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Abstract
Inorganic polyphosphate (polyP) is a linear polymer of Pi residues linked together by high-energy
phosphoanhydride bonds as in ATP. PolyP is present in all living organisms ranging from bacteria to
human and possibly even predating life of this planet. The length of polyP chain can vary from just a
few phosphates to several thousand phosphate units long, depending on the organism and the tissue in
which it is synthesized. PolyP was extensively studied in prokaryotes and unicellular eukaryotes by Kulaev’s
group in the Russian Academy of Sciences and by the Nobel Prize Laureate Arthur Kornberg at Stanford
University. Recently, we reported that mitochondria of cardiac ventricular myocytes contain significant
amounts (280 ± 60 pmol/mg of protein) of polyP with an average length of 25 Pi and that polyP is involved
in Ca2 + -dependent activation of the mitochondrial permeability transition pore (mPTP). Enzymatic polyP
depletion prevented Ca2 + -induced mPTP opening during ischaemia; however, it did not affect reactive
oxygen species (ROS)-mediated mPTP opening during reperfusion and even enhanced cell death in cardiac
myocytes. We found that ROS generation was actually enhanced in polyP-depleted cells demonstrating that
polyP protects cardiac myocytes against enhanced ROS formation. Furthermore, polyP concentration was
dynamically changed during activation of the mitochondrial respiratory chain and stress conditions such as
ischaemia/reperfusion (I/R) and heart failure (HF) indicating that polyP is required for the normal heart
metabolism. This review discusses the current literature on the roles of polyP in cardiovascular health and
disease.

Introduction
Inorganic polyphosphate (polyP) is one of the several
molecules on earth that effectively store energy within their
covalent bonds. Inorganic polyPs are linear polymers of Pi

residues linked together by high-energy phosphoanhydride
bonds (Figure 1A). These polymers are widely distributed
in nature, from archaebacteria, eubacteria, fungi, algae and
protozoa to higher plants, animals and humans [1–4].
Neglected and long regarded as a molecular fossil, polyP
has a variety of significant functions in bacteria such as a (i)
source of energy [2,5], (ii) phosphate reservoir [5], (iii) donor
for sugar and adenylate kinases [6], (iv) chelator for divalent
cations [7], (v) buffer against alkaline stress [8], (vi) regulator
of development [1] and (vii) structural element in competence
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for DNA entry and transformation [9]. Even though most
of polyP research has been performed in microorganisms,
the presence of polyP has been demonstrated in many
tissues such as rodent liver, kidney, lungs, brain and heart
[10], rabbit heart [11,12], osteoblasts [13] as well as in
human granulocytes [14], platelets [15,16] and fibroblasts
[17]. In striking contrast with microorganisms where polyP
is present in millimolar (50–120 mM) concentrations, levels
of 25–200 μM (it terms of Pi residues) were found in vast
majority of mammalian tissues [10,11]. Interestingly, the
total amount of polyP extracted from mouse tissues was
almost 2-fold higher compared with that detected in rat
samples: with the highest amount detected in the mouse heart
(∼114 ± 35 μM), brain (95 ± 24 μM), lungs (∼91 ± 16 μM)
and kidney (64 ± 9 μM) and the lower amounts reported
in liver (38 ± 4 μM) [10]. The exceptions are platelets and
mast cells which contain millimolar concentrations of polyP
in electron dense granules [18]. Intracellular distribution
of polyP also varies with relatively higher levels of polyP
detected in nuclei (89 ± 7 μM) and plasma membranes
(43 ± 3 μM) isolated from rat liver compared with the cytosol
(12 ± 2 μM), mitochondria (11 ± 0.6 μM) and microsome
fractions (4 ± 0.05 μM) [10]. Also, certain cancer cells (e.g.
myeloma plasma cells) accumulate unusually high levels
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of polyP in the nucleoli which is associated with the
enhanced levels of nuclear transcription in these cells [19].
The total level of polyP in U266 myeloma cells was
approximately 92 ± 6 pmol/106 cells (or 65 μM) compared
with 4.5 ± 2 pmol/106 cells detected in total human peripheral
blood mononuclear cells [19]. It was previously demonstrated
by Kornberg and colleagues [20] that polyP stimulates
mammalian protein kinase mTOR (mammalian target of
rapamycin) involved in the proliferation of human breast
carcinoma MCF-7 cells. However, the role of polyP in
cancer cells requires further clarification since another
study [21] reported that polyP effectively blocks in vivo
pulmonary metastasis of B16BL6 cells by suppression of
neovascularization, whereas it does not affect proliferation
or adhesion to extracellular matrix proteins.

The chain length of polyP may range from 3 to more than
1000 Pi residues; it can be analysed on urea/polyacrylamide
gels stained with Toluidine Blue or DAPI [22–26]. Our
studies performed on mitochondria isolated from rabbit
hearts detected the presence of ∼200 μM (280 pmol/mg of
protein) short-chain polyP with an average chain length
of 25 Pis (Figure 1A). Because polyP is found in small
amounts in mammalian cells, it does not serve as phosphate
or energy storage but is implicated in cell proliferation
[20], angiogenesis [21], apoptosis [27], osteoblast function
[28], blood clotting and inflammation [15,29–31], cell
bioenergetics [12,32], ion channel function [11,33–35] and
nuclear transcription [19]. These new discoveries compelled
us to take a fresh look at this natural polymer that has been
ignored in biochemistry textbooks for a long time.

Sources of polyPs in mammalian cells
PolyPs are also detected in human cells [10,14,17,35,36];
however, the enzyme responsible for polyP generation in
mammalian cells has not been identified yet [4]. Human and
animals could receive a significant amount of polyP with
food and drinking water. PolyPs are legally permitted food
additives (E450–452) [37,38] and are widely used to treat
fish, fish fillet, shrimp and meat products to improve their
water holding capacity, reduce the amount of thaw drip and
increase their freezing capacity. PolyP filters are common
components of water purifying commercial systems. PolyPs
are also used as fertilizers and flame retardants due to
their unique properties, inexpensiveness, non-toxicity and
biodegradability. Furthermore, it has been discovered that
human gastrointestinal tract bacteria (probiotics) produce
polyP and that polyP is responsible for probiotic actions that
protect the intestinal epithelia from oxidant stress and also
improve epithelial injury due to excess inflammation [39]. In-
triguingly, recent studies [40,41] demonstrated that probiotic
administration attenuates myocardial infarction following
ischaemia/reperfusion (I/R) injury and myocardial hyper-
trophy and heart failure (HF) following myocardial infarction
in the rat. PolyP levels were not measured in these studies;
however, it is plausible to speculate that polyP produced by

gut microbiota could also exert a cardioprotective role for the
host organism.

In prokaryotes, polyP is synthesized enzymatically
by polyP kinase 1 (PPK1) via transferring the terminal
phosphate from ATP to the end of the growing polyP
chain and this reaction is fully reversible and may allow
the bacteria to synthesize ATP from stored polyP in
times of starvation and environmental stress [42,43]. Null
mutants of PPK1, with low polyP levels, are deficient in
survival: namely, they show deficient responses to physical–
chemical stresses and predation [42,43]. So far, no PPK1
homologue has been identified in higher-order eukaryotes
even though it is structurally similar to phospholipase D
[44] and, therefore, PPK1 exhibits potential as a novel target
for chemotherapy that would affect both virulence and
susceptibility to anti-bacterial compounds [43]. Moreover, it
has been demonstrated that plasma membrane Ca2 + -ATPase
from human erythrocytes may function as a PPK, i.e. it
exhibits ATP-polyP transferase and polyP-ADP transferase
activities [45]. The mitochondrial F1F0-ATP synthase can
also contribute to polyP generation (see below and [12,32]
for details). Two bacterial enzymes [the second PPK (PPK2)
and polyP–AMP–phosphotransferases (PAP)] use polyP as a
substrate. PPK2 actually resembles mammalian thymidylate
kinase [46]. PAP uses polyP as a substrate to phosphorylate
AMP to ADP, an immediate precursor of ATP. PolyP
is degraded by both endopolyphosphatases (PPNs) and
exopolyphosphatases (PPXs). In mammalians, a long-chain
PPN was purified from rat and bovine brain [47], a human
metastasis regulator protein H-prune was identified as a
short-chain specific PPX [48] and mammalian intestinal
alkaline phosphatase was characterized as a very active PPX
[49]. In addition, 41 % identity has been found between yeast
PPX PP1 gene product and human acid sphingomyelinase-
like phosphodiesterase [50,51]. In the colon, this enzyme
may play anti-proliferative and anti-inflammatory roles via
ceramide generation, reducing the lysophosphatidic acid
formation and inactivating the platelet-activating factor and
mutations in its gene have been found in cancer cells of
the intestines [50]. Interestingly, the human protein H-prune
exhibits 91 % identity with the sequences of yeast PPX1 [51].

Mitochondrial metabolism of polyP in
mammalian cells
At present, very little is known about the molecular details of
polyP metabolism in mammalian cells; however, it has been
demonstrated that newly identified human mitochondrial
NAD kinase utilizes not only ATP but also polyP as the
phosphoryl donor [52]. NAD kinase is the sole NADP+ -
biosynthetic enzyme known to catalyse phosphorylation of
NAD+ to yield NADP+ and plays a role in the defence
against mitochondrial oxidative stress [53]. To date, no
mammalian polyP producing enzymes have been identified;
however, it has been demonstrated that polyP production
in mammalian cells depends on the metabolic state of the
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Figure 1 Mitochondrial polyP detection in healthy and HF cardiac myocytes

(A) The upper panel shows the structure of inorganic polyP. The n represents the number of phosphate residues in the polyP

chain. It could vary from ten to hundreds of units. The right panel image demonstrates polyP detection in freshly isolated rabbit

ventricular myocytes using DAPI as a sensor for polyP (λex = 408 nm, λem = 552–617 nm). The bottom panel shows the

average amount of polyP in rabbit heart mitochondria (left) and gel images of polyP standard and polyP sample from isolated

rabbit mitochondria (right). (B) Original recordings of DAPI fluorescence changes in intact cardiac myocytes stimulated with

5 mM methyl-succinate followed by 1 μM FCCP from control (black) and failing myocytes (red). DAPI fluorescence represents

changes in polyP concentration. (C) Average values of maximal DAPI fluorescence after methyl-succinate addition in control

(black) and HF (red) cells. (D): Average values of basal DAPI fluorescence in control (black) and HF (red) myocytes.

(E) Recording of mitochondrial oxygen consumption in permeabilized rabbit ventricular myocytes upon stimulation of the

mitochondrial respiratory chain with 5 mM succinate and subsequent addition of 1 μM FCCP. (F) Recording of mitochondrial

ATP generation in permeabilized rabbit ventricular myocytes upon addition of 100 μM polyP (with 60 phosphate units) and

subsequent addition of 1 μM FCCP. (G) Summary of the mitochondrial ATP generation in permeabilized rabbit ventricular

myocytes. Modified with permission from [11,12,54]: Seidlmayer, L.K., Gomez-Garcia, M.R., Blatter, L.A., Pavlov, E. and

Dedkova, E.N. (2012) Inorganic polyphosphate is a potent activator of the mitochondrial permeability transition pore in

cardiac myocytes. J. Gen. Physiol. 139, 321–331; Seidlmayer, L.K., Blatter, L.A., Pavlov, E. and Dedkova, E.N. (2012) Inorganic

polyphosphate-an unusual suspect of the mitochondrial permeability transition mystery. Channels 6, 463–467; Seidlmayer,

L.K., Juettner, V.V., Kettlewell, S., Pavlov, E.V., Blatter, L.A. and Dedkova, E.N. (2015) Distinct mPTP activation mechanisms in

ischaemia-reperfusion: contributions of Ca2 + , ROS, pH, and inorganic polyphosphate. Cardiovasc. Res. 106, 237–248.

C©2016 Authors; published by Portland Press Limited



28 Biochemical Society Transactions (2015) Volume 44, part 1

mitochondria [12,32]. Experiments performed on isolated
rat liver mitochondria, cultured intact cells [astrocytes,
human embryonic kidney (HEK)293; 32] and rabbit
cardiomyocytes [12,54] demonstrated that levels of polyP
were increased by substrates of the mitochondrial respiratory
chain and in turn reduced by mitochondrial inhibitor
(rotenone) or respiratory chain uncoupler carbonylcyanide p-
trifluoromethoxyphenylhydrazone (FCCP). Oligomycin, an
inhibitor of mitochondrial F1F0-ATP-synthase, blocked the
production of polyP. These data suggest that in mammalian
cells mitochondrial polyP production is closely related to the
activity of the oligomycin-dependent F1F0-ATP synthase.
However, whether or not F1F0-ATP synthase is polyP
generating enzyme remains to be validated.

We investigated the kinetics of mitochondrial polyP
metabolism [12] in intact ventricular cardiomyocytes isolated
from control rabbits and animals with HF (combined aortic
insufficiency and stenosis model) [55]. The relative changes
in levels of polyP were measured using the fluorescent probe
DAPI, with a protocol optimized specifically for polyP
detection [11,12,56]. As demonstrated in Figure 1(B) addition
of membrane permeable methyl-succinate, the substrate of
the complex II of the mitochondrial respiratory chain,
resulted in an increase in DAPI fluorescence by 36 ± 8 %
(n = 8), indicating significant stimulation of the production
of mitochondrial polyP (Figure 1C). On the other hand,
uncoupling of respiration with FCCP decreased DAPI
fluorescence by 29 ± 4 % (n = 8) presumably due to the
stimulation of polyP hydrolysis. This indicates that polyP
concentration in cardiac myocytes is variable and depends
on levels of energy substrates and the degree of coupling
of the mitochondrial respiratory chain. Moreover, we found
that polyP metabolism was significantly suppressed in
mitochondria of HF myocytes. Addition of methyl-succinate
caused only a moderate increase in DAPI fluorescence
(16 ± 2 %, n = 10; Figures 1B and 1C) [12]. Also, the
basal polyP levels were significantly lower in conditions
of HF (224 ± 21 a.u. (arbitrary units) in HF compared
with 453 ± 80 in control; Figure 1D) [4]. We performed
these experiments in the presence of phosphate but in the
absence of ADP. Under these conditions, the mitochondrial
respiratory chain is active, but its activity is not coupled to
ATP production [57–59]. In a separate set of experiments, we
monitored mitochondrial respiration in permeabilized rabbit
ventricular myocytes [55] and demonstrated that addition of
5 mM succinate induced a 2.9 ± 4-fold increase in the rate of
respiration. This rate was 42 ± 2 % (n = 6) of the maximal rate
of mitochondrial respiration achieved in the presence of 1 μM
FCCP (Figure 1E). Thus, the level of polyP in mitochondria
is dependent on the activity of mitochondrial respiration
rather than the production of ATP. These results suggest
that mitochondria do not use ATP as a substrate for polyP
synthesis. In fact, using mag-Fluo-4 as indirect indicator
for ATP generation [57], we were able to demonstrate that
addition of 100 μM external synthetic polyP (with a chain
length of 60 phosphates, a gift from Dr T. Shiba, Regenetiss
Inc., Japan) to permeabilized rabbit ventricular myocytes

induced a significant increase in mitochondrial ATP levels
(Figures 1F and 1G). Addition of mitochondrial uncoupler
FCCP decreased ATP levels back to basal level indicating
that this ATP generation was dependent on the activity of the
mitochondrial respiratory chain (Figure 1G).

The phosphate groups in polyPs are linked in the same
way that they are in ATP and ADP; this chemical equivalence
means that phosphoryl transfer from polyP to ADP to make
ATP is a relatively simple shift between similar materials,
with essentially no by-products: ADP + (polyP)n ⇐⇒
ATP + (polyP)n–1 [3]. It has been suggested that the
sequestered polyP serves as a storage form of energy which
could be mobilized to rephosphorylate ADP to ATP via
the PPK reaction in prokaryotes [3]. Our data indicate that
a similar mechanism takes place in cardiac myocytes and
one of the enzymes of the mitochondrial respiratory chain
(possibly mitochondrial F1F0-ATP-synthase as discussed
above) facilitates this reaction. Although cells use ATP to
drive synthetic reactions, ATP is not a primary energy source
[60], but rather is an energy transfer molecule that picks
up energy from an energy source and then delivers it to
energy-requiring reactions. The chemical energy content
of ATP is present in the pyrophosphate bonds that link
the second and third phosphate groups of ATP. These
are anhydride bonds and their chemical energy is released
by energetically downhill group transfer reactions of the
phosphate group to other molecules, an activating process
called phosphorylation.

Interestingly, when intact ventricular myocytes were
exposed to simulated I/R, we found that a slow increase
in polyP synthesis during ischaemia was followed by a
significant increase in polyP generation on reperfusion
(Figures 2A and 2B). As we demonstrated before [54],
these conditions of simulated I/R were accompanied by
a significant increase in reactive oxygen species (ROS)
generation (Figures 2C and 2D). Using MitoSOX Red
as sensor for superoxide (O2

− ), we detected increase
in O2

− generation already during ischaemia with only
small additional increase in fluorescence observed during
reperfusion (Figures 2C and 2D). In both control and
polyP-depleted cells, the fluorescence increase was signific-
antly attenuated by MnTBAP, a cell-permeable superoxide
dismutase mimetic (Figure 2D), confirming the fidelity of
O2

− detection with MitoSOX Red. Blocking mitochondrial
Ca2 + uptake through mitochondrial Ca2 + uniporter (MCU)
with 1 μM Ru360 completely prevented ROS generation
during I/R in both control and polyP-depleted (Figures 2C
and 2D) cells. This indicates that Ca2 + entering via MCU
stimulates mitochondrial O2

− generation during ischaemia.
The mitochondrial respiratory chain appeared to be the
main source of O2

− generation since exposure to a
‘mock’ ischaemia solution lacking sodium cyanide prevented
the increase in MitoSOX Red fluorescence (Figure 2D).
Moreover, we found that during ischaemia either polyP
depletion or cyclosporine A [CsA, inhibits mitochondrial
permeability transition pore (mPTP)] treatment led to an
increased mitochondrial O2

− accumulation (Figures 2C and
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Figure 2 Measurement of polyP and ROS levels in control and poly-depleted myocytes during I/R

(A) Original recordings of DAPI fluorescence in control (with overexpressed GFP) and polyP-depleted (PPX) cardiac

myocytes exposed to 20 min of simulated chemical ischaemia followed by a 15 min reperfusion period in normal

Tyrode solution. (B) Average values of maximal DAPI fluorescence at the end of 20 min ischaemia and 15 min

reperfusion in control rabbit ventricular cells. (C) Superoxide generation measured with MitoSox Red during I/R in

control and polyP-depleted (PPX) cells in the absence and presence of 1 μM Ru360 (inhibits mitochondrial calcium

uniporter) and 1 μM CsA (inhibits mPTP). (D) Average amplitude of MitoSox Red fluorescence changes at the end of

ischaemia and at the end of reperfusion in control and polyP-depleted cells. Superoxide scavenger (50 μM MnTBAP,

[5,10,15,20-tetrakis(4-carboxyphenyl)-21H,23H-porphine]manganese(III)chloride) was used to verify the fidelity of MitoSox

Red for superoxide. ‘Mock’ ischaemia solution did not contain NaCN. Modified with permission from [54]: Seidlmayer, L.K.,

Juettner, V.V., Kettlewell, S., Pavlov, E.V., Blatter, L.A. and Dedkova, E.N. (2015) Distinct mPTP activation mechanisms in

ischaemia-reperfusion: contributions of Ca2 + , ROS, pH, and inorganic polyphosphate. Cardiovasc. Res. 106, 237–248.
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Figure 3 PolyP depletion prevents opening of the permeability transition pore induced by mitochondrial Ca2 + overload

(A) Images of control GFP (left) and PPX expressing cardiac myocytes (right). The upper panel shows global GFP fluorescence

at 500–530 nm that reveals the mitochondrial fluorescence pattern in PPX expressing cells and a homogeneously distributed

fluorescence in control cells. The middle panel shows the decrease in DAPI fluorescence in polyP-depleted cells. The

bottom panel shows co-localization of GFP–PPX signal with mitochondria. Mitochondrial membrane potential sensitive dye

tetramethylrhodamine, methyl ester (TMRM) was used as a mitochondrial signal and the degree of overlay is presented

in shades of yellow in the merged image. The bottom panel shows the decrease in DAPI fluorescence in polyP-depleted

cells. (B) Fluorescence spectrum of DAPI (5 μM) loaded myocytes expressing control GFP (black), PPX (red) and control GFP

cells not loaded with DAPI (grey). (C) Original recordings of mitochondrial Ca2 + concentration ([Ca2 + ]m in permeabilized

X-Rhod-1-loaded cells upon stepwise elevation of [Ca2 + ]em from 0.1 to 0.8 to 2 μM and subsequent return to 0.1 μM

in control (black) an polyP-depleted (red) cells. (D) Original recordings of mPTP opening using Calcein Red release from

mitochondria of permeabilized control (black) and polyP-depleted (PPX expressing, red) myocytes. After permeabilization,

cells were exposed to 2 μM Ca2 + and 10 μg/ml alamethicin was added at the end of the experiment to achieve the maximal

Calcein Red release from mitochondria. Modified with permission from [11]: Seidlmayer, L.K., Gomez-Garcia, M.R., Blatter,

L.A., Pavlov, E. and Dedkova, E.N. (2012) Inorganic polyphosphate is a potent activator of the mitochondrial permeability

transition pore in cardiac myocytes. J. Gen. Physiol. 139, 321–331.

2D). Taking into account that this effect was further enhanced
in polyP-depleted cells in the presence of CsA, (Figures 2C
and 2D) it is likely that polyP regulation of O2

− production
is not directly linked to its ability to inhibit Ca2 + -induced
mPTP. Together, these data indicate that mitochondrial Ca2 +

uptake through MCU was stimulating O2
− production

within mitochondrial matrix. Moreover, we found that
polyP was protecting mitochondria from the excessive O2

−

generation. This observation raises the intriguing possibility
that, similar to bacteria, mammalian cells could produce
polyP in response to cell stress and that diminished polyP
synthesis observed in HF myocytes results from the complex

remodelling processes during cardiac hypertrophy and HF.
A recent study [61] determined that in Escherichia coli
bacteria polyP acts as an efficient protein chaperon which
stabilizes proteins in vivo, diminishes the need for other
chaperone systems to survive proteotoxic stress (temperature,
low pH, oxidants) conditions and protects a wide variety of
proteins against stress-induced unfolding and aggregation.
It has been demonstrated that wild-type E. coli strains
generated significant amounts of polyP in response to
oxidative stress. The finding that polyP has stress-protective
chaperone activities that resemble the activity of small heat
shock proteins is very exciting; however, additional research is
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Figure 4 Effects of polyP depletion and CsA on mPTP activity and necrotic cell death following I/R

(A) Normalized traces of Calcein Red fluorescence changes during 20-min ischaemia followed by 15 min of reperfusion in

control (black) and polyP-depleted (red) cells in the absence or presence of 1 μM of CsA (mPTP inhibitor). Inserts show

images of Calcein-loaded cardiomyocytes before and after exposure to I/R. (B) Summary of Calcein Red release from

mitochondria (as percent of basal rate) at the end of ischaemia and reperfusion. (C) Cell death [percentage of lactate

dehydrogenase (LDH) release with respect to basal LDH release rates] measured at the end of ischaemia and reperfusion

in control and polyP-depleted (PPX) cells in the absence or presence of 1 μM CsA. n is the number of hearts used in each

experiment. Modified with permission from [54]: Seidlmayer, L.K., Juettner, V.V., Kettlewell, S., Pavlov, E.V., Blatter, L.A. and

Dedkova, E.N. (2015) Distinct mPTP activation mechanisms in ischaemia-reperfusion: contributions of Ca2 + , ROS, pH,

and inorganic polyphosphate. Cardiovasc. Res. 106, 237–248.
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required to determine the mechanisms of protein aggregation
prevention by polyP and the protein targets of polyP in
mammalian cells.

Inorganic polyP as a calcium sensor for the
mitochondrial permeability transition pore
One of the most intriguing and least intuitive roles of
polyP is its involvement in membrane ion transport. In
1988, Reusch and Sadoff [9], using bilayer techniques,
demonstrated that genetically competent E. coli bacteria
contain an ion channel formed by a complex of polyP and
poly-β-hydroxybutyrate (PHB) [9]. The channel formed by
polyP–Ca2 + –PHB interaction was selective for cations with
a preference for Ca2 + [9,62]. Later a similar polyP–Ca2 + –
PHB channel was isolated from rat liver mitochondria [63].
Interestingly, in addition to the cation selective conductance
state this mitochondrial complex also demonstrated a
high-conductance, weakly-selective, voltage-dependent state.
These properties in many ways reflected the behaviour
of the mPTP as seen in patch-clamp studies of native
mitochondrial membranes [64,65]. Interestingly, the polyP–
Ca2 + –PHB channel of bacterial origin also has this high
conductance state [66] and the transition of the channel
into a high conductance state would most probably be
deleterious for bacterial organisms, raising the question
whether most of the time the bacterial channel is either
closed or is in the low conductance cationic state. The
different bacterial conductance states are reminiscent of
conductance states proposed for the mPTP [67–69]. The
parallels between bacteria and mitochondria also suggest
that similar cationic channels may play a role in normal
mitochondrial function. In support of such notion the polyP–
Ca2 + –PHB complex has been detected in various eukaryotic
organisms and cellular compartments suggesting a potential
physiological role [70]. Currently, the direct test whether a
polyP–Ca2 + –PHB complex indeed forms the pore part of
the mPTP in intact mitochondria remains an experimental
challenge. Nonetheless, the idea that the presence of polyP
in intact mitochondria is an essential condition for mPTP
opening remains an intriguing hypothesis. Indeed, it was
shown that mitochondria of cultured cells with reduced
levels of polyP are more resistant towards Ca2 + -induced
mPTP opening [35]. We demonstrated that enzymatic
depletion of polyP from cells achieved by overexpression of
the mitochondria-targeted yeast PPX (MTS–GFP–scPPX1;
Figures 3A and 3B) resulted in decreased openings of
Ca2 + -induced mPTP in permeabilized rabbit ventricular
cardiomyocytes. In contrast with non-excitable cells [35],
polyP depletion did not affect the ability of mitochondria
to accumulate Ca2 + (Figure 3C); however, significantly
decreased Ca2 + -induced openings of mPTP (Figure 3D) and
prevented Ca2 + -induced loss of mitochondrial membrane
potential (result not shown) indicating that polyP is a potent
activator of Ca2 + -induced mPTP. On the other hand, when
mPTP activity was monitored in conditions of simulated I/R
accompanied by massive ROS generation, polyP depletion

was not able to prevent mPTP opening and cell death.
In fact, as we demonstrated earlier [54], ROS generation
and cell death was significantly increased under conditions
of I/R in polyP-depleted cells. We found different modes
in mPTP activity during ischaemia and reperfusion and
that these modes were affected differently by polyP. In
agreement with our data obtained on permeabilized cells [11],
polyP depletion prevented Ca2 + -induced low conductance
mPTP mode observed during ischaemia, however it did not
affect ROS-mediated mPTP opening in the high-conductance
mode during reperfusion (Figures 4A and 4B). Interestingly,
polyP-mediated mPTP opening during ischaemia was not
associated with cell death (Figure 4C), whereas ROS-
mediated mPTP opening during reperfusion was associated
with increased cell death. Furthermore, cell death during
reperfusion was significantly enhanced in polyP-depleted
cells (Figure 4C). These exciting findings indicate that polyP
has a dual effect on mPTP activity, promoting the transient
opening of Ca2 + -induced mPTP opening which can prevent
mitochondria from Ca2 + overload. On the other hand, polyP
was required for protection against oxidative stress-induced
mPTP opening and cell death. It is unclear at this point,
whether this effect of polyP was related to the recently
discovered chaperone activity of polyP or the direct effect
of polyP on mPTP. Recent data suggest that dimers of the
F1F0-ATP synthase can form channels with characteristics
similar to the mPTP [71]; however, the molecular details
of channel formation by F1F0-ATP synthase remain unclear.
Particular attention has been brought to the subunit c of the
F1F0-ATP synthase as a potential component of the mPTP
[72,73]. Interestingly, an interaction of polyP–Ca2 + –PHB
complex with subunit c of F1F0-ATP synthase was reported
back in 2005 [63] and therefore it is possible that polyP
could provide a fine tuning of mPTP regulation or actually
mediate Ca2 + transfer through mPTP. The physiological
importance of transient (low-conductance) mPTP opening,
which does not lead to cell death [74], has been suggested
to mediate ischaemic pre-conditioning-induced protection
[75,76] via (i) regulation of the mitochondrial matrix Ca2 +

concentration [68]; (ii) induction of mild mitochondrial
uncoupling [77]; and (iii) regulation of mitochondrial ROS
release [78]. We now suggest that inorganic polyP also
contributes to the mPTP opening in a low-conductance
mode. Furthermore, our findings show that depletion of
polyP was associated with enhanced cell death on reperfusion,
indicating that stimulation of polyP production rather than
inhibition of Ca2 + uptake on reperfusion could be beneficial
for cardioprotection.

Concluding remarks
The ubiquity of polyP and the variation in its chain length,
location and metabolism indicate the relevant functions
of this polymer, including those in animal systems. The
current data reviewed here are consistent with a key role
for polyP in activation of the mPTP and in regulation of
stress-induced cell death in cardiac myocytes. We speculate

C©2016 Authors; published by Portland Press Limited
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that endogenous levels of mitochondrial polyP reflect the
ability of the cell to survive stress conditions. Mitochondrial
polyP concentration is subject to remodelling processes in
HF and during I/R. In this sense, a more comprehensive
understanding of polyP biochemistry during cardiovascular
stress may unravel additional targets that could be effective in
the controlling mPTP activity and shed new light on polyP
metabolism.
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