
ASYMPTOTIC NORMALITY OF A HURST PARAMETER ESTIMATOR

BASED ON THE MODIFIED ALLAN VARIANCE

ALESSANDRA BIANCHI, MASSIMO CAMPANINO, AND IRENE CRIMALDI

ABSTRACT. It has been observed that different kinds of real data are characterized by self-

similarity and long-range correlations on various time-scales. The memory parameter of a

related time series is thus a key quantity in order to predict and control many phenomena. In

the present paper we analyze the performance of a memory parameter estimator, bα, defined

by the log-regression on the so-called modified Allan variance. Under the assumption that

the signal process is a fractional Brownian motion, with Hurst parameter H, we study the

rate of convergence of the empirical modified Allan variance, and then prove that the log-

regression estimator bα converges to the memory parameter α = 2H − 2 of the process.

In particular, we show that the deviation bα − α, when suitably normalized, converges in

distribution to a normal random variable, and we compute explicitly its asymptotic variance.

1. INTRODUCTION

There is ample evidence that different kinds of real data (Hydrology, Telecommunication
networks, Economics, Biology) exhibit self-similarity and long-range dependence (LRD)
on various time scales. By self-similarity we refer to the property that a dilated portion
of a realization has the same statistical characterization as the original realization. This
can be well represented by a self-similar random process with given scaling exponent H
(Hurst parameter). The long-range dependence, also called long-memory, emphasizes the
long-range time-correlation between past and future observations and it is thus commonly
equated to an asymptotic power-law decrease of the spectral density or, equivalently, of
the autocovariance function, of a given stationary random process. In this situation, the
memory parameter of the process is given by the exponent d characterizing the power-law
of the spectral density. (For a review of historical and statistical aspects of the self-similarity
and the long-memory see [5].)

Though a self-similar process can not be stationary (and thus nor LRD), these two pro-
prieties are often related in the following sense. Under the hypothesis that a self-similar
process has stationary (or weakly stationary) increments, the scaling parameter H enters
in the description of the spectral density and covariance function of the increments, pro-
viding an asymptotic power-law with exponent d = 2H−1. Under this assumption, we can
say that the self-similarity of the process reflects on the long-range dependence of its in-
crements. The most paradigmatic example of this connection is provided by the fractional
Brownian motion and by its increment process, the fractional Gaussian noise [13].

In this paper we will consider the problem of estimating the Hurst parameter H of a
self-similar process with weakly stationary increments. Among the different techniques
introduced in the literature in order to estimate this parameter, we will focus on a method
based on the log-regression of the so-called Modified Allan Variance (MAVAR). The MAVAR
is a well known time-domain quantity generalizing the classic Allan variance [6, 7]. It has
been proposed for the first time as a traffic analysis tool in [10], and sequently, in a series
of paper [10, 9, 8], its performance has been evaluated by simulation and comparison
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with the real IP traffic. These works have pointed out the high accuracy of the method
in estimating the parameter H, and have shown that it achieves a highest confidence if
compared with the well-established wavelet log-diagram.

The aim of the present work is to substantiate these results from the theoretical point
of view, studying the rate of convergence of the estimator toward the memory parameter.
In particular, our goal is to provide the precise asymptotic normality of the MAVAR log-
regression estimator in order to compute the related confidence intervals. This will be
reached under the assumption that the signal process is a fractional Brownian motion.
Although this hypothesis is restrictive (indeed this estimator is successfully used for more
general processes), the obtained results are a first step toward the mathematical study of
the MAVAR log-regression estimator. To our knowledge, there are no similar results in the
literature.

Our theorems can be view as a counterpart of the already established results concerning
the asymptotic normality of the wavelet log-regression estimator [15, 16, 17]. While the
classical Allan variance estimator easily falls into the wavelet framework, as is shown in
[4], the log-regression MAVAR estimator seems to us not trivially related to a wavelets
family (see sec. 5), and we adopt a different analysis.

The paper is organized as follows. In section 2 we recall the properties of self-similarity
and long-range dependence for stochastic processes, and the definition of the fractional
Brownian motion; in section 3 we introduce the MAVAR and its estimator, with their main
properties; in section 4 we state and prove the main results concerning the asymptotic
normality of the estimator; in section 5 we make some comments on the link between the
MAVAR and the wavelet estimators and about the modified Hadamar variance, which is a
generalization of the MAVAR; in the appendix we recall some results used along the proof.

2. SELF-SIMILARITY AND LONG-RANGE DEPENDENCE

We consider a real-valued stochastic process X = {X(t), t ∈ R}, that can be interpreted
as the signal process. Sometimes it is also useful to consider the τ -increment of the process
X, which is defined, for every τ ∈ R

+ and t ∈ R, as

Yτ (t) =
X(t+ τ) −X(t)

τ
. (1)

In order to reproduce the behavior of the real data, it is commonly assumed that X sat-
isfies one of the two following properties: (i) Self-similarity; (ii) Long range dependence.

(i) The self-similarity of a process X refers to the existence of a parameter H ∈ (0, 1),
called Hurst index or Hurst parameter of the process, such that, for all a > 0, it
holds

{X(t) , t ∈ R} d
= {a−HX(at), t ∈ R} . (2)

In this case we say that X is a H-self-similar process.
(ii) We first recall that a stochastic process X is weakly stationary if it is square-

integrable and its autocovariance function, CX(t, s) := Cov(X(t), X(s)), is trans-
lation invariant, namely if

CX(t, s) = CX(t+ r, s+ r) ∀ t, s, r ∈ R .

In this case we also set RX(t) := CX(t, 0).
IfX is a weakly stationary process, we say that it displays long-range dependence,

or long-memory, if there exists d ∈ (0, 1) such that the spectral density of the
process, fX(λ), satisfies the condition

fX(λ) ∼ cf |λ|−d as λ→ 0 , (3)
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for some finite constant cf 6= 0, where we write f(x) ∼ g(x) as x → x0, if

limx→x0

f(x)
g(x) = 1 . Due to the correspondence between the spectral density and

the autocovariance function, given by

RX(t) =
1

2π

∫

R

eitλfX(λ) dλ,

the long-range condition (3) can be often stated in terms of the autocovariance of
the process as

RX(t) ∼ cRt
−β as |t| → +∞ , (4)

for some finite constant cR 6= 0 and β = (1 − d) ∈ (0, 1).

Notice that if X is a self-similar process, then it can not be weakly stationary due to the
normalization factor aH . On the other hand, assuming that X is a H-self-similar process
with weakly stationary increments, i.e. the quantity

E
[(
X(τ2 + s+ t) −X(s+ t)

)(
X(τ1 + s) −X(s)

)]

does not depend on s, it turns out that the autocovariance function is given by

CX(s, t) =
σ2

H

2

(
|t|2H − |t− s|2H + |s|2H

)
, (5)

with σ2
H = E(X2(1)), which is clearly not translation invariant. Consequently, denoting by

Yτ its τ -increment process (see (1)), the autocovariance function of Yτ is such that

RYτ (t) ∼ ct2H−2 as |t| → +∞ , (6)

for some finite constant c 6= 0 depending on H and τ ([3]). In particular, if H ∈ (1
2 , 1), the

process Yτ displays long-range dependence in the sense of (4) with β = 2 − 2H. Under
this assumption, we thus embrace the two main empirical properties of a wide collection
of real data.

A basic example of the connection between self-similarity and long-range dependence
is provided by the fractional Brownian motion BH = {BH(t), t ∈ R}. This is a centered
Gaussian process with autocovariance function given by (5), where

σ2
H =

Γ(2 − 2H) cos(πH)

πH(1 − 2H)
. (7)

It can be proved that BH is a self-similar process with Hurst index H ∈ (0, 1), which
corresponds, for H = 1/2, to the standard Brownian motion. Moreover, its increment
process

Gτ,H(t) =
BH(t+ τ) −BH(t)

τ
,

called fractional Gaussian noise, turns out to be a weakly stationary Gaussian process
[13, 20].

In the next sections we will perform the analysis of the modified Allan variance and of
the related estimator of the memory parameter.

3. THE MODIFIED ALLAN VARIANCE

In this section we introduce and recall the main properties of the Modified Allan variance
(MAVAR), and of the log-regression estimator of the memory parameter based on it.

Let X = {X(t) : t ∈ R} be a stochastic process with weakly stationary increments. Let
τ0 > 0 be the “sampling period” and define the sequence of times {tk}k≥1 taking t1 ∈ R

and setting ti − ti−1 = τ0, i.e. ti = t1 + τ0(i− 1).
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Definition 3.1. For any fixed integer p ≥ 1, the modified Allan variance (MAVAR) is de-
fined as

σ2
p = σ2(τ0, p) :=

1

2τ2
0 p

2
E




(

1

p

p∑

i=1

(Xti+2p
− 2Xti+p

+Xti)

)2




=
1

2τ2
E




(

1

p

p∑

i=1

(Xti+2τ − 2Xti+τ +Xti)

)2


 ,

(8)

where we set τ := τ0p. For p = 1 we recover the well-known Allan variance.

Let us assume that a finite sample X1, . . . , Xn of the process X is given, and that the
observations are taken at times t1, . . . , tn. In other words we set Xi = Xti for i = 1, . . . , n.

A standard estimator for the modified Allan variance (MAVAR estimator) is given by

σ̂2
p(n) = σ̂2(τ0, p, n) :=

1

2τ2
0 p

4np

np∑

h=1

(
p+h−1∑

i′=h

(Xi′+2p − 2Xi′+p +Xi′)

)2

=
1

np

np−1∑

k=0

(
1√

2τ0p2

p∑

i=1

(Xk+i+2p − 2Xk+i+p +Xk+i)

)2
(9)

for p = 1, . . . , ⌊n/3⌋ and np = n− 3p+ 1.

For k ∈ Z, let us set

dp,k = d(τ0, p, k) :=
1√

2 τ0p2

p∑

i=1

(Xk+i+2p − 2Xk+i+p +Xk+i)

so that we can write

σ2
p = E

[
d2

p,0

]

and

σ̂2
p(n) =

1

np

np−1∑

k=0

d2
p,k.

3.1. Some properties. Let us further assume that X is a H-self-similar process (see (2))
with X(0) = 0 and E(X(t)) = 0 for all t. Under these assumptions on X, the process
{dp,k}k turns out to be weakly stationary for each fixed p, with E[dp,k] = 0. More precisely,
applying the covariance formula (5), it holds

σ2
p = E

[
d2

p,k

]
= E

[
d2

p,0

]
= σ2

H τ2H−2K(H, p) , (10)

with σ2
H = E[X(1)2] and

K(H, p) :=
2

p
(1 − 22H−2) +

1

2p2

p−1∑

ℓ=1

ℓ∑

h=1

P2H

(
h
p

)
, (11)

where P2H is the polynomial of degree 2H given by

P2H(x) :=
[
−6x2H + 4 (1 + x)2H + 4 (1 − x)2H − (2 + x)2H − (2 − x)2H

]
.

Since we are interested in the limit for p → ∞, we consider the approximation of the
two finite sums in (11) by the corresponding double integral, namely

1

p2

p−1∑

ℓ=1

ℓ∑

h=1

P2H

(
h
p

)
=

∫ 1

0

∫ y

0
P2H(x)dxdy +OH(p−1) .
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Computing the integral and inserting the result in (11), we get

K(H, p) = K(H) +OH(p−1) (12)

where

K(H) :=
22H+4 + 22H+3 − 32H+2 − 15

2(2H + 1)(2H + 2)
. (13)

From (10) and (12), we get
∣∣σ2

p − σ2
Hτ

2H−2K(H)
∣∣ ≤ σ2

Hτ
2H−2OH(p−1) = OH(p−(3−2H)) . (14)

Under these hypothesis on X, one can also prove that the process {dp,k}p,k satisfies the
stationary condition

Cov(dp,k, dp−u,k′) = Cov(dp,k−k′ , dp−u,0) for 0 ≤ u < p . (15)

To verify this condition, we write explicitly the covariance as

E[dp,kdp−u,k′ ] =
1

2τ2(p− u)2

p∑

j=1

p−u∑

j′=1

E
[
(Xk+j+2p −Xk+j+p)(Xk′+j′+2(p−u) −Xk′+j′+(p−u))

]

− E
[
(Xk+j+2p −Xk+j+p)(Xk′+j′+(p−u) −Xk′+j′)

]

− E
[
(Xk+j+p −Xk+j)(Xk′+j′+2(p−u) −Xk′+j′+(p−u))

]

+ E
[
(Xk+j+p −Xk+j)(Xk′+j′+(p−u) −Xk′+j′)

]
.

Using the spectral representation of the correlation function for the increments of the pro-
cess X (see formula (2.2) in [14]), i.e.

R(t; τ1, τ2) := E
[(
X(τ2 + s+ t) −X(s+ t)

)(
X(τ1 + s) −X(s)

)]

=

∫

R

(1+λ2)
λ2 eitλ(1 − e−iτ1λ)(1 − eiτ2λ)dµ(λ),

(16)

we get

E[dp,kdp−u,k′ ] =
1

2 τ2

1

(p− u)2

p∑

j=1

p−u∑

j′=1

r(k − k′, j − j′, p, u)

=
1

2τ2(p− u)2



(p− u)r(k − k′, 0, p, u) + 2

p−u∑

j=2

j−1∑

h=1

r̂(k − k′, h, p, u)

+

p∑

j=p−u+1

j−1∑

h=j−(p−u)

r(k − k′, h, p, u)



 ,

(17)

where

r(q, h, p, u) := R(τ0(q + h+ u); τ0(p− u), τ0p) −R(τ0(q + h+ p); τ0(p− u), τ0p)

−R(τ0(q + h− (p− u)); τ0(p− u), τ0p) +R(τ0(q + h); τ0(p− u), τ0p)

=

∫
eiτ0hλeiτ0qλ

(
1 − e−iτ0(p−u)λ

)2 (
1 − eiτ0pλ

)2
(1+λ2)

λ2 dµ(λ)

(18)

and

r̂(q, h, p, u) := r(q, h, p, u) + r(q,−h, p, u)

=

∫
cos(τ0hλ)eiτ0qλ

(
1 − e−iτ0(p−u)λ

)2 (
1 − eiτ0pλ

)2
(1+λ2)

λ2 dµ(λ).
(19)

This immediately provides the stationary condition (15).
Notice that the third term of (17) cancels for u = 0. Moreover, when u = 0 and k = k′,

Eq. (17) provides an alternative formula for the variance σ2
p.
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Under further hypothesis on the second order properties of X, one can get more precise
information about the covariance of the process dp,k. In the next sections, where we will
assume that the process X is a fractional Brownian motion, we will deduce some stronger
results (see Lemma 4.3) that will be used in order to carry out the analysis of the estimator.

3.2. The log-regression MAVAR estimator. Let n be the sample size, i.e. the number of
the observations.

Definition 3.2. Let p̄, ℓ̄ ∈ N such that 1 ≤ p̄(1 + ℓ̄) ≤ pmax(n) = ⌊n
3 ⌋, and let w =

(w0, . . . , wℓ̄) be a vector of weights satisfying the conditions

ℓ̄∑

ℓ=0

wℓ = 0 and

ℓ̄∑

ℓ=0

wℓ log(1 + ℓ) = 1 . (20)

The log-regression MAVAR estimator associated to the weights w is defined as

α̂n(p̄, w) = α̂n(τ0, p̄, w) :=
ℓ̄∑

ℓ=0

wℓ log
(
σ̂2

p̄(1+ℓ)(n)
)
. (21)

Roughly speaking, the idea behind this definition is to use the approximation
(
σ̂2

p̄(n), . . . , σ̂2
p̄(1+ℓ̄)(n)

) ∼
=
(
σ2

p̄(n), . . . , σ2
p̄(1+ℓ̄)(n)

)

in order to get, by (14) and (20),

α̂n(p̄, w)
∼
=

ℓ̄∑

ℓ=0

wℓ log(σ2
p̄(1+ℓ))

∼
=

ℓ̄∑

ℓ=0

wℓ

[
α log(1 + ℓ) + α log(τ0p̄) + log(σ2

HK(H))
]

= α,

where α := 2H − 2. Thus, given the data X1, . . . , Xn the following procedure is used to
estimate α:

• compute the modified Allan variance by (9), for integer values p̄(1 + ℓ), with 1 ≤
p̄(1 + ℓ) ≤ pmax(n);

• compute the weighted log-regression MAVAR estimator by (21) in order to get an
estimate α̂ of α;

• estimate H by Ĥ = (α̂+ 2)/2.

In the sequel we will give, under suitable assumptions, two convergence results in order
to justify these approximations and to get the rate of convergence of α̂n(p̄, w) toward
α = 2H − 2. Obviously, we need to take p̄ = p̄(n) → +∞ as n → +∞ in order to
reach jointly the above two approximations.

4. THE ASYMPTOTIC NORMALITY OF THE ESTIMATOR

Since now on we will always assume that X is a fractional Brownian motion with Hurst
index H so that the process {dp,k}p,k is also Gaussian. Under this assumption and with the
notation introduced before, we can state the following results.

Theorem 4.1. Let p̄ = p̄(n) be a sequence of integers such that p̄(n) → +∞ and p̄(n)n−1 → 0,

and ℓ̄ a given integer. Let σ̂2
n(p̄, ℓ̄) be the vector (σ̂2

p̄(n), σ̂2
2p̄(n), . . . , σ̂2

p̄(1+ℓ̄)
(n)) and, analo-

gously, set σ2(p̄, ℓ̄) = (σ2
p̄, σ

2
2p̄, . . . , σ

2
p̄(1+ℓ̄)

). Then it holds

√
np̄(τ0p̄)

2−2H
(
σ̂2

n(p̄, ℓ̄) − σ2(p̄, ℓ̄)
) d−→

n→∞
N (0,W (H)) , (22)

where the covariance matrix W (H) has finite entries given by

Wℓ′,ℓ(H) = 2σ4
H(1 + ℓ)4H−4



η2
ℓ′,ℓ(H) +

∑

q∈Z, q 6=0

G2
ℓ′,ℓ(H, q)



 , for all 0 ≤ ℓ′ ≤ ℓ ≤ ℓ̄ ,

(23)
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with σ2
H given in (7) and the functions ηℓ′,ℓ(H) and Gℓ′,ℓ(H, q) defined in Lemma 4.4 by (32)

and (33).

From this Theorem, as an application of the δ-method, we can state the following result.

Theorem 4.2. Let α̂n(p̄, w) be defined as in (21), for some finite integer ℓ̄ and a weight-
vector w satisfying (20). If p̄ = p̄(n) is a sequence of integers such that p̄(n)n−1 → 0 and
p̄(n)2n−1 → +∞, then

√
np̄ (α̂n(p̄, w) − α)

d−→
n→∞

N
(
0, wT

∗ V (H)w∗

)
, (24)

where α = 2H − 2, the vector w∗ is such that [w∗]ℓ := wℓ(1 + ℓ)2−2H , and V (H) =
(σ2

HK(H))−2W (H), with σ2
H , K(H) and W (H) given in (7), (13) and (23) respectively.

Before starting the proof of the above theorems, we need the following results.

Lemma 4.3. The process dp,k is stationary in k in the sense of (15). Moreover, for all p, u ∈
R

+, 0 ≤ u < p, and k, k′ ∈ Z, the covariance is given by

Cov(dp,k, dp−u,k′) = σ2
Hτ

2H−2GH(k − k′, p, u) , (25)

where τ = τ0p,

GH(q, p, u) =

∫
L(p, u, ν)gH(q, p, u, ν) dν (26)

and L(p, u, ν) and gH(q, p, u, ν) are some explicitly defined functions such that GH(q, p, 0) =
GH(−q, p, 0) and

GH(q, p, u) = O(|q|2H−4) as |q| → +∞. (27)

Proof. As a special case of self-similar process with weakly stationary increments, the pro-
cess X satisfies the stationary condition (15) and (17). Moreover, recalling (see formula
(13) in [1]) that the spectral measure µ of a fractional Brownian motion with Hurst index
H takes the explicit form dµ(λ) = f(λ)dλ, with

f(λ) =
σ2

HγH

|λ|2H−1(1 + λ2)
and γH =

sin(πH)

2π
Γ(1 + 2H) ,

from Eq. (18), and after the change of variable ν = pτ0λ = τλ, we get

r(q, h, p, u) = σ2
Hτ

2H

∫
eihν/peiqν/p

(
1 − e−i(p−u)ν/p

)2 (
1 − eiν

)2 γH

|ν|2H+1
dν

= σ2
Hτ

2H

∫
eihν/pgH(q, p, u, ν)dν ,

where

gH(q, p, u, ν) := eiqν/p
(
1 − e−i(p−u)ν/p

)2 (
1 − eiν

)2 γH

|ν|2H+1
.

Analogously, from (19), we get

r̂(q, h, p, u) = σ2
Hτ

2H

∫
cos(hν/p)gH(q, p, u, ν)dν .

With this notation, the covariance formula (17) provides the required Eq. (26) with

L(p, u, ν) := 1
2(p−u) + 1

(p−u)2

p−u−1∑

j=1

j∑

h=1

cos (νh/p) + 1
2(p−u)2

u∑

j=1

j+p−u−1∑

h=j

eiνh/p ,

where the last term cancels for u = 0.
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To handle the function L(p, u, ν), that enters in the definition of the integral function
GH(q, p, u), we can rewrite the last formula using the identities

eihν/p =
∞∑

m=0

(ihν/p)m 1

m!
and cos(hν/p) =

∞∑

m=0

(hν/p)2m (−1)m

2m!
.

Rearranging the summations and using that, for each integer q ≥ 1,

ℓ∑

h=1

hq =
(ℓ+ 1)q+1

q + 1
+

q∑

j=1

cj(q)(ℓ+ 1)j , (28)

where cj(q) :=
q! Bq+1−j

(q+1−j)!j! and the Bk ’s are the Bernoulli numbers, we get

L(p, u, ν) = p
2(p−u) −

(
p

p−u

)2
1
ν2

(
cos
(

ν(p−u+1)
p

)
−

1∑

m=0

(−1)m

2m!

(
ν(p−u+1)

p

)2m
)

+ 1
2I{u 6=0}

(
p

p−u

)2 1

ν2

(
ei(u+1)ν/p + ei(p−u)ν/p − ei(p+1)ν/p

)

− 1
2I{u 6=0}

(
p

p−u

)2 1

ν2

2∑

m=0

iνm

m!

((
u+1

p

)m
+
(

p−u
p

)m
−
(

p+1
p

)m)

+ 1
p

∞∑

m=1

(iν)m

m! fm(p, u) ,

(29)

where fm(p, u) is a uniformly bounded function in p and u, such that fm(p, 0) = 0 if m is
odd.

It is easy to check that GH(q, p, 0) = GH(−q, p, 0). In order to study the asymptotic
behavior of GH(q, p, u) as |q| → +∞, we make the change of variable ξ = νq, and get

GH(q, p, u) = |q|−1

∫
L(p, u, ξ/q)gH(q, p, u, ξ/q) dξ .

From the definition of L(p, u, ν) and gH(q, p, u, ν) it turns out, as can be easily verified, that

GH(q, p, u) = O(|q|2H−4) as |q| → +∞. �

Lemma 4.4. Let p̄ = p̄(n) be a sequence of integers such that p̄(n) → +∞ and p̄(n)n−1 → 0.
For two given integers ℓ, ℓ′, with 0 ≤ ℓ′ ≤ ℓ, set pℓ = p̄(n)(ℓ+ 1) and pℓ′ = p̄(n)(ℓ′ + 1). Then

np̄(τ0p̄)
4−4HCov

(
σ̂2

pℓ
(n), σ̂2

pℓ′
(n)
)

−→
n→+∞

Wℓ′,ℓ(H) , (30)

where Wℓ′,ℓ(H) is a finite quantity given by

Wℓ′,ℓ(H) := 2σ4
H(1 + ℓ)4H−4



η2
ℓ′,ℓ(H) +

∑

q∈Z, q 6=0

G2
ℓ′,ℓ(H, q)



 , (31)

with

ηℓ′,ℓ(H) :=

∫
Lℓ′,ℓ(ν)

(
1 − e−i 1+ℓ′

1+ℓ
ν

)2 (
1 − eiν

)2 γH

|ν|2H+1 dν , (32)

Gℓ′,ℓ(H, q) := q2H

∫
Lℓ′,ℓ(ξ/q)

(
1 − e−i 1+ℓ′

1+ℓ

ξ

q

)2 (
1 − eiξ/q

)2
γH

|ξ|2H+1 dξ for q ∈ Z \ {0}
(33)
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and

Lℓ′,ℓ(x) := lim
n→+∞

L(pℓ, pℓ − pℓ′ , x)

= 1+ℓ
2(1+ℓ′) −

(
1+ℓ
1+ℓ′

)2
1
x2

(
cos
(

(1+ℓ′)x
1+ℓ

)
−

1∑

m=0

(−1)m

2m!

(
(1+ℓ′)x

1+ℓ

)2m
)

+ 1
2I{ℓ6=ℓ′}

(
1+ℓ
1+ℓ′

)2 1

x2

(
e

ℓ−ℓ′

1+ℓ ix
+ e

1+ℓ′

1+ℓ ix − eix
)

− 1
2I{ℓ6=ℓ′}

(
1+ℓ
1+ℓ′

)2 1

x2

2∑

m=0

ixm

m!

((
ℓ−ℓ′

1+ℓ

)m
+
(

1+ℓ′

1+ℓ

)m
− 1
)
.

(34)

Note that Gℓ,ℓ(H, q) = Gℓ,ℓ(H,−q).

Proof. Since n/p̄→ +∞, without loss of generality we can assume that p̄(1 + ℓ̄) ≤ pmax(n)
for each n. Let us set nℓ = npℓ

and nℓ′ = npℓ′
. From the definition of the empirical variance

and applying the Wick’s rule for jointly Gaussian random variable (see the appendix), we
get

Cov(σ̂2
pℓ

(n), σ̂2
pℓ′

(n)) =
2

nℓnℓ′

nℓ−1∑

k=0

nℓ′−1∑

h=0

Cov(dpℓ,k, dpℓ′ ,h
)2

=
2

nℓ
Cov(dpℓ,k, dpℓ′ ,k

)2 +
2

nℓnℓ′

nℓ−1∑

k=0

nℓ−1∑

h=0, h 6=k

Cov(dpℓ,k, dpℓ′ ,h
)2

+
2

nℓnℓ′

nℓ−1∑

k=0

nℓ′−1∑

h=nℓ

Cov(dpℓ,k, dpℓ′ ,h
)2 .

We consider the three terms on the last line separately.

By Lemma 4.3 the first term, multiplied by np̄(τ0p̄)
4−4H , is equal to

np̄

nℓ
(1 + ℓ)4H−4σ4

HG
2
H(0, pℓ, uℓ′ℓ) ,

where we set uℓ′ℓ = pℓ − pℓ′ . Taking the limit for n→ ∞, we get

lim
n
np̄(τ0p̄)

4−4H 2

nℓ
Cov(dpℓ,k, dpℓ′ ,k

)2 = 2σ4
H(1 + ℓ)4H−4η2

ℓ′,ℓ ,

with ηℓ′,ℓ given in (32).

The second term, multiplied by np̄(τ0p̄)
4−4H , can be rewritten using the functionGℓ′,ℓ(H, q)

defined in (33) as

2σ4
H

(
p̄

pℓ

)4−4H np̄

nℓ′

1

nℓ

nℓ−1∑

k=1

k∑

q=1

G2
ℓ′,ℓ(H, q) +G2

ℓ′,ℓ(H,−q)

+2σ4
H

(
p̄

pℓ

)4−4H np̄

nℓ′

nℓ−1∑

k=1

k∑

q=1

G2
H(q, pℓ, uℓ′ℓ) −G2

ℓ′,ℓ(H, q)

+2σ4
H

(
p̄

pℓ

)4−4H np̄

nℓ′

nℓ−1∑

k=1

k∑

q=1

G2
H(−q, pℓ, uℓ′ℓ) −G2

ℓ′,ℓ(H,−q) .

By Cesaro’s lemma, the first term converges to 4σ4
H(1+ ℓ)4H−4

∑
q∈Z, q 6=0G

2
ℓ′,ℓ(H, q), which

is finite since G2
ℓ′,ℓ(H, q) = O(q4H−8). The second term converges to zero applying once
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more Cesaro’s lemma and noting that

|G2
H(q, pℓ, uℓ′ℓ) −G2

ℓ,ℓ′(H, q)| ≤ |GH(q, pℓ, uℓ′ℓ) −Gℓ,ℓ′(H, q)||GH(q, pℓ, uℓ′ℓ) +Gℓ,ℓ′(H, q)|
≤ (p̄)−1O(q4H−8).

Indeed, GH(q, pℓ, uℓ′ℓ) + Gℓ,ℓ′(H, q) = O(q2H−4), while the difference GH(q, pℓ, uℓ′ℓ) −
Gℓ,ℓ′(H, q) is equal to

q2H

∫ (
L(pℓ, uℓ′ℓ, ξ/q)e

iξ/pℓ − Lℓ′,ℓ(ξ/q)
)(

1 − e
−i 1+ℓ′

1+ℓ

ξ

q

)2 (
1 − e

i ξ

q

)2
γH

|ξ|2H+1 dξ

where the difference L(pℓ, uℓ′ℓ, ξ/q)e
iξ/pℓ − Lℓ′,ℓ(ξ/q) is equal to

(
eiξ/pℓ − 1

)
L(pℓ, uℓ′ℓ, ξ/q) + L(pℓ, uℓ′ℓ, ξ/q) − Lℓ′,ℓ(ξ/q) = O(ξ/pℓ).

The third term, multiplied by np̄(τ0p̄)
4−4H , converges to zero. This can be shown using

Lemma 4.3 to rewrite the covariance, and then rearranging the summations as follows:

nℓ′−1∑

h=nℓ

nℓ−1∑

k=0

G2
H(−(h− k), pℓ, uℓ′ℓ) =

3uℓ′ℓ∑

h′=1

nℓ−1∑

k′=0

G2
H(−(k′ + h′), pℓ, uℓ′ℓ)

=

nℓ−1∑

k′=0

k′+3uℓ′ℓ∑

r=k′+1

G2
H(−r, pℓ, uℓ′ℓ) =

nℓ−1∑

k′=0

k′+3uℓ′ℓ∑

r=1

G2
H(−r, pℓ, uℓ′ℓ) −

nℓ−1∑

k′=0

k′∑

r=1

G2
H(−r, pℓ, uℓ′ℓ)

=

nℓ′−1∑

bk=0

bk∑

r=1

G2
H(−r, pℓ, uℓ′ℓ) −

3uℓ′ℓ−1∑

bk=0

bk∑

r=1

G2
H(−r, pℓ, uℓ′ℓ) −

nℓ−1∑

k′=0

k′∑

r=1

G2
H(−r, pℓ, uℓ′ℓ)

The first and the third term of this equation, divided respectively by nℓ′ and nℓ, converge
to the same limit

∑∞
q=1G

2
ℓ′,ℓ(H, q) and thus cancel. The contribution from the second term

is also zero in the limit. Indeed, from the Cesaro’s lemma, we get

2 lim
n

(
p̄

pℓ

)4−4H np̄uℓ′ℓ

nℓ′nℓ
· 1

uℓ′ℓ

3uℓ′ℓ−1∑

bk=0

bk∑

r=1

G2
H(−r, pℓ, uℓ′ℓ) = 0 ,

since limn
np̄uℓ′ℓ

nℓ′nℓ
= 0 while the remaining part converges to a finite quantity. This concludes

the proof of the lemma. �

Proof of Theorem 4.1. As before, without loss of generality, we can assume that p̄(1 + ℓ̄) ≤
pmax(n) for each n. Moreover, set again nℓ = npℓ

and nℓ′ = npℓ′
. For a given real vector

vT = (v0, . . . , vℓ̄), let us consider the random variable Tn = T (p̄(n), ℓ̄, v) defined as a linear
combination of the empirical variances σ̂2

p̄(n), . . . , σ̂2
p̄(1+ℓ̄)

(n) as follows

Tn :=
ℓ̄∑

ℓ=0

vℓσ̂
2
p̄(1+ℓ)(n) =

ℓ̄∑

ℓ=0

vℓ

nℓ

nℓ−1∑

k=0

d2
p̄(1+ℓ),k .

In order to prove the convergence stated in Theorem (4.1), we have to show that the ran-

dom variable
√
np̄ (τ0p̄)

2−2H
(
Tn −∑ℓ̄

ℓ=0 vℓσ
2
p̄(1+ℓ)

)
converges to the normal distribution

with zero mean and variance vTW (H)v. To this purpose, we note that

√
np̄ (τ0p̄)

2−2H



Tn −
ℓ̄∑

ℓ=0

vℓσ
2
p̄(1+ℓ)



 = V T
n AnVn − E[V T

n AnVn]
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where Vn is the random vector with entries dp̄(1+ℓ),k, 0 ≤ ℓ ≤ ℓ̄, 0 ≤ k ≤ nℓ − 1, and An is

the diagonal matrix with entries

[An](
p̄(1+ℓ),k

)
,
(
p̄(1+ℓ),k

) =

√
np̄(τ0p̄)

2−2Hvℓ

nℓ
= O((τ0p̄)

2−2Hn−1/2).

Therefore, condition (1) of Lemma A.1 is satisfied since, by Lemma 4.4,

Var[V T
n AnVn] = np̄ (τ0p̄)

4−4H
ℓ̄∑

ℓ=0

ℓ̄∑

ℓ′=0

vℓvℓ′Cov
(
σ̂2

p̄(1+ℓ)(n), σ̂2
p̄(1+ℓ)(n)

)
=

np̄ (τ0p̄)
4−4H




ℓ̄∑

ℓ=0

v2
ℓ Cov

(
σ̂2

p̄(1+ℓ)(n), σ̂2
p̄(1+ℓ)(n)

)
+ 2

ℓ̄∑

ℓ=1

ℓ∑

ℓ′=0

vℓvℓ′Cov
(
σ̂2

p̄(1+ℓ)(n), σ̂2
p̄(1+ℓ′)(n)

)




−→
n→+∞

ℓ̄∑

ℓ=0

v2
ℓWℓ,ℓ(H) + 2

ℓ̄∑

ℓ=1

ℓ∑

ℓ′=0

vℓvℓ′Wℓ′,ℓ(H) = vTW (H)v.

Moreover, condition (2) of Lemma A.1 is verified. Indeed, if Cn is the covariance matrix of
the random vector Vn and ρ[Cn] denotes its spectral radius, then, by Lemma A.2, we have

ρ[Cn] ≤
ℓ̄∑

ℓ=0

ρ
[
Cn

(
p̄(1 + ℓ)

)]
,

where Cn

(
p̄(1 + ℓ)

)
is the covariance matrix of the subvector [dp̄(1+ℓ),0, . . . , dp̄(1+ℓ),nℓ−1]

T .

By Lemma 4.3 and (40), we then have

ρ
[
Cn

(
p̄(1 + ℓ)

)]
≤ σ2

H [τ0(1 + ℓ)p̄]2H−2



GH(0, p̄(1 + ℓ), 0) + 2

nℓ−1∑

q=1

GH(q, p̄(1 + ℓ), 0)





= σ2
H [τ0(1 + ℓ)p̄]2H−2



GH(0, p̄(1 + ℓ), 0) + 2

nℓ−1∑

q=1

Gℓ,ℓ(H, q)





+ 2σ2
H [τ0(1 + ℓ)p̄]2H−2

nℓ−1∑

q=1

(GH(q, p̄(1 + ℓ), 0) −Gℓ,ℓ(H, q))

= O
(
(τ0p̄)

2H−2
)
,

where in the last step we used the convergence of the sequence GH(0, p̄(1 + ℓ), 0) and of

the series
∑+∞

q=0 Gℓ,ℓ(H, q), together with the inequality

|GH(q, p̄(1 + ℓ), 0) −Gℓ,ℓ(H, q)| ≤ (p̄)−1O(q2H−4) .

�

Proof of Theorem 4.2. By the assumptions on the sequence p̄ = p̄(n) and inequality (14), it
holds
√
np̄(τ0p̄)

2−2H
∣∣∣σ2

p̄(1+ℓ) − σ2
H [τ0p̄(1 + ℓ)]2H−2K(H)

∣∣∣ ≤ σ2
H(1+ℓ)2H−2√np̄OH(1/p̄) −→

n→+∞
0 .

Thus, from Theorem 4.1 we get

√
np̄

[
(τ0p̄)

2−2H σ̂2
n(p̄, ℓ̄) − σ2

∗

] d−→
n→∞

N (0,W (H)) , (35)

where σ2
∗ is the vector with elements

[σ2
∗]ℓ := σ2

H(1 + ℓ)2H−2K(H) for 0 ≤ ℓ ≤ ℓ̄.
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Now we observe that if f(x) :=
∑ℓ̄

ℓ=0wℓ log(xℓ), then, by (21) and (20), we have

α̂n(p̄, w) = f(σ̂2(p̄, ℓ̄)) = f
(
(τ0p̄)

2−2H σ̂2(p̄, ℓ̄)
)
.

Moreover, α = f(σ2
∗) and ∇f(σ2

∗) = (σ2
HK(H))−1w∗. Therefore, by the application of the

δ-method, the convergence (35) entails the convergence

√
np̄ (α̂n(p̄, w) − α)

d−→
n→∞

N
(
0,∇f(σ2

∗)W (H)∇f(σ2
∗)
)
,

where

∇f(σ2
∗)W (H)∇f(σ2

∗) = wT
∗ V (H)w∗ ,

and thus concludes the proof. �

5. SOME COMMENTS

5.1. The modified Allan variance and the wavelet estimators. Let X = {X(t), t ∈ R}
be a self-similar process with weakly stationary increments and consider the generalized
process Y = {Y (t), t ∈ R} defined through the set of identities

∫ t2

t1

Y (t)dt = X(t2) −X(t1) , ∀t1, t2 ∈ R .

In short, we write Y = Ẋ. From this definition and with the notation introduced in Sec. 3,
we can rewrite the MAVAR as

σ2(τ0, p) =
1

2τ2
0 p

2
E




(

1

p

p∑

i=1

(∫ ti+2p

ti+p

Y (t)dt−
∫ ti+p

ti

Y (t)dt

))2


 (36)

and its related estimator as

σ̂2(τ0, p, n) =
1

2τ2
0 p

2np

np∑

k=1

[
1

p

p∑

i=1

(∫ ti+k+2p

ti+k+p

Y (t)dt−
∫ ti+k+p

ti+k

Y (t)dt

)]2

. (37)

Now we claim that, for p fixed, the quantity

d(τ0, p, k) :=
1√

2p2τ0

p∑

i=1

(∫ ti+k+2p

ti+k+p

Y (t)dt−
∫ ti+k+p

ti+k

Y (t)dt

)

can be set in correspondence with a family of discrete wavelet transforms of the process
Y , indexed by τ0 and k. To see that, let us fix j ∈ N and k ∈ Z, and set τ0 = 2j and t1 = 2j ,
so that ti+k = 2j(i + k), for all i ∈ N. With this choice on the sequence of times, it is not
difficult to construct a wavelet ψ(s) such that

dk,j := d(2j , p, k) = 〈Y ;ψk,j〉 with ψk,j(s) = 2−jψ(2−js− k) . (38)

An easy check shows that the function

ψ(s) :=

p∑

i=1

ψi(s) , ψi(s) :=
1√
2p2

(
I[i+p,i+2p](s) − I[i,i+p](s)

)
,

is a proper wavelet satisfying Eq. (38). Notice also that the components ψi, i = 1, . . . p, of
the mother wavelet, are suitably translated and re-normalized Haar functions.

In the case p = 1, corresponding to the classical Allan variance, the mother wavelet is
exactly given by the Haar function, as was already pointed out in [4].

Though the wavelet representation could be convenient in many respects, the Haar
mother wavelet does not satisfy one of the conditions which are usually required in order
to study the convergence of the estimator (see condition (W2) in [18]). Moreover, there
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is a fundamental difference between the two methods: in the wavelet setting the log-
regression is done over the scale parameter τ0 for p fixed, while the MAVAR log-regression
given in (21) is performed over p and for τ0 fixed.

5.2. The modified Hadamard variance. Further generalizing the notion of the MAVAR,
one can define the modified Hadamard variance (MHVAR): For fixed integers p,Q and
τ0 ∈ R, set

σ2(τ0, p,Q) :=
1

Q!τ2
0 p

2
E







1

p

p∑

i=1

Q∑

q=0

c(Q, q)Xti+qp




2

 ,

where c(Q, q) = (−1)q Q!
q!(Q−q)! . Notice that for Q = 2 we recover the modified Allan

variance. The MHVAR is again a time-domain quantity which has been introduced in [8]
for the analysis of the network traffic. A standard estimator for this variance, is given by

σ̂2
n(τ0, p,Q) :=

1

Q!τ2
0 p

4nQ,p

nQ,p∑

h=1




p+h−1∑

i′=h

Q∑

q=0

c(Q, q)Xi′+qp




2

=
1

nQ,p

nQ,p−1∑

k=0



 1√
Q!τ0p2

p∑

i=1

Q∑

q=0

c(Q, q)Xk+i+qp




2

for p = 1, . . . , [n/(Q+ 1)] and nQ,p = n− (Q+ 1)p+ 1.
Similarly to the analysis performed for the MAVAR, let us set

dp,k = d(τ0, p,Q, k) :=
1√

Q!τ0p2

p∑

i=1

Q∑

q=0

c(Q, q)Xk+i+qp

so that we can write

σ2(τ0, p,Q) = E
[
d2

p,0

]
and σ̂2

n(τ0, p,Q) =
1

nQ,p

nQ,p−1∑

k=0

d2
p,k.

This suggests that the convergence results, similar to Theorems 4.1 and 4.2, can be achieved
also for the MHVAR and its related log-regression estimator.

5.3. The case of stationary processes. In applications, MAVAR and MHVAR are also used
in order to estimate the memory parameter of long-range dependent processes. This gen-
eral case is not included in our analysis (which is restricted to the fractional Brownian
motion) and it requires a more involved investigation. To our knowledge, there are no
theoretical results along this direction.

APPENDIX A.

In this appendix we recall the Wick’s rule for jointly Gaussian random variables and
some facts used in the above proofs.

Wick’s rule. Let us consider a family {Zi} of jointly Gaussian random variables with
zero-mean. The Wick’s rule is a formula that provides an easy way to compute the quantity
E(ZΛ) := E

(∏
i∈Λ Zi

)
, for any index-set Λ (see, e.g. [12]).

Since the Zi’s are zero-mean random variables, if Λ has odd cardinality we trivially
get E(ZΛ) = 0. We then assume that |Λ| = 2k, for some k ≥ 1. To recall the Wick’s
rule, it is convenient to introduce the following graph representation. To the given index-
set Λ we associated a vertex-set V indexed by the distinct elements of Λ, and to every
vertex j ∈ V we attached as many half-edges as many times the index j appears in Λ.
In particular there is a bi-univocal correspondence between the set of half-edges and Λ,
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while |V | ≤ |Λ|. Gluing together two half-edges attached to vertices i and j, we obtain
the edge (i, j). Performing this operation recursively over all remaining half-edges, we
end-up with a graph G, with vertex set V (G) and edge-set E(G). Let GΛ denote the set
of graphs (possibly not distinguishable) obtained by performing this “gluing procedure” in
all possible ways. Notice that the set GΛ is in bi-univocal correspondence with the set of
pairings with ordered pairs of the elements of Λ.

With this notation, and for all index-sets Λ with even cardinality, the Wick’s rule for a
family {Zi} of jointly centered Gaussian random variables, provides the identity

E(ZΛ) =
∑

G∈GΛ

∏

(i,j)∈E(G)

E(ZiZj) . (39)

Now we recall some facts used in the proof of Theorem 4.1.
Denote by ρ[A] the spectral radius of a matrix A = {ai,j}1≤i,j≤n, then

ρ[A] ≤ max
1≤j≤n

n∑

i=1

|ai,j | . (40)

Moreover the following lemmas hold.

Lemma A.1. ([17])
Let (Vn) be a sequence of centered Gaussian random vectors and denote by Cn its covariance
matrix. Let (An) be a sequence of deterministic symmetric matrices such that

(1) limn→+∞ Var[V T
n AnVn] = λ2 ∈ [0,+∞)

(2) limn→+∞ ρ[An]ρ[Cn] = 0.

Then V T
n AnVn − E[V T

n AnVn] converges in distribution to the normal law N (0, λ2).

Lemma A.2. ([15])
Let m ≥ 2 be an integer and C be a m ×m covariance matrix. Let r be an integer such that
1 ≤ r ≤ m − 1. Denote by C1 the top left submatrix with size r × r and by C2 the bottom
right submatrix with size (m− r) × (m− r), i.e.

C1 = [Ci,j ]1≤i, j≤r and C2 = [Ci,j ]r+1≤i, j≤m

Then ρ[C] ≤ ρ[C1] + ρ[C2].
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