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ABSTRACT 
Dictionary-based disambiguation (DBD) is a very popular 
solution for text entry on mobile phone keypads but suffers 
from two problems: 1. the resolution of encoding collision 
(two or more words sharing the same numeric key 
sequence) and 2. entering out-of-vocabulary (OOV) words. 
In this paper, we present SHRIMP, a system and method 
that addresses these two problems by integrating DBD with 
camera based motion sensing that enables the user to 
express preference through a tilting or movement gesture. 
SHRIMP (Small Handheld Rapid Input with Motion and 
Prediction) runs on camera phones equipped with a 
standard 12-key keypad. SHRIMP maintains the speed 
advantage of DBD driven predictive text input while 
enabling the user to overcome DBD collision and OOV 
problems seamlessly without even a mode switch. An initial 
empirical study demonstrates that SHRIMP can be learned 
very quickly, performed immediately faster than MultiTap 
and handled OOV words more efficiently than DBD.  
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INTRODUCTION 
With an estimated 4 billion units in use in December 2008 
[9], mobile phones have already become the most popular 

computing device in human history. Their portability and 
communication capabilities have revolutionized how people 
interact with each other. However, despite the rapid growth 
of mobile phones, text entry on small devices remains a 
major challenge. Due to trade-offs in both size and 
compatibility, most mobile phones today are equipped with 
a 12-key keypad (Figure 1). This keypad is effective for 
dialing phone numbers but not for editing contact lists, 
composing SMS messages or writing emails. Other input 
devices, such as mini QWERTY keyboards and touch 
screens are on the rise, but the 12-button keypad-based 
mobile phones are still, and will likely to be for years to 
come, the majority in the market. 

One fundamental difficulty in text entry using a 12-key 
keypad is that the mapping of 26 alphabet characters to the 
12 keys is inherently ambiguous. In the ITU E.161 standard 
[8], one numeric button corresponds to 3 or 4 alphabet 
characters on the keypad (Figure 1). All mobile text input 
techniques relying on the 12-key keypad have to resolve the 
ambiguity that arises from this one-to-many mapping. 

 

Figure 1. The standard 12-key telephone keypad, character 
layout follows the ITU E.161 standard [8] 

Most disambiguation methods can be categorized into the 
following two categories: 

Action Based Disambiguation. Users rely on multiple key 
presses (e.g. MultiTap, TNT [7]), concurrent chording [19], 
tilting [20] or motion [21] to select one character from the 
multiple  alphabetical characters on each key.  
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Linguistic Disambiguation. Also known as predictive input, 
these methods use redundant information in language to 
disambiguate users’ input when entering standard English 
words. Linguistic knowledge can be leveraged either 
through Dictionary-based Disambiguation (DBD e.g. T9 
[5]), character level N-gram models (e.g. LetterWise [14]), 
or a combination of both. Besides disambiguating uncertain 
input strings, linguistic knowledge can also be used for   
predicting users’ future intention (a.k.a. word completion 
[24, 25]).   

Methods in both categories have their unique strengths and 
weaknesses. Action based disambiguation allows users to 
enter any character deterministically, but requires additional 
sequential or concurrent actions.  DBD input techniques 
such as T9 can achieve approximately 1.007 KSPC (Key 
Stroke Per Character) for words that are in the dictionary 
[14]. However, they depend on an alternative input method 
to enter words that are not in the dictionary known as out-
of-vocabulary (OOV) words and suffer from the encoding 
collision problem (to be detailed in the next section). 
Character level n-gram model based disambiguation, such 
as LetterWise [14], can achieve a KSPC that is close to 
DBD and works for OOV words; however, continuous 
visual attention is required to confirm suggested characters 
after each key press.  

In this paper, we present a novel method called SHRIMP1  
(Small Handheld Rapid Input with Motion and Prediction) 
which enable the user to handle the collision and OOV 
problems of DBD input more easily. SHRIMP is a 
predictive text input method based on Vision TiltText [21] 
and runs on camera phones equipped with a standard 12-
button keypad. SHRIMP is as effective as conventional 
DBD when entering unambiguous in-dictionary words. 
SHRIMP uses seamlessly integrated concurrent motion 
gestures to handle ambiguous dictionary words or OOV 
words without mode switching.    

RELATED WORK 

MultiTap 
MultiTap is perhaps the most popular text entry method for 
mobile phones. It requires the user to press the key labeled 
with the desired character repeatedly until the correct 
character appears on the screen. MultiTap is simple, 
unambiguous but tedious. It has an average KSPC of 2.03 
[17]. 

                                                           
1 The method presented in this paper, SHRIMP, is named in the 
tradition of SHARK [27] and Fisch [24]. SHARK requires a 
relatively large touch screen for the virtual keyboard overlay; 
Fisch is originally designed for a small touch screen and can be 
extended to a touch-ball or a joystick [25], SHRIMP works on 
unmodified camera phones equipped with a standard 12-key 
keypad. 

Vision TiltText 
Vision TiltText by Wang et al [21] is a remake of the 
TiltText input method by Wigdor and Balakrishnan [20]. 
Instead of using an accelerometer, Vision TiltText uses the 
built-in camera on a phone to detect motion so that it can 
run on unmodified mainstream camera phones. 
Implementation details can be found in [20] and [21]. With 
the help of a concurrent gesture movement, Vision TiltText 
can achieve 1 KSPC on any character. However, moving a 
cell phone left and right for entering about 60% of 
characters is an overhead which can be further reduced. In 
this paper, we present SHRIMP that combines Vision 
TiltText with DBD. SHRIMP can minimize the concurrent 
movement requirement of Vision TiltText when entering 
in-dictionary words but leverage vision TiltText when 
entering OOV words. 

Predictive Input 
Dictionary based disambiguation (DBD) has been well-
researched since the 1970s [18].  A popular commercial 
implementation of this kind is marketed as T9 by Tegic 
Communications, a former subsidiary of AOL and now 
Nuance Communications Inc. DBD uses a dictionary to 
detect all the possible words that match users’ numeric 
keypad input. For example, the numeric sequence 2-6-6-
7-8-8-3-7 will result in “computer” because that is 
the only English word in the dictionary that meets the 
constraints defined by the input string, When multiple 
words in the dictionary map to the same numeric string 
(encoding collision), manual selection is needed if the 
intended word is not displayed as the first choice. For 
example, the sequence 6-3 may mean either “of” or “me”, 
while the sequence 2-5-6-8-3 could mean “cloud”, 
“aloud” or “clove”. In an extreme situation, this 
encoding collision problem has caused the “SMS 
generation” to accept “book” as “cool” since the former 
is more frequent in formal English hence presented as the 
first choice and many users don’t bother to change it to the 
latter [22]. Language models [12] can be used to predict the 
more likely one from the colliding candidates [16], but they 
cannot totally eliminate uncertainty. Another problem is 
that DBD only works when the user enters English words 
that are in the dictionary. Both Dunlop and Crossan [2] and 
Mackenzie et al. [14] questioned the flexibility of such a 
dictionary based approach.  Person names, place names, 
company names, new product names, abbreviations, 
acronyms, or combinations of letters and numbers are 
frequently used in mobile environment but are not likely in 
the dictionary. According to Jansen et al. [11], 20% of 
Twitter posts mention specific product and brand names. 
Dunlop summarized the dilemma well: “the dictionary 
method is not a sufficient input method on its own but 
having two modes is likely to lead to great confusion” [2].  

OOV words can be handled with additional time consuming 
work around steps. For example, the following approach is 
usually implemented in commercial products running DBD 
input such as T9 (used in mobile phones from Nokia, 
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Samsung LG and others). For an OOV word, the user can 
use the “UP” and “DOWN” arrow key to navigate though 
the character candidates from each key press and use the 
“RIGHT” arrow button to confirm character after character. 
Similarly, collision words are handled by navigating 
through the multiple matching words via the “UP” and 
“DOWN” arrow if the intended word is not the most 
frequent one.  In this paper, we show that SHRIMP is a 
dictionary based predictive input method that supports the 
entry of any word efficiently without mode switching. 

THE DESIGN OF SHRIMP 

DBD as Regular Expression Matching 
Predictive text entry via DBD can be considered a regular 
expression [1] matching problem and SHRIMP can be 
defined as a natural upgrade of DBD under the regular 
expression matching framework. 

When a user starts to press button ‘2’ in DBD, he/she tells 
the system that the intended word starts with either ‘a’, ‘b’, 
or ‘c’. This kind of constraint can be captured by the 
regular expression /^[abc]$/2 ; if the user follows with a 
key press ‘6’, the regular expression is extended as 
/^[abc][mno]$/. If the user finishes the whole word 
with two more characters ‘6’ and ‘5’, the regular 
expression becomes /^[abc][mno][mno][jkl]$/. 
As a result, DBD input can be considered as a query to the 
dictionary to retrieve all words that match the given regular 
expression. In this example, the words “book” and 
“cool” are the candidates that match the regular 
expression and would be the output of DBD.  

SHRIMP as an Extension of DBD 
Pressing a numeric button in DBD can be considered as 
adding a [wxyz] style constraint to the existing regular 
expression. However, it is not the only constraint we can 
add from a regular expression perspective. If we use a 
Vision TiltText gesture to enter character ‘c’ at the 
beginning, i.e. press and hold button ‘2’, move right, 
release. This action will tell the computer that the intended 
word starts with ‘c’ rather than [abc], the corresponding 
regular expression for this action will be /^c$/. If we 
continue the input without motion by typing 6-6-5, the 
final regular expression will become 
/^c[mno][mno][jkl]$/ and ‘cool’ will be the only 
word that matches the given regular expression. Vision 
TiltText can be incorporated at any stage of the word entry. 
Any time a motion gesture is used, it is telling the system 
that only one character, determined by Vistion TiltText, 
should appear at the current character location and the 
specific character, rather than the bracket enclosed 

                                                           
2 Symbol ^ and $ in the regular expression marks the 
beginning and end of a character string. [abc] means that 
either a, b or c could be a valid match. 

character set will be used to construct the corresponding 
component in the regular expression. Figure 2 shows the 
steps and corresponding screen output to enter word 
‘cool’ by using MultiTap, DBD and SHRIMP (here 
motion based constraint is used to enter the last character 
‘l’).   

 

Figure 2. Using MultiTap, Predictive Input (DBD) and 
SHRIMP to enter a word ‘cool’ with encoding collision 

DBD and Vision TiltText can be considered two extreme 
cases of SHRIMP – if we type every character without 
motion, then the output of SHRIMP will be no different 
from DBD. If we type each character with motion 
constraints, then SHRIMP becomes Vision TiltText so 
OOV words can be entered easily. Figure 3 shows how 
DBD and SHRIMP could be used to enter an OOV word – 
“hci”.  SHRIMP can save four out of the seven key 
strokes required by DBD with concurrent motion. Note that 
the character level confirmation approach that appeared in 
commercial products is used in DBD to enter OOV word in 
this example. If the user chooses to switch to MultiTap, the 
total number of key presses would become – 1(switch to 
MultiTap) + 2 (h) + 3(c) + 3(i) + 1(switch back to DBD) 
= 10. 

 

Figure 3. Using DBD and SHRIMP to enter out of the 
dictionary words  

There is one more case that needs additional consideration 
in SHRIMP – the action of typing a key without movement. 
It could mean the user did not bother to express his/her 
preference so he/she may intend any of the characters 
shown on that key. Alternatively, it could mean the user 
intended to type the middle character on the button via 
Vision TiltText (by default, no motion means entering the 
middle character in Vision TiltText). Such ambiguity can 
be addressed with two different approaches. First, we can 

CHI 2010: EPIC #FAIL April 10–15, 2010, Atlanta, GA, USA

17



 

redefine typing the middle character in Vision TiltText as a 
“press”-“move up”-“release” action to eliminate such kind 
of ambiguity completely. Second, the following heuristics 
can be used - we first assume the no movement situation as 
DBD style ambiguous input to construct the regular 
expression. If some words in the dictionary can match the 
given regular expression, and the Vision TiltText style 
unambiguous interpretation corresponds to an OOV word, 
then the OOV word will be added as the last candidate just 
in case the user intends to type the OOV word rather than 
the word within the dictionary. If no word matches the 
given regular expression, then we can interpret every no-
movement key press as typing the middle character via 
Vision TiltText. We have implemented both approaches in 
our prototype and have found that the second approach 
more convenient in actual usage. This is because when 
entering an OOV word, the users have to type every 
character in Vision TiltText and the chance that this 
constrained input will match existing words in the 
dictionary is small (please refer to the next section for 
details). 

SHRIMP has three major advantages when compared with 
other linguistic based disambiguation or word completion 
methods. First, SHRIMP can enter both in-dictionary words 
and OOV words, without mode switching. Second, 
searching for correct candidates visually after each key 
press is not required; users only need to visually confirm 
the result at the end of a word.  Third, SHRIMP provides a 
smooth learning curve for beginners – it is not necessary to 
remember when and where to add motion constraints and 
adding more motion constraints than necessary won’t 
change the input result (as illustrated in the next section – 
adding one, at most two motion constraints will 
disambiguate encoding collisions in the worst case). Even if 
a user completely ignores to use motion constraints, 
SHRIMP is equivalent to DBD in this worst case. Different 
from DBD, SHRIMP provides users an opportunity to enter 
“troublesome” words more effectively next time. If the 
same problematic word shows up frequently (e.g. ”book” 
for ”cool”), a user is more likely to use the motion based 
gesture to deal with it next time. In short, SHRIMP allows 
the user to be more “expressive” than traditional DBD, but 
to a completely voluntary degree. There is no downgrade 
from DBD for not using the additional expressive power 
through motion gesture.   

In the next section, we show the feasibility and power of 
SHRIMP via corpus analysis.  

ANALYSIS 
Analyzing text entry performance realistically is a 
challenging task. For the current topic, we need to consider 
three different types of words: 1. words in the dictionary 
without encoding collision, 2. words in the dictionary with 
encoding collision, 3. OOV Words. Previous studies tend to 
focus on words in categories 1 and 2 [2]. 

As discussed in the previous section, SHRIMP is similar to 
DBD when typing words in the dictionary without encoding 
collisions (Type 1 words).  When typing words with 
encoding collisions (Type 2 words), some of the characters 
can be entered with motion sensing to reduce ambiguity. 
When typing OOV words (Type 3 words), users need to 
provide a motion gesture for each character, and the 
experience of SHRIMP is no different from Vision 
TiltText. As a result, the actual performance of SHRIMP 
vs. DBD will depend on the distribution of the three types 
of words in the user’s writing.  

In order to understand the distributions of these types of 
words, we performed quantitative analyses on two text 
corpora. The first is the Brown Corpus [13] from which we 
extracted the top 17805 words based on frequency rank, 
stripped punctuations and normalized them to lower case. 
This corpus is similar to the one used in [24]. We used this 
corpus to study the encoding collision problem in DBD. 
The second corpus is the NUS SMS Corpus [6]; it has 7189 
distinct words representing text messaging vocabulary. This 
corpus gives an opportunity to study the OOV problem in 
mobile environment. 

Two types of encoding collision analysis were conducted - 
raw (treating each distinct word with the same weight) and 
frequency weighted (each word weighted by its frequency 
of occurrence calculated from the corpus). The raw analysis 
gives a sense of proportion to all unique words including 
rare words. The weighted frequency analysis is proportional 
to natural occurrence in real use (according to the word 
frequency distribution in the corpus used).  

Encoding Collision Analysis 

 

Figure 4. Word distribution in different collision categories 
according to the number of words sharing the same key code  

Figure 4 shows the distribution of words encoding 
collisions on the standard 12-key keypad (Figure 1) in the 
Brown Corpus. The horizontal axis is the category of 
collisions (namely the number of words sharing the same 
key press sequence). For example, the percentage shown in 
the first two bars (raw and frequency weighted percentage 
respectively) where the collision number is 1 are the 
percentage of words without encoding collision. From 
Figure 4 we see that there can be as many as eight words 

CHI 2010: EPIC #FAIL April 10–15, 2010, Atlanta, GA, USA

18



that collide on the same numeric encoding. For DBD, 6.4% 
of words have encoding collisions in the raw analysis.  In 
the weighted analysis, the collision rate raises to 44.9%. 
Not all of these 45% collisions would require additional 
action of the DBD users. For example, when two (and only 
two) words collide on the same code, outputting the word 
with higher frequency will be correct in more than 50% of 
the time by definition. More complicated prediction 
methods based on for example a word level N-gram 
statistical model may further increase the chance of success 
when multiple words are in collision. However, not only 
these methods may require the amount of CPU and memory 
still not available on mobile phones, statistical models 
based on large and formal corpus analyses may not apply 
well to actual mobile use at all. The previously mentioned 
book vs. cool is one example.  

Which buttons do words tend to collide on? The analysis 
summarized in Figure 53 shows that based on the weighted 
analysis most ambiguities appear on button "3", "6", "4", 
"8", corresponding to the character groups [def], [mno] 
[ghi] and [tuv]. So these buttons can benefit the most 
from SHRIMP’s motion gesture enhancement. In contrast, 
words rarely collide on buttons 5[jkl] and 9[wxyz]. 
A possible design implication is to graphically mark the 
collision prone buttons in a way that encourages the use of 
motion gesture on them.  

 

Figure 5. Collision distribution by Numeric Button 

As previously stated, if motion gesture is used for every 
button press, then SHRIMP becomes Vision Tilt Text and 
the output will be completely unambiguous. If motion 
gesture is only used on some of the button presses, then the 
frequency of word collisions can still be reduced although 
not completely eliminated. Figure 6 and 7 show the result 
of using hypothetical strategies of partial motion gesture 
use: on first letter only, on last letter only, on both first and 
last letter, on the first two letters,  and on the last two letters 
of  a word.  Compare them with Figure 4 one can see the 
dramatic reduction in collision with these partial use 
strategies. For example if we only use motion gesture to 

                                                           
3 Button “0” and button “1” are not used for encoding alphabet 
characters in the ITU E.161 standard [8]. 

disambiguate the first key press, the encoding collision will 
drop from 6.4% in DBD to 3.1% in the raw analysis (a 52% 
drop) and from 40.4% to 21.9% in the weighted analysis. 

 

Figure 6. Raw SHRIMP Word Collision Frequency by Typing 
Strategy and Number of Words Sharing the Same Encoding 

 

Figure 7. Weighted SHRIMP Word Collision Frequency by 
Typing Strategy and Number of Words Sharing the Same 

Encoding 

When motion gesture is used with SHRIMP, even only 
some of the times (e.g. on first and last only), the maximum 
number of words colliding when collision do occur can be 
reduced to less than three. Three words can be 
disambiguated easily selected through a space button press 
coupled with a motion gesture (left, none, right).  

OOV Analysis 
It is well known that the users’ vocabulary in mobile text 
entry is different from formal written English collected in 
more formal text corpora [2, 14]. However, due to the lack 
of large scale, publically available text corpora from mobile 
users, it is difficult to quantify the difference between 
formal written English and the language people use in 
mobile text entry. To our knowledge, the only publically 
available mobile text corpus is the NUS SMS Corpus [6]. 
Despite its relatively small size (121k words with 7189 
distinct words), it has been adopted by HCI researchers to 
simulate word frequencies in mobile applications [4]. The 
corpus is a collection of self-submitted SMS messages from 
students at National University of Singapore (NUS). 
Because of the limited sample size, it is difficult to estimate 
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how representative this corpus is when compared with the 
whole mobile population. As a result, the NUS SMS corpus 
could only serve as a case study on the OOV problem.  

Based on our analysis, the NUS SMS word frequency is 
quite different from that in traditional written English. For 
example, the top 8 words in the Brown Corpus - "the, 
of, and, to, a, in, that, is" have little 
overlap with the top 8 words in the NUS SMS Corpus - "i, 
u, to, me, at, my, go, you". Only the word 
“to” appears in both lists. The top three words in formal 
English – “the, of, and” did not even make it into the 
top 8 list of NUS SMS corpus. 

Our analysis shows that only 49% of the words in the SMS 
Corpus can be found in the traditional word corpus by raw 
frequency. In the frequency weighted calculation, only 36% 
of the words in SMS can be found in the traditional word 
corpus. Sample out-of-the-dictionary words include  "lor, 
liao, okie, slackin, thkin". This means that if 
we create the DBD dictionary by parsing a traditional 
corpus based on written English and use a DBD method 
based   on that dictionary to enter the NUS SMS Corpus, 
64% of the intended entries will be OOV.   

As mentioned earlier, a fully 20% of Twitter micro blogs 
contain product and brand names [11]. A very high 
percentage of these names are likely to be OOV.  Twitter 
imposes a 140 character limit per posting. This limit, plus 
the relatively slow process of entering text on mobile 
phones in general, are likely to encourage users to create ad 
hoc abbreviations that are OOV. 

In conclusion, although we have only one quantitative case 
study available, it is safe to say a large percentage of words 
in SMS and Twitter like applications are OOV. The 
problems of collision and OOV with the traditional DBD 
method are frequent enough to warrant a SHRIMP or 
SHRIMP like solution.  

A follow up question is when a user enters an OOV word, 
would he/she realize the word is OOV therefore engages 
SHRIMP’s motion gesture to preempt DBD’s failure or the 
need to switch to a different mode? The question is 
important to both DBD and SHRIMP and will be addressed 
in the user study reported later in this paper. 

IMPLEMENTATION 
Although lacking in some mobile HCI research, it is 
important to test mobile interface concepts and methods 
with real mobile device for both engineering feasibility and 
interaction form factor reasons. We have made a complete 
implementation of SHRIMP on a Motorola v710 phone (a 
CDMA Phone from Verizon Wireless). This was a common 
off-the-shelf camera phone at the time of our 
implementation. The v710 has an ARM9 processor, 4M 
RAM and a 176x220 pixel color display. Our application is 
written in C++ in BREW 2.11 (the Binary Runtime 
Environment for Wireless, http://brew.qualcomm.com). We 

used the Realview ARM Compiler 1.2 for BREW to cross-
compile the target application. We used the TinyMotion 
library [21] for real time camera phone based motion 
sensing. The compiled target application, including the 
implementation of MultiTap, DBD, Vision TiltText, 
SHRIMP, as well as a 15k words dictionary and the 
corresponding index data is around 1.3MB in size4 . The 
required runtime memory is about 250k. At this time, we 
have also ported SHRIMP to a Motorola RAZR V3 cell 
phone that runs BREW 3.12. We believe that porting our 
code to other platforms, such as Windows Mobile, Symbian 
and Android, would be straightforward. 

DBD 
The programming of DBD is straightforward. Particularly 
worth noting is how collision and OOV are handled in its 
UI. When there is a word collision, our implementation of 
DBD allows the user to use the “UP” and “DOWN” arrow 
buttons to navigate through the word candidate list and use 
the space key (i.e. the star button in Motorola V7105  ) or 
the “RIGHT” arrow button to confirm. Basic DBD input 
methods [10] cannot handle OOV words. In our 
implementation, in addition to allowing the user to switch 
to another input method such as MultiTap, we also 
implemented an extension to DBD that is available in most 
Nokia, Samsung and LG phones. When entering an OOV 
word, the “UP” and “DOWN” arrow button can be used to 
navigate though the candidates of each character and use 
the “RIGHT” arrow button to confirm character after 
character. Most users in our user study prefer this extension 
rather than switching to and from MultiTap to enter OOV 
words. 

SHRIMP 
We implemented SHRIMP as a natural extension of both 
Vision TiltText and DBD, so most of the operation 
conventions in Vision TiltText and DBD are kept intact. 
For instance, users can press button ‘2’, hold it, move/tilt 
the phone to the left until a vibration is felt and then release 
the button to indicate that character ‘a’ is desired. The user 
can also use ‘UP’ and ‘DOWN’ buttons like in DBD to 
correct an ambiguous word. Of course, the candidate list is 
much smaller than that of DBD if additional motion 
constraints are used. The same 70 ms vibrato-tactile 
feedback mechanism [21] is also used in SHRIMP to signal 
that the critical movement amount has been reached. 

AN INITIAL EMPIRICAL STUDY 
The quantitative analyses presented have shown the 
following. 1. Collision and OOV are both quite frequent 

                                                           
4 In our implementation, DBD and SHRIMP shares the same 
dictionary and a major portion of the index data, the input method 
code plus the motion sensing code alone, is about 150k in size. 
5 The space button could be assigned to the pound (‘#’) key or the 
zero (‘0’) key in other cell phones. 

CHI 2010: EPIC #FAIL April 10–15, 2010, Atlanta, GA, USA

20



problems for DBD; 2. SHRIMP can significantly reduce 
collision even if motion gestures are only used sparingly 
(on first letter or only when a word has been known to be 
troublesome from previous experience); 3. SHRIMP can 
handle OOV more effectively than previous DBD 
workaround methods. To complement these analytical 
findings, we also conducted an empirical study to do an 
initial but holistic test of SHRIMP as an everyday text entry 
method. We had two basic goals for the study. One was to 
figure out whether or not the idea behind SHRIMP is easy 
to understand and if the current SHRIMP implementation is 
easy to learn. The second goal was to evaluate the initial 
performance of SHRIMP in comparison with existing text 
entry methods such as MultiTap, DBD and Vision TiltText. 
A successful mobile text entry method should not have a 
steep learning curve. The users should be able to pick up 
the method in a few minutes, and users should gain 
immediate benefits. Otherwise, many users may give up 
and switch back to older methods they were accustomed to.  
As part of the study we also measured users’ ability to 
recognize OOV words. Analyzing the longitudinal 
performance of SHRIMP, which may reveal its advantage 
in handling collision, and a systematic empirical 
comparison across different word categories (unambiguous, 
collision, and OOV words) are beyond the scope of this 
paper and will be deferred to future work. 

Study Design 
Our study consisted of five parts. 

Overview. We gave a brief overview of the tests to be 
conducted and demonstrated the four text entry methods, 
MultiTap, DBD, Vision TiltText and SHRIMP, to the 
participants. To help them better understand the motion 
sensing idea behind Vision TiltText and SHRIMP, we also 
gave a brief introduction of TinyMotion and demonstrated 
other motion sensing applications to the user. We let the 
users play with the demo applications and answered their 
questions. This session lasted 10 to 15 minutes. 

Pre-test Questionnaire. In this session we collected basic 
information of the study participants including gender, 
educational background, current occupation, experiences 
with cell phones and camera phones, frequency of mobile 
tasks such as voice communication, SMS usage, picture 
taking, use of other mobile phone applications etc. 

Out of Vocabulary Word Recognition. In this session we 
tested participants’ ability in identifying OOV words. We 
told users that, similar to a spell checker, many mobile text 
entry methods maintain a list of words to predict users’ 
intended words based on the keypad presses. We told the 
users that the input methods to be tested used a word list of 
15K of the most popular words and showed them samples 
of words in the list as well as words not in the word list. We 
then gave the participants a list of 21 words and let them 
identify each of them as in-dictionary or OOV. It’s worth 
noting that none of the OOV words in this section appeared 
in the follow-up text entry tasks and the subjects didn’t 

know their performance on the OOV recognition task 
throughout the study. So the confounding effect between 
the OOV recognition task and the actual text entry task was 
minimal. 

Text Input. In this session, we compared the performance of 
four mobile text entry methods – MultiTap, Vision TiltText, 
DBD and SHRIMP. The testing phrases were selected 
randomly from MacKenzie’s text entry test phrase set. The 
timeout for the MultiTap method was 2 seconds. DBD and 
SHRIMP share the same dictionary, which has 15k words 
sorted by word frequency. Due to time constraints, each 
participant entered 12 sentences with a total of 52 words for 
each input method. Although  a popular source of testing 
phrases used in recent studies on text entry such as [20], 
MacKenzie’s phrase set has a limitation to our study – most 
of the sentences were formal and “correct” English and the 
word frequency in this phrase set were designed to simulate 
the corpus of formal written English [14, 15], not those 
used in SMS or other mobile applications. However, we felt 
these phrases would still serve the purpose of this initial 
pilot study – to test if users can understand and use 
SHRIMP without much practice. A Motorola V710 mobile 
phone loaded with our application was used in the 
experiment. 

  

  

Figure 8. Sample pictures taken from the user study 

This session started with a warm up practice phase in which 
the users could practice with the four methods tested for as 
long as they desired. Most of them choose to practice for 2 
to 10 minutes before the actual test. The order of the four 
input methods was balanced via the order four Latin square 
patterns. 

Collecting qualitative feedback. We conducted a final 
survey immediately after a participant completed all the 
sessions. In the survey the participant completed a 
questionnaire and commented on the input methods they 
tested.  

To simulate the real world situations of cell phone usage, 
we did not control the environment used for the study. The 
participants were encouraged to choose their desired 
locations to complete the study. Most of the studies were 
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completed in the participants’ own chair or at a public 
discussion area in a lab. Figure 8 shows some of the actual 
environments used during the study. 

All our input methods run on real, unmodified cell phone 
hardware and confounding factors such as dictionary size, 
user interface and screen resolution have been controlled. 
We will release the source code of all four text entry 
methods, data collection application and log processing 
application under the BSD license. We hope it can establish 
a standard and realistic testing platform for mobile text 
entry research and provide a baseline for future studies. 

Participants 
Twelve people participated in the study. Nine of them were 
undergraduate or graduate students in a university, two 
were visiting researchers of the university and one was an 
instructor at a local high school. Three of the participants 
were female and nine were male. All of them owned a cell 
phone at the time of the study and 11 of the 12 cell phones 
were camera phones. On average they had 7.5 years of 
experience in using cell phones (stddev = 2.2). 10 out of 12 
cell phones were equipped with the standard 12-key 
keypad. One cell phone had a mini-QWERTY keyboard 
(Palm Centro) and one cell phone was touch screen only 
(Apple iPhone). 9 participants reported that MultiTap was 
their primary text entry method on cell phones; The other 
three participants used DBD, mini-QWERITY keyboard, or 
a virtual on-screen keyboard for mobile text entry. All of 
the participants completed all the five sessions in our user 
study. 

EMPIRICAL RESULTS 

Out of Vocabulary Word Recognition 
Participants correctly identified OOV words 97.6% of the 
time. No in-dictionary word in the test was incorrectly 
recognized as OOV. Among the 6 OOV recognition misses, 
the person name “Carlson” was incorrectly categorized 
as “in the dictionary” four times. Similarly, “Yvette” was 
incorrectly categorized as “in the dictionary” two times. 
Both participants who mislabeled “Yvette” also 
mislabeled “Carlson”. From this preliminary test, it 
seemed that people were overall fairly proficient at 
estimating whether a word was in the vocabulary even if 
they only had a few samples from the dictionary. In our 
experiment, the participants had no problem in identifying 
OOV business names, place names, and abbreviations. It 
was more difficult estimating the popularity of person 
names. People’s social networks may have a huge impact 
on their perception of “frequent names”. 

Text Input 
In total 14281 characters were entered (including white 
space and editing characters). There were 41 unique words 
in the test sentences. 17 of them had no encoding collisions 
and 21 of them had encoding collisions. Among the 21 
words that had encoding collisions, 16 of them do not 

require explicit action of the user if we output the words 
with the highest word frequency from the candidate list. 2 
words were OOV words.   

 

Figure 9. Text entry speed (WPM) by technique and sentence 
number for the entire experiment 

Figure 9 shows the speed of the four different text entry 
methods we have tests in the pilot user study. As stated in 
the experimental design section, users started the tests only 
after 2 to 10 minutes of practicing. All of the users had 
previously used MultiTap (with an average of 5.3 years of 
experience) while only one user had used DBD frequently 
before our study.  So the results on Vision TiltText, DBD 
and SHRIMP can be viewed as users’ initial text entry 
speed without much practicing.  A longitudinal study is 
needed to understand the expert performance of these 
methods. From Figure 9, we can see that SHRIMP and 
DBD are already faster than MutiTap and Vision TiltText 
when typing the first three sentences. 

 

Figure 10. Text entry speed from the experiment 

As shown in Figure 10, input speed varied from one method 
to another. Repeated measure variance analysis showed 
significant difference due to input method: F(3, 33) = 110.9, 
p < .0001. Fisher’s post hoc tests showed that the speed of 
SHRIMP was significantly higher than the speed of 
MultiTap (p < 0.001) or the speed of Vision TiltText. The 
average speed of SHRIMP (12.1 wpm) was higher than that 
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of DBD (10.86 wpm), the difference was significant in 
paired-sample t-Test (p < 0.001) but not significant in two 
sample t-Test (p = 0.12).  DBD was significantly faster than 
MultiTap (p < 0.001). Vision TiltText (8.34 wpm) was 
faster than MultiTap (7.64 wpm) in average, but the 
difference was not statistically significant (p = 0.07). 

As we discussed earlier, the testing phrases in the study 
resembled formal English.  As a result there were only two 
OOV words in the 12 sentences. The close performance of 
DBD and SHRIMP in Figure 10 was in part caused by the 
relative low percentage of OOV words in our test sentences. 
As a follow up analysis, we isolated logs for OOV words.   
As shown in Figure 11, the text entry speed of DBD (3.3 
wpm) dropped drastically when entering OOV words. In 
fact DBD became the slowest input method among all four 
methods.  The speed of DBD for OOV words was 
significantly lower than MultiTap (p < 0.001), Vision 
TiltText (p < 0.001) and SHRIMP (p < 0.001). The speeds 
of SHRIMP (9.3 wpm) and Vision TiltText (9.5 wpm) in 
handling OOV were not significant (p = 0.059). 

 

Figure 11. Text entry speed for the OOV words 

The uncorrected error rate was less than 0.5% for each 
method. The average error rates for MultiTap, Vision 
TiltText, T9, SHRIMP were 7.2%, 14.1%, 2.8% and 2.4% 
respectively. The overall error rate [23] of SHRIMP was 
significantly lower than that of MultiTap (p = 0.017). There 
was no significant difference in error rate between SHRIMP 
and DBD (p = 0.76).  The error rate difference between 
SHRIMP and Vision TiltText was also significant (p < 
0.001). The error rate difference between Vision TiltText 
and MultiTap was also significant (p = 0.04). This result 
agrees with previously reported error rates in similar tasks 
[20, 21]. 

Users in general have no trouble understanding the working 
mechanism of SHRIMP. Initially, many users tended to add 
more motion gestures than necessary, trying to enter a few 
characters with motion in each word. “I just want to verify 
whether the system works exactly as you described” one 
user explained. After they confirmed that adding motion 
gestures truly worked in SHRIMP, they started to trust the 
system. They typed familiar words without motion and used 

motion gestures when they were not sure whether a word, 
such as “jedi”, was in the dictionary.  

After finishing the study, the users generally felt positive 
about SHRIMP. They expressed their desire to switch from 
MultiTap to alternative input methods such as SHRIMP if 
they were available on their cell phone. Sample comments 
included -   

“I found [SHRIMP based] predictive text input [effective] 
due to the reduced number of button presses”.  

 “T9 + Tilt was pretty handy, if just b/c it's more interactive 
yet efficient with common words.” “I found it convenient to 
have dictionary based input methods”.   

“SHRIMP is easy to learn, an improvement on T9, and 
resolve the problem of T9 when facing names or other 
special words which do not exist in the T9 lib”. 

“It's more efficient to remember the spatial location pattern 
in T9 and SHRIMP, 'the' is a big left arrow and 'you' is a 
small up arrow [on the keypad]”. 

Users also discovered some usability problems in the 
current SHRIMP prototype. One user complained that 
sometimes SHRIMP was not fast enough to follow her 
typing. She had to wait about half a second for the screen to 
refresh while she was typing a long word. Users also 
suggested that in addition to tactile feedback, some kind of 
visual feedback should be added when using the motion 
gesture.  

FUTURE WORK 
Our current study is only an initial step towards having a 
full understanding of SHRIMP. Enhancements such as 
adding new words to dictionary and richer visual/audio 
feedback can be made to the current prototype. A 
longitudinal study can be conducted to figure out the 
learning curve and expert performance of SHRIMP. A 
human performance model can be built to estimate its 
theoretical performance; of course, such a model will 
depend on a more accurate estimation of the distribution of 
words with encoding collision and OOV words in mobile 
environments.  

CONCLUSIONS 
Dictionary-based disambiguation (DBD) is a popular 
solution for text entry on mobile phone keypad, but it 
suffers from two problems: the resolution of collision (two 
or more words sharing the same key code) and entering out-
of-vocabulary (OOV) words.  Our analysis shows that both 
types of problems are quite frequently encountered. 
SHRIMP (Small handheld rapid input with motion and 
prediction) is a system and method that address these two 
problems by integrating DBD with camera based motion 
sensing. It enables the user to express preference through a 
tilt or move gesture. SHRIMP runs on camera phones 
equipped with a standard 12-key keypad. SHRIMP 
maintains the speed advantage of DBD driven predictive 
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text input while overcoming the collision and OOV 
problems seamlessly without mode switching. By coupling 
a motion gesture with the action of typing the first 
character, SHRIMP can reduce encoding collision by more 
than 50%. By coupling two motion gestures, one with 
typing the first character and the other with typing the last 
character, SHRIMP can eliminate almost all encoding 
collisions.  

An initial empirical user study showed that users can easily 
understand and learn SHRIMP with less than 10 minutes of 
practice. The text entry speed of SHRIMP (12.1 wpm) was 
significantly faster than that of MultiTap (7.64 wpm).  The 
study also showed that SHRIMP can handle OOV words 
much faster than a traditional DBD method. 

The SHRIMP concept is not limited to camera phone based 
motion sensing - this paper also contributes to the 
understanding of text entry based on ambiguous input in 
general. We unified the representation of action-based 
disambiguation and dictionary based disambiguation under 
the regular expression matching framework. The paradigm 
for SHRIMP can be applied to other multi-model input 
systems such as chording [19], accelerometer based tilting 
[20] and Nintendo Wiimote to achieve faster speed with a 
shorter learning curve. 

SHRIMP has been implemented on unmodified, off the 
shelf Motorola V710 and Motorola RAZR V3 camera 
phones. SHRIMP is open source software released under 
BSD license. The current implementation can be 
downloaded from http://bid.berkeley.edu/projects/shrimp. 
We hope SHRIMP can inspire commercial implementations 
that change how people enter text on mobile phones in 
everyday life. 
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