
SHRIMP - Solving Collision and Out of Vocabulary
Problems in Mobile Predictive Input with Motion Gesture

 Jingtao Wang ♦ Shumin Zhai § John Canny ♦

♦Computer Science Division
UC Berkeley, 387 Soda Hall, Berkeley, CA, USA

{jingtaow, jfc}@cs.berkeley.edu

§IBM Almaden Research Center
650 Harry Road, San Jose, CA, USA

 zhai@almaden.ibm.com

ABSTRACT
Dictionary-based disambiguation (DBD) is a very popular
solution for text entry on mobile phone keypads but suffers
from two problems: 1. the resolution of encoding collision
(two or more words sharing the same numeric key
sequence) and 2. entering out-of-vocabulary (OOV) words.
In this paper, we present SHRIMP, a system and method
that addresses these two problems by integrating DBD with
camera based motion sensing that enables the user to
express preference through a tilting or movement gesture.
SHRIMP (Small Handheld Rapid Input with Motion and
Prediction) runs on camera phones equipped with a
standard 12-key keypad. SHRIMP maintains the speed
advantage of DBD driven predictive text input while
enabling the user to overcome DBD collision and OOV
problems seamlessly without even a mode switch. An initial
empirical study demonstrates that SHRIMP can be learned
very quickly, performed immediately faster than MultiTap
and handled OOV words more efficiently than DBD.

Author Keywords
Text Input, Mobile Devices, Predictive Input, Dictionary-
Based Disambiguation, Gestures, Mobile Phones, Camera
Phones, MultiTap, T9.

ACM Classification Keywords
H5.2 [Information interfaces and presentation]: User
Interfaces. - Graphical user interfaces; Input devices and
strategies, Theory and methods.

General Terms
Design, Experimentation, Human Factors.

INTRODUCTION
With an estimated 4 billion units in use in December 2008
[9], mobile phones have already become the most popular

computing device in human history. Their portability and
communication capabilities have revolutionized how people
interact with each other. However, despite the rapid growth
of mobile phones, text entry on small devices remains a
major challenge. Due to trade-offs in both size and
compatibility, most mobile phones today are equipped with
a 12-key keypad (Figure 1). This keypad is effective for
dialing phone numbers but not for editing contact lists,
composing SMS messages or writing emails. Other input
devices, such as mini QWERTY keyboards and touch
screens are on the rise, but the 12-button keypad-based
mobile phones are still, and will likely to be for years to
come, the majority in the market.

One fundamental difficulty in text entry using a 12-key
keypad is that the mapping of 26 alphabet characters to the
12 keys is inherently ambiguous. In the ITU E.161 standard
[8], one numeric button corresponds to 3 or 4 alphabet
characters on the keypad (Figure 1). All mobile text input
techniques relying on the 12-key keypad have to resolve the
ambiguity that arises from this one-to-many mapping.

Figure 1. The standard 12-key telephone keypad, character
layout follows the ITU E.161 standard [8]

Most disambiguation methods can be categorized into the
following two categories:

Action Based Disambiguation. Users rely on multiple key
presses (e.g. MultiTap, TNT [7]), concurrent chording [19],
tilting [20] or motion [21] to select one character from the
multiple alphabetical characters on each key.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2010, April 10–15, 2010, Atlanta, Georgia, USA.
Copyright 2010 ACM 978-1-60558-929-9/10/04....$10.00.

CHI 2010: EPIC #FAIL April 10–15, 2010, Atlanta, GA, USA

15

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357340283?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Linguistic Disambiguation. Also known as predictive input,
these methods use redundant information in language to
disambiguate users’ input when entering standard English
words. Linguistic knowledge can be leveraged either
through Dictionary-based Disambiguation (DBD e.g. T9
[5]), character level N-gram models (e.g. LetterWise [14]),
or a combination of both. Besides disambiguating uncertain
input strings, linguistic knowledge can also be used for
predicting users’ future intention (a.k.a. word completion
[24, 25]).

Methods in both categories have their unique strengths and
weaknesses. Action based disambiguation allows users to
enter any character deterministically, but requires additional
sequential or concurrent actions. DBD input techniques
such as T9 can achieve approximately 1.007 KSPC (Key
Stroke Per Character) for words that are in the dictionary
[14]. However, they depend on an alternative input method
to enter words that are not in the dictionary known as out-
of-vocabulary (OOV) words and suffer from the encoding
collision problem (to be detailed in the next section).
Character level n-gram model based disambiguation, such
as LetterWise [14], can achieve a KSPC that is close to
DBD and works for OOV words; however, continuous
visual attention is required to confirm suggested characters
after each key press.

In this paper, we present a novel method called SHRIMP1
(Small Handheld Rapid Input with Motion and Prediction)
which enable the user to handle the collision and OOV
problems of DBD input more easily. SHRIMP is a
predictive text input method based on Vision TiltText [21]
and runs on camera phones equipped with a standard 12-
button keypad. SHRIMP is as effective as conventional
DBD when entering unambiguous in-dictionary words.
SHRIMP uses seamlessly integrated concurrent motion
gestures to handle ambiguous dictionary words or OOV
words without mode switching.

RELATED WORK

MultiTap
MultiTap is perhaps the most popular text entry method for
mobile phones. It requires the user to press the key labeled
with the desired character repeatedly until the correct
character appears on the screen. MultiTap is simple,
unambiguous but tedious. It has an average KSPC of 2.03
[17].

1 The method presented in this paper, SHRIMP, is named in the
tradition of SHARK [27] and Fisch [24]. SHARK requires a
relatively large touch screen for the virtual keyboard overlay;
Fisch is originally designed for a small touch screen and can be
extended to a touch-ball or a joystick [25], SHRIMP works on
unmodified camera phones equipped with a standard 12-key
keypad.

Vision TiltText
Vision TiltText by Wang et al [21] is a remake of the
TiltText input method by Wigdor and Balakrishnan [20].
Instead of using an accelerometer, Vision TiltText uses the
built-in camera on a phone to detect motion so that it can
run on unmodified mainstream camera phones.
Implementation details can be found in [20] and [21]. With
the help of a concurrent gesture movement, Vision TiltText
can achieve 1 KSPC on any character. However, moving a
cell phone left and right for entering about 60% of
characters is an overhead which can be further reduced. In
this paper, we present SHRIMP that combines Vision
TiltText with DBD. SHRIMP can minimize the concurrent
movement requirement of Vision TiltText when entering
in-dictionary words but leverage vision TiltText when
entering OOV words.

Predictive Input
Dictionary based disambiguation (DBD) has been well-
researched since the 1970s [18]. A popular commercial
implementation of this kind is marketed as T9 by Tegic
Communications, a former subsidiary of AOL and now
Nuance Communications Inc. DBD uses a dictionary to
detect all the possible words that match users’ numeric
keypad input. For example, the numeric sequence 2-6-6-
7-8-8-3-7 will result in “computer” because that is
the only English word in the dictionary that meets the
constraints defined by the input string, When multiple
words in the dictionary map to the same numeric string
(encoding collision), manual selection is needed if the
intended word is not displayed as the first choice. For
example, the sequence 6-3 may mean either “of” or “me”,
while the sequence 2-5-6-8-3 could mean “cloud”,
“aloud” or “clove”. In an extreme situation, this
encoding collision problem has caused the “SMS
generation” to accept “book” as “cool” since the former
is more frequent in formal English hence presented as the
first choice and many users don’t bother to change it to the
latter [22]. Language models [12] can be used to predict the
more likely one from the colliding candidates [16], but they
cannot totally eliminate uncertainty. Another problem is
that DBD only works when the user enters English words
that are in the dictionary. Both Dunlop and Crossan [2] and
Mackenzie et al. [14] questioned the flexibility of such a
dictionary based approach. Person names, place names,
company names, new product names, abbreviations,
acronyms, or combinations of letters and numbers are
frequently used in mobile environment but are not likely in
the dictionary. According to Jansen et al. [11], 20% of
Twitter posts mention specific product and brand names.
Dunlop summarized the dilemma well: “the dictionary
method is not a sufficient input method on its own but
having two modes is likely to lead to great confusion” [2].

OOV words can be handled with additional time consuming
work around steps. For example, the following approach is
usually implemented in commercial products running DBD
input such as T9 (used in mobile phones from Nokia,

CHI 2010: EPIC #FAIL April 10–15, 2010, Atlanta, GA, USA

16

Samsung LG and others). For an OOV word, the user can
use the “UP” and “DOWN” arrow key to navigate though
the character candidates from each key press and use the
“RIGHT” arrow button to confirm character after character.
Similarly, collision words are handled by navigating
through the multiple matching words via the “UP” and
“DOWN” arrow if the intended word is not the most
frequent one. In this paper, we show that SHRIMP is a
dictionary based predictive input method that supports the
entry of any word efficiently without mode switching.

THE DESIGN OF SHRIMP

DBD as Regular Expression Matching
Predictive text entry via DBD can be considered a regular
expression [1] matching problem and SHRIMP can be
defined as a natural upgrade of DBD under the regular
expression matching framework.

When a user starts to press button ‘2’ in DBD, he/she tells
the system that the intended word starts with either ‘a’, ‘b’,
or ‘c’. This kind of constraint can be captured by the
regular expression /^[abc]$/2 ; if the user follows with a
key press ‘6’, the regular expression is extended as
/^[abc][mno]$/. If the user finishes the whole word
with two more characters ‘6’ and ‘5’, the regular
expression becomes /^[abc][mno][mno][jkl]$/.
As a result, DBD input can be considered as a query to the
dictionary to retrieve all words that match the given regular
expression. In this example, the words “book” and
“cool” are the candidates that match the regular
expression and would be the output of DBD.

SHRIMP as an Extension of DBD
Pressing a numeric button in DBD can be considered as
adding a [wxyz] style constraint to the existing regular
expression. However, it is not the only constraint we can
add from a regular expression perspective. If we use a
Vision TiltText gesture to enter character ‘c’ at the
beginning, i.e. press and hold button ‘2’, move right,
release. This action will tell the computer that the intended
word starts with ‘c’ rather than [abc], the corresponding
regular expression for this action will be /^c$/. If we
continue the input without motion by typing 6-6-5, the
final regular expression will become
/^c[mno][mno][jkl]$/ and ‘cool’ will be the only
word that matches the given regular expression. Vision
TiltText can be incorporated at any stage of the word entry.
Any time a motion gesture is used, it is telling the system
that only one character, determined by Vistion TiltText,
should appear at the current character location and the
specific character, rather than the bracket enclosed

2 Symbol ^ and $ in the regular expression marks the
beginning and end of a character string. [abc] means that
either a, b or c could be a valid match.

character set will be used to construct the corresponding
component in the regular expression. Figure 2 shows the
steps and corresponding screen output to enter word
‘cool’ by using MultiTap, DBD and SHRIMP (here
motion based constraint is used to enter the last character
‘l’).

Figure 2. Using MultiTap, Predictive Input (DBD) and
SHRIMP to enter a word ‘cool’ with encoding collision

DBD and Vision TiltText can be considered two extreme
cases of SHRIMP – if we type every character without
motion, then the output of SHRIMP will be no different
from DBD. If we type each character with motion
constraints, then SHRIMP becomes Vision TiltText so
OOV words can be entered easily. Figure 3 shows how
DBD and SHRIMP could be used to enter an OOV word –
“hci”. SHRIMP can save four out of the seven key
strokes required by DBD with concurrent motion. Note that
the character level confirmation approach that appeared in
commercial products is used in DBD to enter OOV word in
this example. If the user chooses to switch to MultiTap, the
total number of key presses would become – 1(switch to
MultiTap) + 2 (h) + 3(c) + 3(i) + 1(switch back to DBD)
= 10.

Figure 3. Using DBD and SHRIMP to enter out of the
dictionary words

There is one more case that needs additional consideration
in SHRIMP – the action of typing a key without movement.
It could mean the user did not bother to express his/her
preference so he/she may intend any of the characters
shown on that key. Alternatively, it could mean the user
intended to type the middle character on the button via
Vision TiltText (by default, no motion means entering the
middle character in Vision TiltText). Such ambiguity can
be addressed with two different approaches. First, we can

CHI 2010: EPIC #FAIL April 10–15, 2010, Atlanta, GA, USA

17

redefine typing the middle character in Vision TiltText as a
“press”-“move up”-“release” action to eliminate such kind
of ambiguity completely. Second, the following heuristics
can be used - we first assume the no movement situation as
DBD style ambiguous input to construct the regular
expression. If some words in the dictionary can match the
given regular expression, and the Vision TiltText style
unambiguous interpretation corresponds to an OOV word,
then the OOV word will be added as the last candidate just
in case the user intends to type the OOV word rather than
the word within the dictionary. If no word matches the
given regular expression, then we can interpret every no-
movement key press as typing the middle character via
Vision TiltText. We have implemented both approaches in
our prototype and have found that the second approach
more convenient in actual usage. This is because when
entering an OOV word, the users have to type every
character in Vision TiltText and the chance that this
constrained input will match existing words in the
dictionary is small (please refer to the next section for
details).

SHRIMP has three major advantages when compared with
other linguistic based disambiguation or word completion
methods. First, SHRIMP can enter both in-dictionary words
and OOV words, without mode switching. Second,
searching for correct candidates visually after each key
press is not required; users only need to visually confirm
the result at the end of a word. Third, SHRIMP provides a
smooth learning curve for beginners – it is not necessary to
remember when and where to add motion constraints and
adding more motion constraints than necessary won’t
change the input result (as illustrated in the next section –
adding one, at most two motion constraints will
disambiguate encoding collisions in the worst case). Even if
a user completely ignores to use motion constraints,
SHRIMP is equivalent to DBD in this worst case. Different
from DBD, SHRIMP provides users an opportunity to enter
“troublesome” words more effectively next time. If the
same problematic word shows up frequently (e.g. ”book”
for ”cool”), a user is more likely to use the motion based
gesture to deal with it next time. In short, SHRIMP allows
the user to be more “expressive” than traditional DBD, but
to a completely voluntary degree. There is no downgrade
from DBD for not using the additional expressive power
through motion gesture.

In the next section, we show the feasibility and power of
SHRIMP via corpus analysis.

ANALYSIS
Analyzing text entry performance realistically is a
challenging task. For the current topic, we need to consider
three different types of words: 1. words in the dictionary
without encoding collision, 2. words in the dictionary with
encoding collision, 3. OOV Words. Previous studies tend to
focus on words in categories 1 and 2 [2].

As discussed in the previous section, SHRIMP is similar to
DBD when typing words in the dictionary without encoding
collisions (Type 1 words). When typing words with
encoding collisions (Type 2 words), some of the characters
can be entered with motion sensing to reduce ambiguity.
When typing OOV words (Type 3 words), users need to
provide a motion gesture for each character, and the
experience of SHRIMP is no different from Vision
TiltText. As a result, the actual performance of SHRIMP
vs. DBD will depend on the distribution of the three types
of words in the user’s writing.

In order to understand the distributions of these types of
words, we performed quantitative analyses on two text
corpora. The first is the Brown Corpus [13] from which we
extracted the top 17805 words based on frequency rank,
stripped punctuations and normalized them to lower case.
This corpus is similar to the one used in [24]. We used this
corpus to study the encoding collision problem in DBD.
The second corpus is the NUS SMS Corpus [6]; it has 7189
distinct words representing text messaging vocabulary. This
corpus gives an opportunity to study the OOV problem in
mobile environment.

Two types of encoding collision analysis were conducted -
raw (treating each distinct word with the same weight) and
frequency weighted (each word weighted by its frequency
of occurrence calculated from the corpus). The raw analysis
gives a sense of proportion to all unique words including
rare words. The weighted frequency analysis is proportional
to natural occurrence in real use (according to the word
frequency distribution in the corpus used).

Encoding Collision Analysis

Figure 4. Word distribution in different collision categories
according to the number of words sharing the same key code

Figure 4 shows the distribution of words encoding
collisions on the standard 12-key keypad (Figure 1) in the
Brown Corpus. The horizontal axis is the category of
collisions (namely the number of words sharing the same
key press sequence). For example, the percentage shown in
the first two bars (raw and frequency weighted percentage
respectively) where the collision number is 1 are the
percentage of words without encoding collision. From
Figure 4 we see that there can be as many as eight words

CHI 2010: EPIC #FAIL April 10–15, 2010, Atlanta, GA, USA

18

that collide on the same numeric encoding. For DBD, 6.4%
of words have encoding collisions in the raw analysis. In
the weighted analysis, the collision rate raises to 44.9%.
Not all of these 45% collisions would require additional
action of the DBD users. For example, when two (and only
two) words collide on the same code, outputting the word
with higher frequency will be correct in more than 50% of
the time by definition. More complicated prediction
methods based on for example a word level N-gram
statistical model may further increase the chance of success
when multiple words are in collision. However, not only
these methods may require the amount of CPU and memory
still not available on mobile phones, statistical models
based on large and formal corpus analyses may not apply
well to actual mobile use at all. The previously mentioned
book vs. cool is one example.

Which buttons do words tend to collide on? The analysis
summarized in Figure 53 shows that based on the weighted
analysis most ambiguities appear on button "3", "6", "4",
"8", corresponding to the character groups [def], [mno]
[ghi] and [tuv]. So these buttons can benefit the most
from SHRIMP’s motion gesture enhancement. In contrast,
words rarely collide on buttons 5[jkl] and 9[wxyz].
A possible design implication is to graphically mark the
collision prone buttons in a way that encourages the use of
motion gesture on them.

Figure 5. Collision distribution by Numeric Button

As previously stated, if motion gesture is used for every
button press, then SHRIMP becomes Vision Tilt Text and
the output will be completely unambiguous. If motion
gesture is only used on some of the button presses, then the
frequency of word collisions can still be reduced although
not completely eliminated. Figure 6 and 7 show the result
of using hypothetical strategies of partial motion gesture
use: on first letter only, on last letter only, on both first and
last letter, on the first two letters, and on the last two letters
of a word. Compare them with Figure 4 one can see the
dramatic reduction in collision with these partial use
strategies. For example if we only use motion gesture to

3 Button “0” and button “1” are not used for encoding alphabet
characters in the ITU E.161 standard [8].

disambiguate the first key press, the encoding collision will
drop from 6.4% in DBD to 3.1% in the raw analysis (a 52%
drop) and from 40.4% to 21.9% in the weighted analysis.

Figure 6. Raw SHRIMP Word Collision Frequency by Typing
Strategy and Number of Words Sharing the Same Encoding

Figure 7. Weighted SHRIMP Word Collision Frequency by
Typing Strategy and Number of Words Sharing the Same

Encoding

When motion gesture is used with SHRIMP, even only
some of the times (e.g. on first and last only), the maximum
number of words colliding when collision do occur can be
reduced to less than three. Three words can be
disambiguated easily selected through a space button press
coupled with a motion gesture (left, none, right).

OOV Analysis
It is well known that the users’ vocabulary in mobile text
entry is different from formal written English collected in
more formal text corpora [2, 14]. However, due to the lack
of large scale, publically available text corpora from mobile
users, it is difficult to quantify the difference between
formal written English and the language people use in
mobile text entry. To our knowledge, the only publically
available mobile text corpus is the NUS SMS Corpus [6].
Despite its relatively small size (121k words with 7189
distinct words), it has been adopted by HCI researchers to
simulate word frequencies in mobile applications [4]. The
corpus is a collection of self-submitted SMS messages from
students at National University of Singapore (NUS).
Because of the limited sample size, it is difficult to estimate

CHI 2010: EPIC #FAIL April 10–15, 2010, Atlanta, GA, USA

19

how representative this corpus is when compared with the
whole mobile population. As a result, the NUS SMS corpus
could only serve as a case study on the OOV problem.

Based on our analysis, the NUS SMS word frequency is
quite different from that in traditional written English. For
example, the top 8 words in the Brown Corpus - "the,
of, and, to, a, in, that, is" have little
overlap with the top 8 words in the NUS SMS Corpus - "i,
u, to, me, at, my, go, you". Only the word
“to” appears in both lists. The top three words in formal
English – “the, of, and” did not even make it into the
top 8 list of NUS SMS corpus.

Our analysis shows that only 49% of the words in the SMS
Corpus can be found in the traditional word corpus by raw
frequency. In the frequency weighted calculation, only 36%
of the words in SMS can be found in the traditional word
corpus. Sample out-of-the-dictionary words include "lor,
liao, okie, slackin, thkin". This means that if
we create the DBD dictionary by parsing a traditional
corpus based on written English and use a DBD method
based on that dictionary to enter the NUS SMS Corpus,
64% of the intended entries will be OOV.

As mentioned earlier, a fully 20% of Twitter micro blogs
contain product and brand names [11]. A very high
percentage of these names are likely to be OOV. Twitter
imposes a 140 character limit per posting. This limit, plus
the relatively slow process of entering text on mobile
phones in general, are likely to encourage users to create ad
hoc abbreviations that are OOV.

In conclusion, although we have only one quantitative case
study available, it is safe to say a large percentage of words
in SMS and Twitter like applications are OOV. The
problems of collision and OOV with the traditional DBD
method are frequent enough to warrant a SHRIMP or
SHRIMP like solution.

A follow up question is when a user enters an OOV word,
would he/she realize the word is OOV therefore engages
SHRIMP’s motion gesture to preempt DBD’s failure or the
need to switch to a different mode? The question is
important to both DBD and SHRIMP and will be addressed
in the user study reported later in this paper.

IMPLEMENTATION
Although lacking in some mobile HCI research, it is
important to test mobile interface concepts and methods
with real mobile device for both engineering feasibility and
interaction form factor reasons. We have made a complete
implementation of SHRIMP on a Motorola v710 phone (a
CDMA Phone from Verizon Wireless). This was a common
off-the-shelf camera phone at the time of our
implementation. The v710 has an ARM9 processor, 4M
RAM and a 176x220 pixel color display. Our application is
written in C++ in BREW 2.11 (the Binary Runtime
Environment for Wireless, http://brew.qualcomm.com). We

used the Realview ARM Compiler 1.2 for BREW to cross-
compile the target application. We used the TinyMotion
library [21] for real time camera phone based motion
sensing. The compiled target application, including the
implementation of MultiTap, DBD, Vision TiltText,
SHRIMP, as well as a 15k words dictionary and the
corresponding index data is around 1.3MB in size4 . The
required runtime memory is about 250k. At this time, we
have also ported SHRIMP to a Motorola RAZR V3 cell
phone that runs BREW 3.12. We believe that porting our
code to other platforms, such as Windows Mobile, Symbian
and Android, would be straightforward.

DBD
The programming of DBD is straightforward. Particularly
worth noting is how collision and OOV are handled in its
UI. When there is a word collision, our implementation of
DBD allows the user to use the “UP” and “DOWN” arrow
buttons to navigate through the word candidate list and use
the space key (i.e. the star button in Motorola V7105) or
the “RIGHT” arrow button to confirm. Basic DBD input
methods [10] cannot handle OOV words. In our
implementation, in addition to allowing the user to switch
to another input method such as MultiTap, we also
implemented an extension to DBD that is available in most
Nokia, Samsung and LG phones. When entering an OOV
word, the “UP” and “DOWN” arrow button can be used to
navigate though the candidates of each character and use
the “RIGHT” arrow button to confirm character after
character. Most users in our user study prefer this extension
rather than switching to and from MultiTap to enter OOV
words.

SHRIMP
We implemented SHRIMP as a natural extension of both
Vision TiltText and DBD, so most of the operation
conventions in Vision TiltText and DBD are kept intact.
For instance, users can press button ‘2’, hold it, move/tilt
the phone to the left until a vibration is felt and then release
the button to indicate that character ‘a’ is desired. The user
can also use ‘UP’ and ‘DOWN’ buttons like in DBD to
correct an ambiguous word. Of course, the candidate list is
much smaller than that of DBD if additional motion
constraints are used. The same 70 ms vibrato-tactile
feedback mechanism [21] is also used in SHRIMP to signal
that the critical movement amount has been reached.

AN INITIAL EMPIRICAL STUDY
The quantitative analyses presented have shown the
following. 1. Collision and OOV are both quite frequent

4 In our implementation, DBD and SHRIMP shares the same
dictionary and a major portion of the index data, the input method
code plus the motion sensing code alone, is about 150k in size.
5 The space button could be assigned to the pound (‘#’) key or the
zero (‘0’) key in other cell phones.

CHI 2010: EPIC #FAIL April 10–15, 2010, Atlanta, GA, USA

20

problems for DBD; 2. SHRIMP can significantly reduce
collision even if motion gestures are only used sparingly
(on first letter or only when a word has been known to be
troublesome from previous experience); 3. SHRIMP can
handle OOV more effectively than previous DBD
workaround methods. To complement these analytical
findings, we also conducted an empirical study to do an
initial but holistic test of SHRIMP as an everyday text entry
method. We had two basic goals for the study. One was to
figure out whether or not the idea behind SHRIMP is easy
to understand and if the current SHRIMP implementation is
easy to learn. The second goal was to evaluate the initial
performance of SHRIMP in comparison with existing text
entry methods such as MultiTap, DBD and Vision TiltText.
A successful mobile text entry method should not have a
steep learning curve. The users should be able to pick up
the method in a few minutes, and users should gain
immediate benefits. Otherwise, many users may give up
and switch back to older methods they were accustomed to.
As part of the study we also measured users’ ability to
recognize OOV words. Analyzing the longitudinal
performance of SHRIMP, which may reveal its advantage
in handling collision, and a systematic empirical
comparison across different word categories (unambiguous,
collision, and OOV words) are beyond the scope of this
paper and will be deferred to future work.

Study Design
Our study consisted of five parts.

Overview. We gave a brief overview of the tests to be
conducted and demonstrated the four text entry methods,
MultiTap, DBD, Vision TiltText and SHRIMP, to the
participants. To help them better understand the motion
sensing idea behind Vision TiltText and SHRIMP, we also
gave a brief introduction of TinyMotion and demonstrated
other motion sensing applications to the user. We let the
users play with the demo applications and answered their
questions. This session lasted 10 to 15 minutes.

Pre-test Questionnaire. In this session we collected basic
information of the study participants including gender,
educational background, current occupation, experiences
with cell phones and camera phones, frequency of mobile
tasks such as voice communication, SMS usage, picture
taking, use of other mobile phone applications etc.

Out of Vocabulary Word Recognition. In this session we
tested participants’ ability in identifying OOV words. We
told users that, similar to a spell checker, many mobile text
entry methods maintain a list of words to predict users’
intended words based on the keypad presses. We told the
users that the input methods to be tested used a word list of
15K of the most popular words and showed them samples
of words in the list as well as words not in the word list. We
then gave the participants a list of 21 words and let them
identify each of them as in-dictionary or OOV. It’s worth
noting that none of the OOV words in this section appeared
in the follow-up text entry tasks and the subjects didn’t

know their performance on the OOV recognition task
throughout the study. So the confounding effect between
the OOV recognition task and the actual text entry task was
minimal.

Text Input. In this session, we compared the performance of
four mobile text entry methods – MultiTap, Vision TiltText,
DBD and SHRIMP. The testing phrases were selected
randomly from MacKenzie’s text entry test phrase set. The
timeout for the MultiTap method was 2 seconds. DBD and
SHRIMP share the same dictionary, which has 15k words
sorted by word frequency. Due to time constraints, each
participant entered 12 sentences with a total of 52 words for
each input method. Although a popular source of testing
phrases used in recent studies on text entry such as [20],
MacKenzie’s phrase set has a limitation to our study – most
of the sentences were formal and “correct” English and the
word frequency in this phrase set were designed to simulate
the corpus of formal written English [14, 15], not those
used in SMS or other mobile applications. However, we felt
these phrases would still serve the purpose of this initial
pilot study – to test if users can understand and use
SHRIMP without much practice. A Motorola V710 mobile
phone loaded with our application was used in the
experiment.

Figure 8. Sample pictures taken from the user study

This session started with a warm up practice phase in which
the users could practice with the four methods tested for as
long as they desired. Most of them choose to practice for 2
to 10 minutes before the actual test. The order of the four
input methods was balanced via the order four Latin square
patterns.

Collecting qualitative feedback. We conducted a final
survey immediately after a participant completed all the
sessions. In the survey the participant completed a
questionnaire and commented on the input methods they
tested.

To simulate the real world situations of cell phone usage,
we did not control the environment used for the study. The
participants were encouraged to choose their desired
locations to complete the study. Most of the studies were

CHI 2010: EPIC #FAIL April 10–15, 2010, Atlanta, GA, USA

21

completed in the participants’ own chair or at a public
discussion area in a lab. Figure 8 shows some of the actual
environments used during the study.

All our input methods run on real, unmodified cell phone
hardware and confounding factors such as dictionary size,
user interface and screen resolution have been controlled.
We will release the source code of all four text entry
methods, data collection application and log processing
application under the BSD license. We hope it can establish
a standard and realistic testing platform for mobile text
entry research and provide a baseline for future studies.

Participants
Twelve people participated in the study. Nine of them were
undergraduate or graduate students in a university, two
were visiting researchers of the university and one was an
instructor at a local high school. Three of the participants
were female and nine were male. All of them owned a cell
phone at the time of the study and 11 of the 12 cell phones
were camera phones. On average they had 7.5 years of
experience in using cell phones (stddev = 2.2). 10 out of 12
cell phones were equipped with the standard 12-key
keypad. One cell phone had a mini-QWERTY keyboard
(Palm Centro) and one cell phone was touch screen only
(Apple iPhone). 9 participants reported that MultiTap was
their primary text entry method on cell phones; The other
three participants used DBD, mini-QWERITY keyboard, or
a virtual on-screen keyboard for mobile text entry. All of
the participants completed all the five sessions in our user
study.

EMPIRICAL RESULTS

Out of Vocabulary Word Recognition
Participants correctly identified OOV words 97.6% of the
time. No in-dictionary word in the test was incorrectly
recognized as OOV. Among the 6 OOV recognition misses,
the person name “Carlson” was incorrectly categorized
as “in the dictionary” four times. Similarly, “Yvette” was
incorrectly categorized as “in the dictionary” two times.
Both participants who mislabeled “Yvette” also
mislabeled “Carlson”. From this preliminary test, it
seemed that people were overall fairly proficient at
estimating whether a word was in the vocabulary even if
they only had a few samples from the dictionary. In our
experiment, the participants had no problem in identifying
OOV business names, place names, and abbreviations. It
was more difficult estimating the popularity of person
names. People’s social networks may have a huge impact
on their perception of “frequent names”.

Text Input
In total 14281 characters were entered (including white
space and editing characters). There were 41 unique words
in the test sentences. 17 of them had no encoding collisions
and 21 of them had encoding collisions. Among the 21
words that had encoding collisions, 16 of them do not

require explicit action of the user if we output the words
with the highest word frequency from the candidate list. 2
words were OOV words.

Figure 9. Text entry speed (WPM) by technique and sentence
number for the entire experiment

Figure 9 shows the speed of the four different text entry
methods we have tests in the pilot user study. As stated in
the experimental design section, users started the tests only
after 2 to 10 minutes of practicing. All of the users had
previously used MultiTap (with an average of 5.3 years of
experience) while only one user had used DBD frequently
before our study. So the results on Vision TiltText, DBD
and SHRIMP can be viewed as users’ initial text entry
speed without much practicing. A longitudinal study is
needed to understand the expert performance of these
methods. From Figure 9, we can see that SHRIMP and
DBD are already faster than MutiTap and Vision TiltText
when typing the first three sentences.

Figure 10. Text entry speed from the experiment

As shown in Figure 10, input speed varied from one method
to another. Repeated measure variance analysis showed
significant difference due to input method: F(3, 33) = 110.9,
p < .0001. Fisher’s post hoc tests showed that the speed of
SHRIMP was significantly higher than the speed of
MultiTap (p < 0.001) or the speed of Vision TiltText. The
average speed of SHRIMP (12.1 wpm) was higher than that

CHI 2010: EPIC #FAIL April 10–15, 2010, Atlanta, GA, USA

22

of DBD (10.86 wpm), the difference was significant in
paired-sample t-Test (p < 0.001) but not significant in two
sample t-Test (p = 0.12). DBD was significantly faster than
MultiTap (p < 0.001). Vision TiltText (8.34 wpm) was
faster than MultiTap (7.64 wpm) in average, but the
difference was not statistically significant (p = 0.07).

As we discussed earlier, the testing phrases in the study
resembled formal English. As a result there were only two
OOV words in the 12 sentences. The close performance of
DBD and SHRIMP in Figure 10 was in part caused by the
relative low percentage of OOV words in our test sentences.
As a follow up analysis, we isolated logs for OOV words.
As shown in Figure 11, the text entry speed of DBD (3.3
wpm) dropped drastically when entering OOV words. In
fact DBD became the slowest input method among all four
methods. The speed of DBD for OOV words was
significantly lower than MultiTap (p < 0.001), Vision
TiltText (p < 0.001) and SHRIMP (p < 0.001). The speeds
of SHRIMP (9.3 wpm) and Vision TiltText (9.5 wpm) in
handling OOV were not significant (p = 0.059).

Figure 11. Text entry speed for the OOV words

The uncorrected error rate was less than 0.5% for each
method. The average error rates for MultiTap, Vision
TiltText, T9, SHRIMP were 7.2%, 14.1%, 2.8% and 2.4%
respectively. The overall error rate [23] of SHRIMP was
significantly lower than that of MultiTap (p = 0.017). There
was no significant difference in error rate between SHRIMP
and DBD (p = 0.76). The error rate difference between
SHRIMP and Vision TiltText was also significant (p <
0.001). The error rate difference between Vision TiltText
and MultiTap was also significant (p = 0.04). This result
agrees with previously reported error rates in similar tasks
[20, 21].

Users in general have no trouble understanding the working
mechanism of SHRIMP. Initially, many users tended to add
more motion gestures than necessary, trying to enter a few
characters with motion in each word. “I just want to verify
whether the system works exactly as you described” one
user explained. After they confirmed that adding motion
gestures truly worked in SHRIMP, they started to trust the
system. They typed familiar words without motion and used

motion gestures when they were not sure whether a word,
such as “jedi”, was in the dictionary.

After finishing the study, the users generally felt positive
about SHRIMP. They expressed their desire to switch from
MultiTap to alternative input methods such as SHRIMP if
they were available on their cell phone. Sample comments
included -

“I found [SHRIMP based] predictive text input [effective]
due to the reduced number of button presses”.

 “T9 + Tilt was pretty handy, if just b/c it's more interactive
yet efficient with common words.” “I found it convenient to
have dictionary based input methods”.

“SHRIMP is easy to learn, an improvement on T9, and
resolve the problem of T9 when facing names or other
special words which do not exist in the T9 lib”.

“It's more efficient to remember the spatial location pattern
in T9 and SHRIMP, 'the' is a big left arrow and 'you' is a
small up arrow [on the keypad]”.

Users also discovered some usability problems in the
current SHRIMP prototype. One user complained that
sometimes SHRIMP was not fast enough to follow her
typing. She had to wait about half a second for the screen to
refresh while she was typing a long word. Users also
suggested that in addition to tactile feedback, some kind of
visual feedback should be added when using the motion
gesture.

FUTURE WORK
Our current study is only an initial step towards having a
full understanding of SHRIMP. Enhancements such as
adding new words to dictionary and richer visual/audio
feedback can be made to the current prototype. A
longitudinal study can be conducted to figure out the
learning curve and expert performance of SHRIMP. A
human performance model can be built to estimate its
theoretical performance; of course, such a model will
depend on a more accurate estimation of the distribution of
words with encoding collision and OOV words in mobile
environments.

CONCLUSIONS
Dictionary-based disambiguation (DBD) is a popular
solution for text entry on mobile phone keypad, but it
suffers from two problems: the resolution of collision (two
or more words sharing the same key code) and entering out-
of-vocabulary (OOV) words. Our analysis shows that both
types of problems are quite frequently encountered.
SHRIMP (Small handheld rapid input with motion and
prediction) is a system and method that address these two
problems by integrating DBD with camera based motion
sensing. It enables the user to express preference through a
tilt or move gesture. SHRIMP runs on camera phones
equipped with a standard 12-key keypad. SHRIMP
maintains the speed advantage of DBD driven predictive

CHI 2010: EPIC #FAIL April 10–15, 2010, Atlanta, GA, USA

23

text input while overcoming the collision and OOV
problems seamlessly without mode switching. By coupling
a motion gesture with the action of typing the first
character, SHRIMP can reduce encoding collision by more
than 50%. By coupling two motion gestures, one with
typing the first character and the other with typing the last
character, SHRIMP can eliminate almost all encoding
collisions.

An initial empirical user study showed that users can easily
understand and learn SHRIMP with less than 10 minutes of
practice. The text entry speed of SHRIMP (12.1 wpm) was
significantly faster than that of MultiTap (7.64 wpm). The
study also showed that SHRIMP can handle OOV words
much faster than a traditional DBD method.

The SHRIMP concept is not limited to camera phone based
motion sensing - this paper also contributes to the
understanding of text entry based on ambiguous input in
general. We unified the representation of action-based
disambiguation and dictionary based disambiguation under
the regular expression matching framework. The paradigm
for SHRIMP can be applied to other multi-model input
systems such as chording [19], accelerometer based tilting
[20] and Nintendo Wiimote to achieve faster speed with a
shorter learning curve.

SHRIMP has been implemented on unmodified, off the
shelf Motorola V710 and Motorola RAZR V3 camera
phones. SHRIMP is open source software released under
BSD license. The current implementation can be
downloaded from http://bid.berkeley.edu/projects/shrimp.
We hope SHRIMP can inspire commercial implementations
that change how people enter text on mobile phones in
everyday life.

ACKNOWLEDGMENTS
The authors would like to thank David Nguyen, Ana
Chang, Feng Tian, Lora Oehlberg, Andy Carle, Simon Tan
and Antti Oulasvirta for their support in running the user
study as well as authoring of the paper. We also thank the
anonymous reviewers for their constructive feedback.

REFERENCES
1. Aho, A., Sethi, R., Ullman, J., Compilers: Principles,

Techniques, and Tools, Addison Wesley Publishing, ISBN
0201100886.

2. Dunlop, M., and Crossan, A. Predictive Text Entry Methods
for Mobile Phones. Personal Technologies, 2000.

3. Dunlop, M., Taylor, F., Tactile Feedback for Predictive Text
Entry, In Proc. of CHI 2009.

4. Gong, J., Tarasewich, P., Alphabetically Constrained Keypad
Designs for Text Entry on Mobile Devices, In Proc. of CHI
2005.

5. Grover, D.L., King, M.T., and Kushler, C. A. Patent No.
US5818437, Reduced keyboard Disambiguating Computer.
Tegic Communications, Inc., Seattle (1998).

6. How, J., Kan, M.Y., Optimizing Predictive text entry for short
message service on mobile phones. In Proc. of HCII 2005.

7. Ingmarsson, M., Dinka, D., Zhai, S., TNT: a Numeric Keypad
based Text Input Method. In Proc of CHI 2004.

8. International Telecommunication Union, Arrangement of
Digits, Letters and Symbols on Telephones and Other Devices
that can be used for gaining access to a Telephone Network,
ITU Recommendation E.161. 1993.

9. International Telecommunication Union: Worldwide mobile
cellular subscribers to reach 4 billion mark late 2008
http://www.itu.int/newsroom/press_releases/2008/29.html

10. James, C.L. and Reischel, K.M., Text input for mobile
devices: Comparing model prediction to actual performance.
In Proc. of CHI 2001.

11. Jansen, B., Zhang, M., el al., Twitter power: Tweets as
electronic word of mouth, Journal of the American Society for
Information Science and Technology, 2009.

12. Jelinek, F., Statistical methods for speech recognition, MIT
Press, Cambridge, MA, 1998

13. Kucera, H. and Francis, W. N. Computational Analysis of
Present-Day American English. Providence, Rhode Island:
Brown University Press, 1967.

14. MacKenzie, I.S., Kober, H., et al., E. LetterWise: Prefix-based
disambiguation for mobile text input. In Proc. of UIST 2001

15. Mayzner, M. S., and Tresselt, M. E. Table of single-letter and
digram frequency counts for various word-length and letter-
position combinations, Psychonomic Monograph Supplements
1 (1965), 13-32.

16. Rau, H., Skiena, S., Dialing for Documents: an Experiment in
Information Theory, UIST 1994.

17. Silfverberg, M., MacKenzie, I.S., Korhonen, P. Predicting
Text Entry Speed on Mobile Phones, In Proc. of CHI 2000.

18. Smith, S., Goodwin, N., Alphabetic Data Entry Via the Touch-
Tone Pad: A Comment, HUMAN FACTORS, The Mitre
Corporation, 1971, 13(2) P.p 189-190.

19. Wigdor, D., Balakrishnan, R., A Comparison of Consecutive
and Concurrent Input Text Entry Techniques for Mobile
Phones, in Proc. of CHI 2004.

20. Wigdor, D., Balakrishnan, R., TiltText: Using Tilt for Text
Input to Mobile Phones. In Proc. of UIST 2003.

21. Wang, J, Zhai, S., Canny, J., Camera Phone Based Motion
Sensing : Interaction Techniques, Applications and
Performance Study. In Proc. of UIST 2006.

22. Why Book Means Cool
http://www.languagehat.com/archives/002415.php

23. Wobbrock, J.O. and Myers, B.A. Analyzing the input stream
for Character-level Errors in Unconstrained Text Entry
Evaluations. In Proc of ACM ToCHI vol. 13 (4), 2006.

24. Wobbrock, J.O., Myers, B.A. and Chau, D.H. In-stroke Word
Completion. In Proc. of UIST 2006.

25. Wobbrock, J.O., Chau, D.H. and Myers, B.A. An Alternative
to Push, Press, and Tap-tap-tap: Gesturing on an Isometric
Joystick for Mobile Phone Text Entry. In Proc. of CHI 2007.

26. Zhai, S., Hunter, M., Smith, B., The Metropolis Keyboard - an
Exploration of Quantitative Techniques for Virtual Keyboard
Design, In Proc. of UIST 2001.

27. Zhai, S. and Kristensson, P. Shorthand Writing on Stylus
Keyboard. In Proc. of CHI 2003.

CHI 2010: EPIC #FAIL April 10–15, 2010, Atlanta, GA, USA

24

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

