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This paper deals with the forward position analysis of a 3-DOF
parallel mechanism module, which forms the main body of a
5-DOF reconfigurable hybrid robot named TriVariant. The
TriVariant is a modified version of the Tricept robot, achieved by
integrating one of the three active limbs into the passive one. The
analytical method is employed to obtain the forward position so-
lutions. It shows that the forward position analysis of the TriVari-
ant is much simpler than that of the Tricept.
�DOI: 10.1115/1.2125971�

1 Introduction
Forward position analysis is one of the important issues in the

development of parallel mechanisms. Approaches for solving the
problem can be classified into two categories, i.e., analytical ap-
proach and numerical algorithm. The analytical approach is fo-
cused on finding the complete set of solutions using the procedure
that can usually be implemented in two steps: �1� formulate the
kinematic constraints into a set of nonlinear equations, and �2�
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generate an end polynomial equation having a single unknown by
means of certain elimination methods. As a result, all configura-
tions can be found by solving the end polynomial equation �1–7�.
The complexity of the polynomial approach depends upon the
geometry of the object and proper choice of elimination tech-
niques. The numerical approach can be used to find the solutions
close to the initial estimate using root search algorithms or opti-
mization techniques �8�.

This paper deals with the forward position analysis of the
3-DOF parallel mechanism module which forms the main body of
a newly invented hybrid robot named TriVariant �Fig. 1� �9�. The
research interests will be focused on finding the number of its
forward position solutions in comparison with the corresponding
results of the Tricept �10–12�. As shown in Fig. 1, the module
consists of a base and a mobile platform connected by three kine-
matic chains �limbs�. Two are identical UPS limbs and the other is
a UP limb whose output link is fixed with the mobile platform.
Here, U, P and S represent the universal, prismatic, and spherical
joints respectively, and P denotes that the corresponding joint is
active. The TriVariant can be considered as a simplified version of
the Tricept robot, achieved by integrating one of the three active
limbs into the passive one while keeping the required type and
degrees of freedom. For simplicity, we use “Tricept” and “TriVari-
ant” to refer to the 3-DOF modules in what follows.

2 System Description
Figure 2 shows a schematic diagram of the TriVariant, where Bi

for i=1, 2, 3 represent the centers of the U joints and Ai for i=1,
2 the centers of the S joints. A3 is the intersection of the axial axis
of the UP limb and its normal plane in which Ai �i=1, 2� is
located. Since limb B3A3 is fixed with the mobile platform, A3 can
also be considered as the reference point of the mobile platform.
Similar to Tricept 605 �9�, it is assumed that the rotation axes of
the outer ring of the U-joints of the three limbs are parallel and
located in the same plane.

A fixed coordinate system B3−x3y3z3 is established with the
center of the U joint of the UP limb being taken as the origin B3,
the rotation axis of its outer ring being the x3 axis and the z3 axis
being vertically placed as shown. Meanwhile, a body-fixed coor-
dinate system A3−u3v3w3 is attached to the UP limb. The w3 axis
is coincident with the axial axis of the limb, pointing from B3 to
A3. The u3 axis is parallel to the cross product of two vectors
along y3 and w3 axes, and the v3 axis satisfies the right-hand rule.
Thus the orientation matrix R3 of A3−u3v3w3 with respect to B3
−x3y3z3 can be formulated by rotating angles �3 about the x3 axis,
and �3 about the v3 axis.

R3 = Rot�x3,�3�Rot�v3,�3�

= � c�3 0 s�3

s�3s�3 c�3 − s�3c�3

− c�3s�3 s�3 c�3c�3
�

= �u3 v3 w3� �1�
where s# and c# denote sin�#� and cos�#�, and u3, v3, and w3 are
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the unit vectors of the u3, v3, and w3 axes, respectively.

3 Forward Position Analysis
Forward position analysis of the TriVariant is concerned with

the determination of the position vector of A3 given the limb
lengths and the geometry of both base and platform. The closed-
loop constraint equation for each limb can be generated as fol-
lows:

r3 = q3w3 �2�

r3 = bi + qiwi − ai, i = 1,2 �3�

where qi and wi are the length and unit vector of the ith limb, bi
and ai are the position vectors of Bi and Ai, respectively, and

bi = �bix biy 0�T, ai0 = �ai0x ai0y 0�T, ai = R3ai0 �4�

ai0 denotes the position vector of Ai measured in A3−u3v3w3.

3.1 General Case. Without losing generality, the end polyno-
mial equation for the TriVariant having general geometry given by
Eq. �4� will be formulated to obtain all possible configurations for
a given set of limb lengths.

Rewrite Eq. �3� as

qiwi = r3 + ai − bi, i = 1,2 �5�
Taking the Euclidean norm on both sides of Eq. �5� and keeping in
mind r3

Tai=0, leads to

Fig. 1 The TriVariant robot
Fig. 2 Schematic diagram of the TriVariant
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qi
2 = q3

2 + ai
2 + bi

2 − 2r3
Tbi − 2ai

Tbi, i = 1,2 �6�

where ai and bi are the lengths of A3Ai and B3Bi, respectively.
Substituting Eqs. �1�, �2�, and �4� into Eq. �6� yields

di1 + di2s�3 + di3c�3 = 0, i = 1,2 �7�
where

di1 = ci + 2bix�q3s�3 + ai0xc�3�

di2 = 2biy�ai0xs�3 − q3c�3�

di3 = 2ai0ybiy

ci = qi
2 − q3

2 − ai
2 − bi

2

Substituting trigonometric identities

s�3 =
2t�

1 + t�
2 , c�3 =

1 − t�
2

1 + t�
2 , s�3 =

2t�

1 + t�
2 , c�3 =

1 − t�
2

1 + t�
2

t� = tan��3/2�, t� = tan��3/2�
into Eq. �7� leads to

�i2t�
2 + �i1t� + �i0 = 0, i = 1,2 �8�

where

�i2 = ei1 − ei3, �i1 = 2ei2, �i0 = ei1 + ei3

ei1 = �ci − 2ai0xbix�t�
2 + 4q3bixt� + �ci + 2ai0xbix�

ei2 = 2biy�q3t�
2 + 2ai0xt� − q3�, ei3 = 2ai0ybiy

Multiplying t� on both sides of Eq. �8� results in two complemen-
tary equations which, together with Eq. �8�, can be written in a
matrix form

Kt = 0 �9�
where

K = �
0 �12 �11 �10

�12 �11 �10 0

0 �22 �21 �20

�22 �21 �20 0
�

t = �t�
3 t�

2 t�
1 1�T

The necessary condition for Eq. �9� to have nontrivial solutions is

det K = 0 �10�
Expanding Eq. �10� yields an eighth-order polynomial equation
because all terms in the equation are quadratic functions of t�.

�12�20��12�20 − �11�21 − 2�10�22� + �10�21��12�21 + �11�22�

+ �22��10
2 �22 + �11

2 �20� = 0 �11�

When t� is determined, multiplying �22 for i=1 and �12 for i=2 on
both sides of Eq. �8� and doing subtraction, results in the explicit
expression of t� in terms of t�

t� =
�12�20 − �10�22

�11�22 − �12�21
�12�

This leads to the determination of �3 and �3 using the trigonomet-
ric identities. It can be seen that the above procedure leads to a
two-equation system in echelon form, the first equation is of
eighth order and the remaining is linear. The result is exactly
coincident with the forward position analysis of the fully-parallel
mechanisms for the orientation of a rigid body with a fixed point
�5�.

It was reported in �12� that the order of the end polynomial
equation of the Tricept is 24, meaning that it may have at most 24

real solutions. Whilst, it is easy to see from Eq. �11� that the order
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of the end polynomial equation of the TriVariant having a general
geometry is 8, resulting in at most 8 real solutions though the type
and degrees of freedom of two robots are identical. The difference
in the number of solutions will be explained in Sec. 5.

3.2 A Special Case. As shown in Fig. 2, if B3−x3y3z3 is
placed in such a way that either B3B1 or B3B2 is coincident with
the x3 axis, i.e., the rotation axis of the outer ring of the U joint of
the UP limb, the position vector of Bi in B3−x3y3z3 becomes

bi = �bix biy 0 �T = �bi 0 0 �T �13�

For simplicity, let i=1, then b1x=b1 and b1y =0, leading to d12
=d13=0. As a result, Eq. �7� for i=1 is simplified as

d11 = A1s�3 + B1c�3 + C1 = 0 �14�

where

A1 = 2q3b1, B1 = 2a10xb1, C1 = c1

Thus, �3 can be explicitly obtained by

�3 = 2 arctan�− A1 � �A1
2 + B1

2 − C1
2

C1 − B1
	 �15�

On this basis, since b2y�0, Eq. �7� for i=2 becomes

A2s�3 + B2c�3 + C2 = 0 �16�

where

A2 = 2b2y�a20xs�3 − q3c�3�, B2 = 2a20yb2y

C2 = c2 + 2b2x�q3s�3 + a20xc�3�

This means that �3 can also be explicitly achieved by

�3 = 2 arctan�− A2 � �A2
2 + B2

2 − C2
2

C2 − B2
	 �17�

It is easy to see that for this special case the TriVariant may
have at most 4 real forward position solutions. Obviously, the
same conclusion can be drawn when B3B2 is coincident with the
x3 axis.

4 An Example
The dimensions of the TriVariant given in �13� is employed for

the forward position analysis, with �B1B2B3 and �A1A2A3 shown
in Fig. 2 being equilateral triangles, and the position vectors of Bi
in B3−x3y3z3 and Ai in A3−u3v3w3 being given by

b1 = �519.62 − 300 0 �T

b2 = �519.62 300 0 �T

a10 = �103.92 − 60 0 �T

a20 = �103.92 60 0 �T

In order to justify the results of the forward position analysis,
the position vector of A3 is arbitrarily chosen within the work-
space as follows:

r3 = �450 350 850 �T �18�

This allows a set of limb lengths to be determined by the inverse
kinematic analysis as a reference for the forward kinematics.

q1 = 1011.69, q2 = 790.19, q3 = 1023.47

For the given geometry, it is easy to see that Eqs. �11� and �12�
have to be used for the forward position analysis because neither
B3B1 or B3B2 is coincident with the x3 axis. Substituting the speci-

fied data into Eq. �11� yields an eighth-order polynomial equation,
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11.9981t�
8 − 67.6058t�

7 + 72.9114t�
6 + 137.9001t�

5 − 219.6885t�
4

− 22.7164t�
3 + 134.9889t�

2 − 52.6414t� + 5.7647 = 0 �19�
Solving Eq. �19� using Matlab function “root” results in four real
and two pairs of conjugate complex solutions as follows:

t� = 0.2316, 0.2714, 2.6074, 2.9308,

− 1.1067 ± 0.0078i, 0.9034 ± 0.0225i

Given a real solution of t� , t� can then be solved by Eq. �12�.
Consequently, the corresponding �3 , �3, and three components of
r3 can finally be determined as shown in Table 1. The configura-
tions of the robot associated with these solutions are shown in Fig.
3.

Examination of Table 1 indicates that solution No. 1 is the one
associated with the data given in �18� since it satisfies:

�3 � �− 90 ° ,90 ° �, �3 � �− 90 ° ,90 ° �

5 Discussion
In this section, we explain the difference between the number of

solutions of the end polynomial equations of the Tricept and the
TriVariant.

In the first place, the forward position problem of the Tricept
involves the solution of three unknowns in terms of the orientation
angles and length of the UP limb, leading to a 24th-order end
polynomial equation as reported in �12�. Whilst, the same problem
for the TriVariant involves two unknowns in terms of the orienta-
tion angles of the UP limb, leading to an eighth-order end poly-
nomial equation.

Secondly, it concluded in �12� there are at most 24 real solu-
tions for the Tricept and a numerical example showed that 4 pairs
of real solutions could be found. One solution in each pair is the

Table 1 Solutions of forward kinematics of the TriVariant

No. �3�deg� �3�deg� r3

1 −22.38 26.08 �450.00 350.00 850.00 �T

2 −156.39 30.37 �517.45 353.65 −809.12 �T

3 156.39 138.03 �684.38 304.77 697.30 �T

4 22.38 142.32 �625.59 308.42 −749.01 �T

Fig. 3 Solutions of forward kinematics of the TriVariant robot,

„a…–„d… correspond to solutions 1–4, respectively

JANUARY 2006, Vol. 128 / 321

f Use: http://www.asme.org/about-asme/terms-of-use



Downloaded From
negative value of the other and they both constitute a pair of
mutual mirror image configuration with respect to the base. This is
because the UP limb length for one solution is identical in mag-
nitude but opposite in sign to the other. Note that this is unavoid-
able in mathematics since the sign of the UP limb length cannot
be constrained to be positive in the problem formulation. Note
that the mirror image solutions merely make sense in mathematics
and they thereby should be regarded as extraneous solutions. As
for the TriVariant, no mirror image solutions are found because
the UP limb length is positive although its end polynomial equa-
tion in general form has at most eight real solutions. Particularly,
when the rotation axis of the outer ring of the U joint of UP limb
is coincident with B3B1 or B3B2, 4 real solutions can be found in
an explicit manner.

6 Conclusions
Utilizing the analytical method this paper deals with the for-

ward position analysis of the 3-DOF parallel mechanism of a
newly invented hybrid robot named TriVariant. It is found that the
order of the end polynomial equation of the TriVariant having
general geometry is 8, leading to at most 8 real solutions. Particu-
larly, 4 real solutions can directly be obtained when the rotation
axis of the outer ring of the U joint of the UP limb is coincident
with one side of the base triangle. Therefore, we can conclude that
the formulation and solution of the forward kinematic problem of
the TriVariant are much simpler than those of the Tricept.
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