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Stability Analysis of Beams Rotating on an Elastic Ring
Application to Turbo machinery Rotor-Stator Contacts

N. Lesaffre1, J-J. Sinou1 and F. Thouverez1

Summary
This paper presents a model of flexible beams rotating on the inner surface

of an elastic stationary ring. The beams possesses two degrees of freedom, trac-
tion/compression and flexure. The in-plane deformations of the ring are considered
and a single mode approximation is used. The model has been developed within the
rotating frame by use of an energetic method. To better understand the phenomena
occurring, the degrees of freedom of the beams can first be treated separately then
together. Stability analysis show that even without rubbing, the radial degree of
freedom of a beam rotating on an elastic ring can create divergence instabilities as
well as mode couplings of the circular structure. When rubbing is considered, the
system is unstable as soon as the rotational speed is non null. Moreover rubbing
can couple the beams and the ring giving rise to mode coupling instabilities and
locus veering phenomena. Finally, a comparison to a more complicated model of a
flexible bladed-rotor in contact with an elastic casing shows a very good accordance
with the phenomena occurring.

keywords: Stability analysis, rotating beams, circular elastic ring, divergence,
mode couplings, rubbing, rotor-stator contacts

Introduction
Moving loads on an elastic structure is a very rich and interesting problem that

has been widely studied since it has many occurrences. For instance, the vibra-
tions of circular saw [1, 2], those of computer memory storage disk [3, 4] or brake
system noise [5, 6] result actually from the vibrations of a rotating disk excited by
stationary loads on its surface. It is now well known that such system can expe-
rience divergence instabilities as well as mode couplings. Moreover, it has been
shown that the same phenomena occur in the case of a stationary disk excited by
rotating loads [7]. However, very few studies could be found that focuses on a
ring excited by loads on its inner surface. Recently, Canchi and Parker [8] investi-
gated the problem of parametric instabilities of a circular ring excited by rotating
springs. However, rubbing was neglected is this study. This kind of system, with
or without rubbing can have application to better understand the dynamics of rotor-
stator contacts in Turbo machinery. Thus, the present paper describes a simple
model of two degree of freedom rotating beams rubbing on the inner surface of an
elastic ring. Then a stability analysis for the ring excited by beams featuring only
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a traction/compression degree of freedom rotating without rubbing is performed.
Rubbing is next introduced in the case of beams possessing two degrees of free-
dom. Lastly, a comparison with the dynamics of a flexible bladed rotor in contact
with an elastic casing is done to better understand and to confirm the phenomena
observed.

Model formulation
The present model consists of an elastic ring rubbed by one or several beams

on its inner surface as depicted on Fig. 1a, in the case of one rotating beam. These
Euler-Bernoulli beams have two degrees of freedom in the rotating frame, a trac-
tion/compression motion �ut and a flexural motion �υ f . An energetic method is
used to develop the model thus the degrees of freedom of the jth beam are ex-

pressed by the following Ritz functions: ut j(x, t) = ut j(t) sin
(

πx
2Rstat

)
correspond-

ing to the exact traction/compression mode shape of a beam clamped-free and

υ f j(x, t) = υ f j(t)
(

1−cos
(

πx
2Rstat

))
for its flexural degree of freedom, x being the

local axis along the beam. Concerning the ring, its in-plane flexural vibrations
are considered thus, two degrees of freedom are considered in the rotating frame
too: its radial displacement �us(φ , t) and its tangential displacement �ω(φ , t), φ be-
ing the angular position of the centre of mass of a ring’s cross section in the ro-
tating frame. This latter degree of freedom can be expressed by [9]: ω(φ , t) =
ktot

∑
n=2

An(t)cosnφ +Bn(t) sinnφ where the rigid body motion has been eliminated. In

order to generate as simple a model as possible, only one mode shape, the nth one,
is considered for the ring hence: ω(φ , t) = An(t)cosnφ + Bn(t) sinnφ . Moreover,
the considered ring is assumed to be inextensible, implying thus that its radial dis-
placement can be expressed from its tangential one. The free ends of the beams
are assumed to remain in steady state contact with the inner surface of the ring
thus a link relationship between the pertinent degrees of freedom must be written
as follows: �ut j

(Rstat, t) = −�us (φ j, t). Since an energetic method is used to develop
the complete model, the kinetic energy and the potential energy are defined for the
beams and for the ring as well. The rubbing strength is introduced by defining its
work. The dynamic behaviour of the system is thus described by a mass matrix, a
stiffness matrix, a circulatory matrix and a gyroscopic matrix. To better understand
the phenomenon appearing within this structure however, this system can be sepa-
rated into simpler structures. The first such structure consists of beams having only
a traction/compression degree of freedom rotating on the ring. Then the effects of
the flexural motion of beams rubbing against the ring will be studied.
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Figure 1: a) Model of Euler-Bernoulli beam having two degrees of freedom rubbing
on an elastic ring, b) model of radial spring-mass rotating against a ring

Beams featuring only a traction/compression degree of freedom
rotating on the ring

The stability of an elastic ring excited by one or several beams can be in-
vestigated by determining the solution λ = a + ib of the characteristic equation
det(λ 2M + λ G + K) = 0 where M, G and K are the mass, the gyroscopic and the
stiffness matrices of the system. The system becomes unstable if any one or more
of the eigenvalues’ real parts a is positive.

The beams considered having only a traction/compression degree of freedom
can be represented by radial spring-masses (see Fig.1b) in order to easily handle
modal parameters. In the case of only one rotating load, the dynamic behaviour of
such system can be described by the following matrix equation:[

Mstat
(
n2 + 1

)
0

0 Mstat
(
n2 + 1

)
+ mrn2

]{
Än

B̈n

}

+
[

0 −2MstatnΩ
(
n2 + 1

)
2MstatnΩ

(
n2 + 1

)
0

]{
Ȧn
Ḃn

}

+
[

Kstat n2(n2 − 1)2−Mstat n2Ω2
(
n2 + 1

)
0

0 Kstat n2(n2− 1)2−Mstat n2Ω2
(
n2 + 1

)
+(kr −mrΩ2)n2

]{
An

Bn

}

=
{

0
−mrRstat Ω2n

}
(1)

with Mstat = ρstatSstatRstatπ and Kstat = Estat Istat π
R3

stat

Figure 2.a) represents a stability analysis of the two nodal diameter mode
shape of the ring excited by one rotating spring-mass having mr = 100Kg and
kr = 1.106N.m−1. Two kinds of instabilities appear: divergence (instability at
zero frequency) of the forward mode shape and mode coupling (the forward and
the backward mode shapes of the ring become two mode shapes having the same
eigen-frequency but one of them being stable and the other, unstable). The crit-
ical rotational speeds where the system diverges can be expressed analytically
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through the Routh-Hurwitz criterion applied to the characteristic polynom P(s) =
det

(
s2M+ sG+K

)
. Thus, it turns out that the system can experience divergence

between Ωc and Ωc2, with:

Ω2
c =

Kstat

Mstat

(
n2 −1

)2

n2 +1
=

ω2
statn

n2 and Ω2
c2 =

Ω2
c

1+ mr
Mstat (n2+1)

+
ω2

r

1+ Mstat (n2+1)
mr

(2)

Ωc being the wave propagation speed in the ring for its nth mode shape and so,
its nth critical rotational speed in the rotating frame and ω2

r = kr
mr

. Thus, it appears
that both the modal mass and the modal stiffness of the traction/compression degree
of freedom of the spring-mass can make the system diverge. In a general manner,
the bigger the stiffness is, the larger the speed range where the system can expe-
rience divergence is. Concerning the mass, the heavier it is, the earlier the speed
range where the system can experience divergence is. The critical speed where the
system experiences mode coupling can be determined by knowing that a sufficient
condition for the apparition of flutter, in this particular case of an undamped struc-
ture, is to have two eigenvalues with real parts null and opposite imaginary parts.
Thus, in the case of only one rotating spring-mass, the rotational speeds satisfying
the latter condition can be expressed by:

Ωmc = ±
{

mrχ
[
γ ±4

√
ξ
]}1/2

mrnχ
(3)

providing that the square roots can be defined, with:

χ =
[
8Mstat

(
n2 +1

)2 −mr
(
n2 −1

)2
]

(4)

γ = 4Mstat
(
n2 +1

)(
2Kstat +n2kr

)
+mrn

2 (
4Kstat +

(
n2 −1

)[
kr −n2mrΩ2

c

])
(5)

ξ =
(
Mstat

(
n2 +1

)
+n2mr

)
·
(

Mstat
(
n2 +1

)[
n2kr +2Kstat

]2
+Kstatmrn

2 [
mrn

2Ω2
c −kr

(
n2 +1

)]) (6)

Kstat =
Estat Istatπ

R3
stat

(
n3 −n

)2
(7)

Thus the influence of the mass is preponderant in comparison to the one of
the stiffness and the heavier the mass, the earlier the system experiences mode
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couplings. These results and the influence of each parameter on the instable speed
range of the system is in general accordance with other studies by Iwan and Moeller
[3], Iwan and Stahl [7], Canchi and Parker [8]. Moreover, Fig.2b representing the
stability analysis of the two nodal diameter mode shape of the ring excited by three
radial spring-masses separated from 60˚ from each other, shows that under certain
conditions, the divergence of the forward mode shape of the ring can be avoided.
As a matter of fact, by using the Routh-Hurwitz criterion, a sufficient condition
for this is to have a kind of symmetry of the loads in comparison to the ring mode
shape excited. This can be written as follows:

⎧⎨
⎩

∑
j

kr j sin2(nφ j) = ∑
j

kr j cos2(nφ j) and ∑
j

kr j sin(nφ j)cos(nφ j) = 0

∑
j

mr j sin2(nφ j) = ∑
j

mr j cos2(nφ j) and ∑
j

mr j sin(nφ j)cos(nφ j) = 0
(8)

No divergence 

164c RPM

2 224c RPM

783mc RPM
597Rmc PM

(a) (b)

Figure 2: a) Stability analysis of the two nodal diameter mode shape of the ring
excited by a) one radial spring-mass, b) three radial spring- masses separated from
60˚ from each other

Beams having two degrees of freedom rubbing on the ring
The flexural degree of freedom of the beams as well as rubbing will be now

introduced. The system considered is represented on Fig. 1.a. Even in the simple
case of one beam featuring just a traction/compression degree of freedom rubbing
on the ring, rubbing makes the mass matrix and the stiffness matrix non symmetric,
what is known to be characteristic of a potentially-unstable system:

⎡
⎣ Mstat

(
n2 +1

)
−μ

{
1+ h

2Rstat

(
n2 −1

)}
mr n

0 Mstat

(
n2 +1

)
+mr n2

⎤
⎦{

Än
B̈n

}
+

⎡
⎣ 0 −2Mstat nΩ

(
n2 +1

)
2Mstat nΩ

(
n2 +1

)
0

⎤
⎦{

Ȧn
Ḃn

}

+

⎡
⎣ Kstat n2(n2 −1)2 −Mstat n2Ω2

(
n2 +1

)
−μ

{
1+ h

2Rstat

(
n2 −1

)}(
kr −mr Ω2

)
n

0 Kstat n2(n2 −1)2 −Mstat n2Ω2
(

n2 +1
)

+(kr −mr Ω2)n2

⎤
⎦{

An
Bn

}

=

{
μ

{
1+ h

2Rstat

(
n2 −1

)}
mrΩ2Rstat

−mr Rstat Ω2n

}
(9)
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Moreover, it can be shown by using once again the Routh-Hurwitz criterion
that such undamped system is almost always unstable. When considering to de-
grees of freedom for each beam, the matrix equation of the associated system is
(2 + number o f loads)× (2 + number o f loads). Figure 3 represents the stability
analysis for one beam having two degrees of freedom rubbing on the two nodal
diameter mode shape of the ring with μ = 0,1. As expected, it can be seen on this
figure that the system is unstable as soon as the rotational speed is greater than 0
RPM. As the rubbing coefficient increases, instability rises even faster. The flexu-
ral degree of freedom of the beam can couple the system and some locus veering
can be seen between the backward mode shape of the ring and the flexural mo-
tion of the beam as well as mode coupling between this flexural motion and the
ring forward mode shape. When Ω2 > ω2

t , ωt being the angular frequency of the
beam flexural degree of freedom, the beam experiences divergence instability. All
simulations have been conducted for a ring’s two-nodal diameter mode shape, yet
the same phenomena are present for other mode shapes as well. When considering
more than one beam, the system is more complex and more locus veering can occur
as well as more mode couplings.

(a)       (b) 
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Figure 3: Stability analysis of the two nodal diameter mode shape of the ring rubbed
by a beam with μ = 0,1, b) being the associated zoom, bf = beam flexure, F =
Forward, B = Backward

Application to rotor-stator contacts
To end this study, an application of this model improving the understanding of

complex dynamics in rotor-stator contacts will be presented. The rotor displayed in
this section has been developed in the rotating frame by using an energetic method
[10, 11]. It is composed of a shaft modelled by an Euler-Bernoulli beam, connected
to a rigid disk modelled by a concentrated mass with rotational inertia. This shaft
is set on bearings at multiple locations. On the rigid disk is clamped a full set
of flexible blades also modelled by Euler-Bernoulli beams. In the rotating frame,
two degrees of freedom are considered for the shaft: two orthogonal translations
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in the disk’s plane, and one degree of freedom for each blade defining its deflec-
tion. A Rayleigh-Ritz approximation is used to express the degrees of freedom
of these different parts. The casing considered is the same as in the latter section
but with internal viscous damping and with more than one mode shape considered.
The contact between the flexible blade tips and the flexible casing is introduced by
assuming no rubbing between the two structures. In the rotating frame, this non
linear problem is a static one. By increasing the rotational speed of the rotor, the
evolution of the clearance between each blade tip and the casing can be followed
as a function of the its rotational speed as shown in Fig. 4a, in the particular case
of a rotor having six blades (see Fig. 4b). It can be seen that the first blade to touch
the casing is the blade 1©, then successively the blades 6©, 2© and 5©, when the
rotational speed increases. The associated deformed shape, at 164 RPM, is plotted
on Fig. 4b. When the rotational speed increases again, the blade 3© touches the
stator. Thus, all the blades are in contact with the casing apart from the blade 4©
(see Fig. 4b at Ω = 286RPM). The system keeps this configuration while the ro-
tational speed increases, until 310 RPM corresponding actually to the three nodal
diameter mode shape critical speed of the casing (see Fig. 4b). It appears that up
to this rotational speed, all the balanced static contact configurations found are sta-
ble ones but after this speed, the system has only unstable balanced static contact
configurations. It could have been thought that from 310 RPM the system might
have stable dynamic contact configurations but, all the time integrations performed
diverged on the three nodal diameter mode shape of the casing. This phenomenon
can be explained by using the simple model of rotating loads on an elastic structure
studied previously.

Effectively, it has been shown that an elastic ring excited by rotating loads
could experience two kind of instabilities: divergence instabilities and mode cou-
plings. In order to know if the divergence of the rotor coupled with the flexible
casing is due to this phenomenon, the latter model of rotating loads on the elastic
ring can be used with the modal parameters of the present rotor. The latest stable
balanced contact configuration obtained statically and by time integration consists
in five contacts: at blades 1©, 2©, 3©, 5© and 6©. Figures 5a and 5b represent the
comparison between respectively the results (real parts and eigen-frequencies) ob-
tained with the three nodal diameter mode shape of the simplified model having five
moving loads configured like blades 1©, 2©, 3©, 5© and 6© with the rotor parameters
and, the Campbell diagram and the associated decay rate plot for the flexible casing
in contact at blades 1©, 2©, 3©, 5© and 6©. The importance as well as the influence
of the other mode shapes of the stator on each other appear through all the other
instabilities that can be seen on Fig. 5b and not on Fig. 5a. However, these fig-
ures confirm that the stator experiences divergence through its three nodal diameter
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Figure 4: a) Evolution of the clearances between the blades and the flexible stator,
b) contact configurations
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Figure 5: Comparison of real parts and eigen-frequencies between a) the three
nodal diameter mode shape of the stator excited by five rotating loads angularly set
like blades 1©, 2©, 3©, 5© and 6© with the rotor parameters and b) the stator excited
by the blades 1©, 2©, 3©, 5© and 6©
mode shape just after 310 RPM which is the critical speed Ωc of this mode shape.
Moreover, with this configuration of rotor i.e. with six blades separated by 60˚ from
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each other, there is no contact configuration that satisfies the four conditions (see
Eq. 8) to avoid the divergence of the three nodal diameter mode shape of the stator.
Thus, as shown by Iwan and Moeller [3] and Iwan and Stahl [7], the single mode
approximation for the casing provides a good estimate of the overall response of
the complete rotating system including critical speeds and instability regions.

Conclusion
The stability of rotating beams rubbing on an elastic ring has been studied in

this article. An energy model of flexible beams possessing two degrees of free-
dom in steady-state contact with an elastic ring possessing just one in-plane mode
shape has been developed within the rotating frame. This model, devoid of time-
dependent terms, has been studied from a stability point of view. It appears that
even without rubbing, the radial dynamics of a beam can make the system expe-
rience divergence and mode couplings. The associated critical speeds have been
expressed analytically. Moreover, it has been shown that rubbing always makes
the system unstable once the beam’s rotational speed is nonzero. As the rubbing
coefficient rises, the gradient of the eigenvalue real parts also rises. The beams’
flexural degree of freedom yields mode couplings and locus veering with the ring.
The influence of several beams rubbing on a ring has been examined and some suf-
ficient conditions have been exhibited to avoid the divergence of the forward mode
shape of the ring. Finally, after comparison to a complete model of flexible rotor in
contact with an elastic ring, the simple model appeared to give good estimate of the
overall dynamics of the latter system and so was very useful to better understand
complicated dynamics.
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