEEE Trans. Parallel Distrib. Syst., 2010.

[42] S. Somogyi et al., “Memory coherence activity prediction in commercial
workloads,” in Workshop on Memory Performance Issues, 2004.

[43] D. J. Sorin et al., “Specifying and verifying a broadcast and a multicast
snooping cache coherence protocol,” IEEE Transactons on Parallel and

Distributed Systems, 2002.
[44] P. Stenström et al., “An adaptive cache coherence protocol optimized for

migratory sharing,” in Proc. of the Int’l Symp. on Computer Architecture,
1993.

[45] M. A. Suleman et al., “Accelerating critical section execution with
asymmetric multi-core architectures,” in Proc. of the Int’l Conf. on
Architectural Support for Programming Languages and Op. Syst., 2009.

[46] Tilera Co. and http://www.tilera.com, “Tilera TILE64 processor.”
[47] P. Trancoso and J. Torrellas, “The impact of speeding up critical sections

with data prefetching and forwarding,” in Proc. Int’l Conf. on Parallel

Processing, 1996.
[48] S. C. Woo et al., “The SPLASH-2 programs: characterization and

methodological considerations,” in Proc. Int’l Symp. on Computer Ar-

chitecture, 1995.

