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ABSTRACT 

Current statistical model needs to pre-define the value of 
maximum accelerations of maneuvering targets. So it may be 
difficult to meet all maneuvering conditions. In this paper a 
novel adaptive algorithm for tracking maneuvering targets is 
proposed. The algorithm is implemented with fuzzy-controlled 
current statistic model adaptive filtering and unscented 
transformation. The Monte Carlo simulation results show that 
this method outperforms the conventional tracking algorithm 
based on current statistical model. 
 
Keywords: Current statistical model; Fuzzy logic; Unscented 
transformation 

 
INTRODUCTION 

The problem of tracking maneuvering targets has received 
a great of attention. The key to this problem lies in building the 
optimal target motion model. Various mathematical models of 
target motion have been developed over the past three decades, 
among which interacting multiple model (IMM) and current 
statistical model (CSM) are representative [1]. The current 
statistical model is in essence a Singer model modified to have 
a nonzero mean of the acceleration. Since the target 
acceleration hasn’t always zero mean at any moment, the CSM 
works better than Singer model in practice. But the 
performance of CSM depends on three parameters: 
maneuvering frequency α , positive maximum acceleration 

maxa  and negative maximum acceleration maxa− , especially the 
last two. When people give a large maxa and maxa−  a constant 
value, if the target is in no-maneuvering or a lower 
acceleration, the system variance will be large and tracking 
precision is low; If the target is maneuvering in a high 
acceleration, the system variance will be small, tracking 
precision is high. Since in CSM maxa and maxa−  pre-defined, 
they can’t adaptively adjust in tracking process to suit to 
different movement of target. For solving this problem, many 
om: https://proceedings.asmedigitalcollection.asme.org on 06/30/2019 Terms of Us
algorithms have been studied. Jing [2] uses a pair of parallel 
filters to adapt to different cases of movement by the 
information fusion technique together with the CSM and BP 
neural network. But this algorithm’s performance relies on the 
training data of neural network. Ji [3] uses fuzzy method to 
select the best maxa  and maxa−  from the discrete acceleration 
set. The shortcoming is the discrete acceleration set can’t 
consist of all maneuvering conditions. In this paper, we propose 
a tracking method based on a fuzzy filter to cope with this 
problem. This method incorporates fuzzy inference in a 
conventional CSM filter by the use of a set of fuzzy if-then 
rules. Given the measure error and change-of-error in the last 
prediction, these rules are used to determine the scale parameter 
β  to adjust maxa and maxa− . The tracker has several 
advantages: quickly adjusting the magnitude of maxa and maxa−  
in response to changes in target movement; making better 
decisions by taking into consideration several different or even 
conflicting situations at the same time. 

The paper is organized as follows. Section 2 describes the 
fuzzy-controlled current statistic model and adaptive filtering 
(FCSMAF) algorithm. Section 3 gives the simulation result. 
Concluding remarks are given in Section 4. 

 
FUZZY-CONTROLLED CURRENT STATISTIC MODEL 
AND ADAPTIVE FILTERING 

First we give a brief introduction about CSM. The CSM 
algorithm assumes that when a target is maneuvering with 
certain acceleration, its acceleration during the next period is 
limited within a range around the current acceleration. Hence it 
is not necessary to take all possible values of maneuvering 
acceleration into consideration when modeling the target 
acceleration probability. A modified Rayleigh density function 
whose mean is the current acceleration is utilized, and the 
relationship between the mean and variance of Rayleigh density 
is used to set up an adaptive algorithm for the variance of 
maneuvering acceleration [4]. 
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From (1) we can see since maxa and maxa−  is a constant, if the 
target is in no-maneuvering or a lower acceleration, the system 
variance will be large and tracking precision is low; If the target 
is maneuvering in a high acceleration, the system variance will 
be small, tracking precision is high. The main shortcoming of 
the CSM is that in tracking process CSM can’t adaptively 
adjust maxa and maxa−  according to target maneuvering 
conditions. 

In the above CSMAF, since maxa  is predefined and affects 
the system variance, we use a fuzzy system to modify the value 
of maxa  in order to get the most appropriate level in every 
case.  

The fuzzy system is characterized by a set of fuzzy rules. 
Based on the error and change of error in the last prediction, 
these rules determine the magnitude of maxa  in CSM. 
Therefore, the fuzzy decision system consists of two input 
variables and one output variable. Assumed that the dimension 
of measurement is equal to 2, the input variables ( )E k  and 

( )E kΔ  at the kth scan are defined by 
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where 1( )E k , 2 ( )E k  and 1( )E kΔ , 2 ( )E kΔ  are normalized error 
and change of error of each component of measurement, 
respectively. 1( )E k  and 1( )E kΔ  are defined by [5]. 

The fuzzy sets for the input variables ( )E k  and ( )E kΔ  
are labeled as the linguistic terms of LP (large positive), MP 
(medium positive), SP (small positive), and ZE (zero). These 
membership functions are defined by the trapezoidal function 
shown in Figure 1. The output variable is scale factor β . The 
fuzzy sets for β  are labeled in the linguistic terms of EP 
(extremely large positive), VP (very large positive), LP (large 
positive), MP (medium positive), SP (small positive), and ZE 
(zero). The specific membership is defined by triangular 
functions shown in Figure 2. Given the range of maxa , e.g. 

[ ]max 1 2,a a a∈ , the updated maxa  is calculated as 

( )max 1 2 1a a a a β= + −                      (3) 
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Figure 1 Membership functions for the input variables
 

nloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/30/2019 Terms of Us
 
 

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Output: β

D
eg

re
e 

of
 m

em
be

rs
hi

p

ZE SP MP LP VP EP

 
 
 
 

With the input and output variables defined above, a fuzzy 
rule can be expressed in Table 1. The rules were obtained by 
interviewing some defense experts [5]. 
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In tracking applications, target dynamics is usually modeled 
in Cartesian coordinates, while the measurements are directly 
available in the original sensor coordinates, which maybe give 
rise to nonlinear problem. Recently Julier and Uhlmann 
developed a new nonlinear filter (unscented filter) based on 
unscented transformation (UT) [6]. Some simulation results 
have shown that the unscented filter leads to more accurate 
results than the classical extended Kalman filter (EKF) [7]. So 
in this paper we use the UT to dealing with non-linear problem 
instead of the linearization. 

Without loss of generality one dimension FCSMAF is 
derived. The discrete state equations is 

( ) ( )( 1) ( ) wk k a k w k+ = + +x Fx G B            (4) 
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Figure 2 Membership functions for the output variables

Table 1 Fuzzy associations for β
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and ( )w k  is a zero mean white noise sequence with variance 
2 22w aσ ασ= . The measurement equation is 

( )( ) h ( ) ( )k k k= +y x v                         (5) 
where ( )(k) ~ 0,Nv R , R is measurement noise covariance. 

According to Eqs. (4) and (5) the UFCSMAF equations are 
as follows: 
(1) Initialization: 
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The associated weights of sigma points are 
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where λ  is a scaling parameter and ( )( ) ( 1)
i

n kλ+ −x P  is the 

thi  row or column of the matrix square root of 
( ) ( 1)n kλ+ −x P . 
(3) Calculate predicted state and its covariance 
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(4) Calculate predicted measurement and its covariance 
( )( | 1) h ( | 1)i ik k k k− = −ξ χ                     (12) 
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(5) Calculate filter gain 
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(6) Calculate maximum acceleration 

Fuzzy system
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( )
( )

E k
a

E k
⎧

⎯⎯⎯⎯⎯→⎨Δ⎩
                       (17) 

(7) Calculate updated state and its covariance 
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SIMULATION AND PERFORMANCE ANALYSIS 

We will apply the filter (FCSMAF) described by the above 
algorithm to a target tracking problem and compare its 
performance to that of a conventional filter (CSMAF), i.e. filter 
based on CSM and UKF. Here we use the root mean squares 
error (RMSE) as the criterion. 

The target initial position is (80km, 50km) and initial 
velocity is (-0.3km/s, 0km/s). In first segment from 0 to 40s, the 
target moves with a constant velocity (-0.3km/s, 0km/s); in the 
second segment from 41 to 60s, the target makes a left turn 
with a centripetal acceleration 30m/s P

2
P; in the third segment 

from 61 to 100s, the target moves with a constant velocity; in 
the fourth segment from 101 to 150s, the target makes a right 
turn with a centripetal acceleration 15m/sP

2
P; in the fifth segment 

from 151 to 180s, the target moves with a constant velocity; in 
the sixth segment from 181 to 200s, the target makes a left turn 
with a centripetal acceleration 35m/sP

2
P; in the seventh segment 

from 201 to 220s, the target moves with a constant velocity; in 
the eighth segment from 221 to 236s, the target makes a right 
turn with a centripetal acceleration 45m/s P

2
P; in the last segment 

from 237 to 270s, the target moves with a constant velocity. 
Here two distributed observers measure the target line-of-

sight (LOS) angles. In Cartesian coordinate, the measurement 
equations are non-linear. The observers fly in a circle of radius 
3km and at the speed of 0.3km/s. Their angular measurements 
standard deviations both are 1mrad. The center of circle of 
observer 1 locates in (10km, 25km). The center of circle of 
observer 2 locates in (10km, 45km). 

The others parameters are as follows: 1T s= ; 0.1α = ; 
2

max 8  /a g m s= ; 0λ = . 
We carry out 100 Monte Carlo runs and give the results of 

the position and velocity along x-axis in Figure 3-4. Since the 
results along y-axis similar to that along x-axis, we don’t give 
the results along y-axis. 
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 Figure 3 RMSE of position along x-axis
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From the Figure 3-4, we can see the performance of the 
FCSMAF always outperforms that of CSUKF in both non-
maneuvering and maneuvering motions. These plots also show 
the convergence rate of FCSMAF faster than that of CSMAF. 
However, in continuous sharp maneuvering motion (after 180s 
in these figures), the RMSE of FCSMAF is relatively large. 
How to resolve it is our issue in next step. 
 

CONCLUSIONS 
A FCSMAF algorithm has been presented in this paper for 

tracking a maneuvering target. The theoretic analysis and 
computer simulations have confirmed that the presented 
adaptive algorithm has a robust advantage over a wide range of 
maneuvers and overcomes the shortcoming of the traditional 
current statistic model and adaptive filtering algorithm.  

Future work will need to address the better model 
characterizing target maneuvers.  
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Figure 4 RMSE of velocity along x-axis 
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