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Abstract—In this paper, we study random access in a drive- improve the safety of the passengers by informing the vesicl
thru scenario, where roadside access points (APs) are indked on  of potential dangers ahead of time. Non-safety application
a highway to provide temporary Internet access for vehiclesWe (such as traffic management, instant messaging, and media

consider vehicle-to-roadside (V2R) communications for aehicle tent deli h b desi dt id traffi
that aims to upload a file when it is within the APS’ coverage content delivery) have been designed to avoid traffic con-

ranges, where both the channel contention level and transmssion  gestion and improve the experience of driving. Clearly, the
data rate vary over time. The vehicle will pay a fixed amount quality of service (QoS) requirements of various applmagi
each time it tries to access the APs, and will incur a penaltyfi gre different.

it cannot finish the file uploading when leaving the APs. First VANETS support various ITS applications through different
we consider the problem of finding the optimal transmission L ) . . .

policy with a single AP and random vehicular traffic arrivals. types_ of Communlca’[lor] mechan!sms, including Ve,h'd?'to'
We formulate it as a finite-horizon sequential decision protkem, roadside (V2R) and vehicle-to-vehicle (V2V) communicatio
solve it using dynamic programming (DP), and design a geneta [3]. V2R communications involve data transmissions betwee
dynamic optimal random access (DORA) algorithm. We derive vehicular nodes and roadside APs. V2V communications only
the conditions under which the optimal transmission policyhas involve data exchanges among vehicular nodes. For botls type

a threshold structure, and propose a monotone DORA algoritim furth lassify th icati ith inal
with a lower computational complexity for this special caseNext, we can further classily the communications as either singie

we consider the problem of finding the optimal transmission hop or multi-hop. In this paper, we focus on analyzvgR
policy with multiple APs and deterministic vehicular traffic single-hop uplink transmissionsom vehicles to APs. Due

arrivals thanks to perfect traffic estimation. We again obtan the to the limited communication opportunities between vegscl
optimal transmission policy using DP and propose a joint DOR\ a4 APs, efficient resource allocation (either centraliped

algorithm. Simulation results based on a realistic vehicur traffic L . .
model show that our proposed algorithms achieve the minimal distributed) is crucial for the successful deployment ofR/2

total cost and the highest upload ratio as compared with some ITS applications.
other heuristic schemes. In particular, we show that the jant In the centralized setting, the AP schedules the trans-
DORA scheme achieves an upload ratio 130% and 207% better missions from different vehicles based on some predefined
than th_e heuristic schemes at low and high traffic densities, criteria. Hadalleret al. in [4] proposed a scheduling protocol
respectively. . .
_ ~ that grants channel access to a vehicle that achieves the
Index Terms—Random access, medium access control, vehic-maximum transmission rate. Analytical and simulation Hssu
ular ad hoc networks, dynamic programming, Markov decision  ghq\yeq significant overall system throughput improvement
processes, threshold policy. . .
over a benchmark scheme. Zhaetgal. in [5] considered the
case where roadside APs only store the data uploaded by the
. INTRODUCTION vehicles. Scheduling priority is determined by two factaiata
Vehicular ad hoc networks (VANETS) enable autonomousze and deadline. A request with either a smaller data size
data exchanges among vehicles and roadside access pantsn earlier deadline will be served first. Alcaraz al. in
(APs), and are essential to various intelligent transpioria [6] considered both uplink and downlink scheduling of non-
system (ITS) applications. For example, safety applicatioreal-time traffic for non-safety applications. The schétul
(such as cooperative forward collision warning, lane cleangroblem was formulated as a constrained linear quadratic
warning, and left turn assistant [1], [2]) have been progdse regulator design problem that aims to reduce the residual
. . . . , gueue backlog for each user. However, because centralized
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medium access control (MAC) module collects information of

local data traffic, and the routing module finds a path with the

minimum delay. Niyatoet al. in [9] proposed a hierarchical
%w)

optimization framework for downlink data streaming in V2R
communications. The optimal pricing and bandwidth reserva
tion of a service provider is obtained using game theory, and N
the optimal download policy of an OBU is obtained using S
constrained Markov decision processes. Enal. in [10] .
analyzed the performance of a downlink resource allocation
scheme in a V2R communication system with one AP on Fig. 1. Drive-thru vehicle-to-roadside (V2R) communioat with multiple
road. The distribution of the number of bytes downloaded pé?s‘

drive-thru was derived using Markov reward processes. Roma

et al. in [11] proposed a cross-layer protocol in the physical The rest of the paper is organized as follows. We describe
and MAC layers that addresses the issues of channel fadiggy system model in Section Il and formulate the DP problem
synchronization, and channel contention. Performanclysisa in Section I1l. The general and monotone DORA algorithms
was presented for the channel contention scheme, and adestgr single AP are proposed in Section IV-A, and the JDORA
was used to evaluate the proposed protocol. algorithm for multiple APs is discussed in Section IV-B.

In this paper, we aim to design aplink random access sjmulation results are given in Section V, and the paper is

algorithm that isdistributedin nature, so that it is compatible concluded in Section VI.

with the IEEE 802.11p standard that is developed to fatdlita

the provision of wireless access in vehicular environment Il. SYSTEM MODEL
[12], [13]. Different from most previous works oheuristic . : : .

S ) L . . We consider a drive-thru scenario on a highway as shown
distributed uplink V2R communication algorithm design, we_  _. . .

. o : : . in Fig. 1, where multiple APs are installed and connected to
aim at designing aonptimaluplink resource allocation scheme : . :
in VANETs analvtically in this paper a backbone network to provide Internet services to vehicles

. y y paper. : within their coverage ranges. We focus on a vehicle that svant
In this work, we consider the drive-thru scenario [14], wher, : . : .
: ; to upload asingle file of size S when it moves through a
vehicles pass by several APs located along a highway and 2 .
. - : egment of this highway with a set of ARE = {1,...,J},
obtain Internet access for only a limited amount of time. WR ; h
: : .. Wwhere the vehicles pass through #{eAP before thej"" AP
assume that a vehicle wants to upload a file when it is within R th
ri < jwith i,j € J. We assume that thg" AP has a
the coverage ranges of the APs, and needs to pay for Eaensmission radiug?,. We also assume that the vehicle is
attempts to access the channel. As both the channel camentl a

) . . connected to at most one AP at a time. If the coverage areas
level and achievable data rate vary over time, the vehictelse of the APs are overlaoping. then proer handover between the
to decide when to transmit by taking into account the reguir pping, brop

C . APs will be performed [15]. For the ease of exposition, we
payment, the application’s QoS requirement, and the letvel Sssume that the APs are set up in a way that any position in
contention in current and future time slots. Because of ﬂtﬁ’

. ; .. this segment of highway is covered by an AP. Our work can
dynamic nature of the problem, we formulate it as a finite-_ . . i
easily be extended to consider the settings where the apwera

horlzon sequential .deCISIOH problem and solve it using t%?eas of adjacent APs are isolated from each other.
dynamic programming (DP).

The main contributions of our work are as follows: .

o Optimal Access Policy Designn the case of a single A. Traffic Model
AP with random vehicular traffic, we propose a general Let A denote the average number of vehicles passing by a
dynamic optimal random access (DORA) algorithm téxed AP per unit time. We assume that the number of vehicles
compute the optimal access policy. We further exterfioving into this segment of the highway follows a Poisson
the results to the case of multiple consecutive APs apdocess [16] with a mean arrival rate Let p denote the
propose a joint DORA (JDORA) algorithm to computeehicle density representing the number of vehicles per uni
the optimal policy. distance along the road segment, andbe the speed of the

« Low Complexity AlgorithmWe consider a special yetvehicles. From [17], we have
practically important case of a single AP with constant A= pv. )
data rate. We show that the optimal policy in this case
has a threshold structure, which motivates us to proposélae relation between the vehicle densjiyand speed is
low complexity and efficient monotone DORA algorithmgiven by the following equation [17]:

« Superior PerformanceExtensive simulation results show N 2
that our proposed algorithms achieve the minimal total v =v;(L=p/pmaz), 2)
cost and the highest upload ratio as compared with threaerev; is the free-flow speed when the vehicle is moving on
other heuristic schemes. In the multi-AP scenario, thihe road without any other vehicles, apgl.. is the vehicle
performance improvements in upload ratio of the JDORAensity during traffic jam.
scheme are 130% and 207% at low and high traffic As we are studying the traffic flow isteady stateall the
densities, respectively. vehicles within the coverage range are assumed to move with
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Fig. 2. An example of the time line representation for thenevéhappened Fig. 3. The structure of a time slot of thé" AP.
with three APs (i.e..7 = {1, 2, 3}). Here, we assume thdt = 10, T =

15, andT3 = 12. With respect to the time line, we havg = {1,..., 10},

T2 ={11,...,25}, and 73 = {26, ...,37}. Itis clear from the figure that

CG,m) =00 Ty +7, V7 € {1,..., T}, whereT, = 0. the coverage range in all the time slots in tfi& coverage
range (i.e.l;,Vt € T;). We further elaborate these system
parameters as follows:

pitec represents the probability that the vehicle can
successfully obtain access in time slote 7; after
contending with all the vehicles in th#' coverage range.
Nonazj = |2Ripmaz|, Vi€ T. (3) p;tc¢ is estimated by the AP based on the level of system
contention and it varies over time. Singg“c is related to
B. Channel Model the numbgr of vehicles, cqrrenﬂxxin the;™ coverage
range at time slot, we definep;“*® = g;(n;), where
Wireless signal propagations suffer from path loss, shadow ;. is a strictly decreasing function. An AP knows the
ing, and fading. Since the distance between the vehiclel®dt  yalue ofn,, since vehicles need to establish and terminate

AP varies in the drive-thru scenario, we focus on the dontinan  their connections when they enter and leave the coverage
effect of channel attenuation due to path loss. The dateatate  range, respectively.

the same speed in (2). Let |-| denote the floor function.
The maximum number of vehicles that can be accommodated
within the coverage range of th& AP is given by

time slott is given by « ¢; > 0 denotes the amount a vehicle needs to pay the AP
for each time slot that it sends a transmission request in
wy = Wlog, (1 + W) ) 4) the j™ coverage range, even it fails to access the channel.

t

_ ) _ ) The value ofg; does not change over time.
where WV is the channel bandwidti? is the transmit power , ; represents the number of vehicle departing at time

of the vehicled; is the distance between the vehicle and the  gjot; < 7; from the j coverage range. Since all the

closest AP at time slot, and~ is the path loss exponent.  yepjicles move with constant speedn the traffic model,
We assume that the additive white Gaussian noise has a zero e assume thatl,, vVt € T;) are accurately known by
mean and a power spectral densiy/2. In addition, we also the ;" AP, and are sent to the vehicle when it enters the

consider a special case with fixed data rate in Section IV-Al. coverage range.

In each time slot € 7; in the j! coverage range, thg"
C. Distributed Medium Access Control (MAC) AP first broadcasts the value gf“ to all the vehicles in
We consider a slotted MAC protocol, where time is dividetls coverage range. If a vehicle decides to transmit withia t
into equal time slots of lengti\t. We assume that there istime slot, it sends a request to tfi8 AP at its scheduled mini-
perfect synchronization between the APs and the vehiclds wslot, whereN,, .., ; mini-slots are reserved for transmission
the use of global positioning system (GPS) [18]. The tota¢quests. The transmissions of requests are thus cotlisien
number of time slots that the vehicle stays within the cogeraAfter collecting the requests from all vehicles in its cage
range of thgf™ AP is T} = % . We use the notatiog(j, ) range, thq‘h AP assigns the time slot to one of these vehicles.
The vehicle, which receives the acknowledgement (ACK), can
?ransmit the data packets in the remaining tithig,,;, of this
time slot, whereAt,... < At. The structure of a time slot is
izt shown in Fig. 3.
CG,7) = ZTi +r Vrefl.. Tt ®) Meanwhile, regardless of which vehicle is granted the time
=0 slot, each vehicle which requested to transmit in the tiroe sl
whereT} = 0. The set of time slots in thg" AP with respect needs to pay; to the j™ AP. Without such pricing, each
to this time line representation § = {((4,1),...,¢(j,7;)}. Vvehicle would send a request in every time slot, which unnec-
An example of the time line representation is given in Fig. Zssarily increases the contention level and prevents egftici
When the vehicle firsenters the coverage rang# the ;' allocation of time slots to the most needed application.
AP, it declares the type of its application to the AP. In retur The vehicle aims to achieve a goddeoff between the
the ;M AP informs the vehicle the channel contention in thiotal uploaded file size and the total payment to the APs
coverage range\ and p;““¢,Vt € 7;), data rate in all the according to the QoS requirement of the application. For
time slots in thej" coverage range (i.ew,,Vt € 7;), the example, a higher priority may be placed on the total upldade
price ¢;, and the estimated number of vehicle departures frdiife size for safety applications, but on the total paymenmt fo

to denote the" time slot when the vehicle is in the coverag
area of thej™ AP, i.e.,



non-safety applications. The problem is further compédat where the remaining size of the file to upload does not change.
by the time-varying data rate; and channel contention level. The derivation ofp, (pS“CC’ |pS“CC) will be discussed in detail
Therefore, it is a challenge for the vehicle to decide when to Section V.

request for data transmission. Let 6, : S x P; — A be thedecision rulethat specifies
the transmission decision of the vehicle at stéateps“<c)
I1l. PROBLEM FORMULATION at time slott € 7; in the ;! coverage range. We define a

In this section, we formulate the optimal transmission profpolicy as a set of decision rules covering all the states as
lem of a single vehicleas afinite-horizon sequentialecision 7 = (d:(s,p**°), Vs € S,p**“ € P;,t € T;,Vj € J). We
succ,

problem [19]. Thedecision epochsf the vehicle are denote(sy", p;" ") as the state at time slatif policy  is
used, and we lefl be the feasible set af. The vehicle aims

tel = U T = U {C(jvl)""’g(jv Tj)}’ ®) 1o find an optimal policy that minimizes the total expected

€T €T cost, which can be formulated as the following optimization
whereT is the set of all the time slots in the total #fcoverage problem
ranges. J T
The systenstateof a vehicle is defined ag, p*°©), where . ( suce,m
’ o . E suce ; T S
the state elemente S = [0, S] represents the remaining sizerent ™ (SP1") Zl Tz:lcq(“) Gy Py
j=1br=

(in bits) of the single file to be uploaded. If we denote the
number of vehicles in the coverage range of AP as ™ suce, . ™ suce,

n€N;={1,..., Nnmax,;} thenpsugc € P?Z {gjﬁ(‘f;) ‘ne %¢m) (587 P ))}%CU’T”“)(SC("vTJ“)’de,Tﬁl)) ’
N} (13)

At any state(s, p*“<°), the vehicle has two possibéetions . .
y &(s,p™) P where Er (s p:ucc) denotes the expectation with respect to

ac A={0,1}, (7) the probability distribution by policyr with an initial state
SQS,pi"CC) at time slott = ¢(1,1) = 1. In the following
section, we will study two scenarios: single AP with random

vehicular traffic and multiple APs with traffic pattern eséim

where actioru = 1 implies that the vehicle decides to reque
to transmit, and action = 0 otherwise.

The costat state(s, p*<©) with actiona € A at time slot
t € T; in the 5™ coverage range is

ci(s,p™,a) = aqj, VteT;. (8) IV. FINITE-HORIZON DYNAMIC PROGRAMMING

After the vehicle has left the/" coverage range at time In this section, we describe how to obtain the optimal
¢(J,T; + 1), we define aself-incurred penaltyf the vehicle transmission policies in both the single-AP and multiple-A
for not being able to complete the file uploading as scenarios usingjnite-horizon dynamic programmingVe first

2 (5, p°9°¢) = h(s) ) study the single-AP scenario with random vehicular traffic
ST A ’ arrival in Section IV-A. In particular, we consider a spécia
where h(s) > 0 is a nondecreasing function of with case that the optimal policy hagtaeshold structurén Section
h(0) = 0. The function depends on the QoS requirement §f-A1. When the traffic pattern can be estimated accurately,
the application. To sum up, each vehicle is incurred with tw@e consider a joint AP optimization in Section IV-B.
costs: the transmission cost in each time slot in (8) and the
penalty after leaving the™ coverage range in (9).

Thestate transition probability; ((s, p**°*") | (s, p*"*°), a) _ o . o

is the probability that the system will go into staté, psu<’ Since we are considering one AP (., = {1}) in this

if action a is taken at statés, p*“c) at time slott € T. Since subsection, we drop the subscrjgdor simplicity. Although the
the transition fromp*“c to p*“c¢’ is independent of the value exact traffic pattern (i.e., the exact number of vehicleshim t

A. Single AP Optimization with Random Vehicular Traffic

of s but depends on time, we have coverage range of the AP in each time slot) is not known, the
, , vehicles arrive according to a Poisson process with paemet
pe((s', p*uee’) | (s, puee), a)/ (10) A. Meanwhile, the parametets(Vt € T), pmaz, At, R, and
= pe(s' | (s,p°°), a) pe (p™ce | p*ucc). the functiong(-) are available. The transition probability of
With actiona = 1, we have p*¢ is given by
psucc7 |f S/ — [S _ thtdata]—t pt (psucc |psucc) — pt (g(n/) | g(n)) _ pt (n/ | n)
/ succ H ’_

pe(s | (s,p 1) =<1 —psuee, if s/ = s, (AAH" o

( | ( ) ) 0 otherwise _ —(n’fn+lt+1)! ENCR |f n lt+1 S nl S Nmawa (14)

(11) 0, otherwise,

where [z]* = max{0,z}. The first and second cases correshere di(n) = Zivgoafnﬂm (Aﬁlt)y is a normalization

spond to the scenarios of successful and unsuccessfultpagkg;,, Becausgs“°®

- . . . = g(n) is a strictly decreasing function
transmissions, respectively. With actian= 0, we have

of n, there is a one-to-one mapping betwegét“c andn as
, sueey ) — 1, if & =s, (12) shown in the first two equalities in (14). The expressionrafte
P (S | (5, p7), ) ~ 1 0, otherwise, the third equalities describes the probability with—n +1; 1



arrivals due to the Poisson process dag deterministic Algorithm 1 General DORA Algorithm for single AP opti-
departures at timé+ 1. »’ is lower-bounded by, — {,,, > 0 Mization (i.e., problem (15)).
when there is no vehicle arrival, and is upper-bounded by: Planning Phase

Noen- 2: Input the traffic parameters;, A, pmaz, It (Vt € T);
In this subsection, since we considgr = {1}, we can 3 IAngth thi S;’ft)?m parameters(), 5, B, we (Vt € 7). . At,
. . atas ’ )
simplify problem (13) as 4: Set the boundary conditionr,1(s,p°**°), Vs € S,Vp** €
T ‘P using (19);
. suce, suce, 5 t:=1T;
_’IPGI% Eﬂ,(S,pi““) |:Z Ct (S?apt aét(s?apt )) 6: while ¢ > 1
t=1 (15) 7. for prec e p
+é (Sw succ,ﬂ') 8: s:=0;
T+1ST+1: P o: while s < S
. 10: Calculatey (s, p°*°“,a), Va € A = {0, 1} using (20);
Let v:(s, p**©©) be the minimal expected total cost that tha. 67 (s, p°") := arg min{¢ (s, ", a)};
vehicle has to pay from timeto time T + 1 when it is in the cnee AEA e wxs  suoony.
I 1 1 succe : Ut(87p ) = %(3717 75t ('Syp )),
coverage range, given that the system is in state@®“<) 13: si=5+ o0
immediately before the decision at time slote 7. The 14 end while
optimality equatior{19, pp. 83] relating the minimal expected1s:  end for
total cost at different states fore 7 is 6. t:=t-1
17: end while
v (s, p*°) = min{¢ (s, p*"°°, a)}, (16) 18: Output the optimal policyr™ for use in the transmission phase;
acA 19: Transmission Phase
where 20: t:=1ands:=S;
21: while t < T
qpt(g,psu‘”’ a) = ct(s,psucc, a)+ 22: Receive the information gh*““ from the AP;
/ ' 23: Set actiona := 0; (s, p°““°) based on the policyr™;
DY (™) (5,07 @) v (s, 0°) (A7) 540 if actiona =1 |
S'ES psuce’ cp 25: Send a request to the AP;
26: If ACK is received from the AP
/ . 27: Transmit packets with total size:Atgqta;
=aqt>_pi(p™ Ipsu“)[aps““vm( [s — wiAlaara] Tp**°)  28: s 1= [s — wiAtaata]*:
psucc’e’]) 29: end |f
succ SUCC/ 30 end If
+(1—ap )Ut+1(=9ap )} 31 ti=t+1;

(18) 32: end while

The first and second terms on the right hand side of (17)
are theimmediate costand theexpected future cosnh the
remaining time slots in the coverage range for choosingacti
a, respectively. Equation (18) follows directly by evalunafi
(17) using (10) - (12). For time¢ = T + 1, we have the
boundary condition that

The proof of Lemma 2 is given in Appendix A.

Using the optimality equation angackward inductiorj19,
pp.92], we propose the general dynamic optimal random
access (DORA) algorithm in Algorithm 1 to obtain tbptimal
policy 7* = (0] (s, p*"c), Vs € S,p*c € P,t € T), where

UT+1(57P ) = CT+1 (Sap ) - h(s) (19) 5;(S7psucc) _ argmin{wt(s,psucc, a)} (21)
Lemma 1:The value ofiy(s, p*“cc,a), Vt € T, can be acA
obtained as Theorem 1:The policy =* obtained from Algorithm 1 is
Ninae—n+ley1 (AAH)™ the optimal solution of problem (15).
Ui(s,p®a) = aq + Z S Proof: Using the principle of optimality [20, pp. 18], we
= mig(n) 20) can show thatr* is the optimal solution of problem (15)m

The proposed DORA algorithm consists of two phases:
Planning phase and transmission phase. The planning phase
+(1 — apsucc)th (s, g(n+m— lt+1))} , starts when the vehicle enters the coverage range. Theleehic
) ) ) then obtains information from the AP and computes the
where n = g~'(p***) is the number of vehicles in the gpimal policy =* offline using dynamic programming. In

X [ap Vi1 ([s — wiAtaara] T, g(n +m — li41))

coverage range of the AP. _ ) ~ fact, v is acontingency plarthat contains information about
Proof: The result follows directly by evaluating (18) usinghe optimal decisions all possible stategs, p*“c) in the
(14). B coverage range. In the transmission phase, the transmissio

Intuitively, the minimal expected cost;(s, p**““) should gecision in each time slot is made according to the optimal
be smaller when the remaining file sizeto be uploaded is policy *, and s is updated depending on whether the time
smaller. It is confirmed by the following lemma: slot is granted to the vehicle for transmission or not. We let

Lemma 2:v,(s, p*"c¢) is a nondecreasing function ig, o > 0 be the granularity of the discrete state element the
Vpsiecc e PiteT. algorithm.



1) Special Case: Convex Penalty Function and Fixed Datdgorithm 2 Monotone DORA Algorithm for single AP opti-
Rate: In this subsection, we further investigate a special ygtization (i.e., problem (15)) for the special case with @av
practically important case with convex penalty functiordanPenalty functioni(s) and fixed data ratev;.

non-adaptive data rate [10]. Specifically, if the self-imed 1

penalty functioni(s) is convexand the data ratey; is fixed 2
3: Input the system parameters(-), S, R, w: (Vt € T), q, At,

within the coverage range (i.ewy; = w, V¢t € T), we can
show in Appendix B that),(s,p*"“*,a) is subadditive[19, ,
pp.103] onS x A, Vt € T, which is defined as follows.

Definition 1: Given p*“<¢, the functiony(s,p"“,a) is
subadditive onS x A if for §,5 € S anda,a € A, where
§> s anda > a, we have

Ye(8,p™5a) + e (3, p™Ca) < (8, p™ @) + e (5, p™Ca).

(22) 3

Furthermore, withd; (s, p°“<®) as defined in (21), we can

establish the threshold structure of the optimal policy, [192:

pp. 104, 115], [21]. 13
Theorem 2:If h(s) is a convex and nondecreasing func-igj
tion in s, and the data ratey, is fixed such thatw, = g
w, Vt € T, then we have a threshold optimal poliey = 17
(07 (s,p°cc), Vs € S,p*“ € P,t € T) in s as follows: 18:
19:

* succy __ 11 If 5> 3? (psucc)’ 20:

07 (s,p™%) = { 0, otherwise, (23) 21:
where sy (p*“<©) is the threshold that depends on betff<¢ .
andt. 23:
The proof of Theorem 2 is given in Appendix C. By?24:
25:

modifying Algorithm 1, we are ready to propose tmenotone

DORA algorithm with a lower computational complexitygsg
in Algorithm 2 using monotone backward induction [19pg.
pp.111]. Let A C A be the set of actions that we neeco:
to consider in the minimization in line 11 in Algorithm 2.30:
When ¢/ (s, p***“) = 1 and flag = 0 are satisfied (line 13), g;

which means that the threshold (p*“<¢) is reached, setd
is reduced from{0,1} to {1} and the threshold; (p*“<°) is

5
6
7:
8:
9
0
1

33:
34:

Planning Phase
Input the traffic parameters,, A\, pmaz, It (Vt € T);

Atdatay g, g():

. Set the boundary conditionr41 (s, p**<¢), Vs € S,Vp°*e© €

‘P using (19);

ct=1T,
:whilet >1

for p**“c e P ~
Sets :=0, flag :=0, and A := {0,1};
while s < S -
Calculatey (s, p°*°%,a), Va € A using (20);
o7 (s,p°*) = argmin{y (s, p°*“, a) };
acA
vt (S7psucc) = wt (S7psucc7 5: (sypS’U.CC));
if 97 (s,p*"“) =1 and flag =0
Set A := {1}, si(p°*°°) = s, and flag = 1;
end if
s =5+ 0,
end while
end for
t:=t—1,
end while
Output the thresholdés; (p“<¢), Vp*“c¢ € P,t € T) for use
in the transmission phase;
Transmission Phase
t:=1ands:=S;
whilet < T
Receive the information gh*““ from the AP;
If s> sf(p°*c)
Send a request to the AP;
If ACK is received from the AP
Transmit packets with total size:Atgata;
5= [s — wiAtgaraT;
end if
end if
t:=t+1,
end while

recorded (line 14). Then the minimization in line 11 is réadi
known, since setd = {1} is a singleton. The computational

complexity is thus reduced. Moreover, memory can be savegtcurately. As an example, we consider that the traffic model
because we do not need to store the complete optimal polisyas described in Section II-A, and all the APs have the same
= (67 (s,p°"¢), Vs € S,p* € P,t € T). We just need transmission radii. After the traffic monitor has estimatiee

to store the thresholds; (p*), Vp*““ € P,t € T), which values ofps“<¢, V 1 € T; for the first coverage range, it can set
completely characterize the optimal poliey* as shown in p(5s, = pyiee for the remaining coverage ranges J\{1}.
(23). gI'he optimality equations relating the minimal expectedltot
cost at different timet € T for problem (13) are similar to
that described in Section IV-A, but are simplified because we

B. Joint AP Optimization with Deterministic Vehicular Tiaf |
assume thap;“c, Vt € T are known. At timet € T;, we

In the previous subsection, we consider the optimizati
problem in a single AP. In this subsection, we extend t
result to the case omultiple APs, where we assume that
the traffic pattern (i.e., the exact number of vehicles in thghere
coverage ranges of the APs in each time slot) can be estimated
accurately. The traffic pattern can be estimated in variotis(s, pi ", a)
ways, such as by installing a traffic monitor at a place before ct(s,pfuc,ca)—l-Zpt((s/,pfff_clc”(s,pfucc), a)vtﬂ(s’,pfﬁ‘f)
the first AP to observe the actual traffic pattern when the oS
vehicles pass by (e.g., using computer vision [22] and patte_ . suce . + , succ
recognitign [23]3/. (If ?he traf?ic flovf/) reaches th[e s]teadyT;tat o5 AP UHI([S wt?jcd:m] P )
(as discussed in Section II-A), the estimation of the number

succ

ve(s, P (24)

- 3 succ
) - ggﬁ{wt(svpt ,CL)},

+ (1 - apfucc)vt-f-l (Sapt+1 )- (25)

of vehiclesn, at timet € T can be reasonably accurate. As &he second line in (25) is obtained by using (11) and (12).
result, the values opi"“c = g;(n:), Vt € T can be obtained After the vehicle has left the/th coverage range at =



Algorithm 3 JDORA Algorithm for joint AP optimization (i.., |n particular, we study the performance of Algorithm 3 under
problem (13)). imperfect estimations of thef““* in the multiple-AP scenario.

1: Planning Phase We then study the threshold policies obtained by Algorithm

2: Input the traffic parameters,, pi“¢ (V¢ € T);

3: Input the system parameter’(-), S, R; (Vj € J), ws (Vt €
T), ¢;(Vj € TJ), At, Atgata, 0,

The three heuristic schemes that we consider are as follows.

4: Set the boundary condition .z, 1) (s, 255, 1)), Vs € S The first heuristic scheme isgreedyalgorithm, in which each
using (26); vehicle sends transmission requests at all the time slats if

5. t:=((J,Ty); file upload is not complete. That is, the greedy algorithmsaim

6: while t > 1 to maximize the total uploaded file size. The second hearisti

; 5\/;60; <3 scheme is thexponential backofalgorithm that is similar to

9 Calculatey, (s, pi“*, a), Va € A = {0,1} using (25); ~ the one used in the IEEE 802.11. We have slightly modified it

10: 67 (s,p5"°) := arg min{4; (s, p{"*, a)}; for the system that we consider as follows. Each vehicle has
_ suce AEA e wxs suceny. a counter, which randomly and uniformly chooses an initial

11: ve (s, pitec) = iy (s7pt , 0z (s, i )) ) 4 .

12. s—s+ o integer valuecnt from the interval0, cw), wherecw is the

13:  end while contention window size. The value oiit is decreased by one

14 t=t—1; after each time slot. Wheant = 0, the vehicle will send a

15: end while o _ o request. If the vehicle has sent a request in a time slot,itee s

isf %‘gﬁ:ﬁq}ggoonpgﬂglsgo“"w for use in the transmission Phaseint . ¢ [cw,nin, cwmaz] Will change according to the response

18 t—1ands = S; from the AP: If an ACK is received from the ARw is set

19: while t < ¢(J,Ty) to cwmin. Otherwise,cw is doubled until it reachesgw,,, ;.

20:  Set actiona := J; (s, p;“““) based on the policyr*; For the DORA, JDORA, greedy, and exponential schemes, we

21:  If actiona =1 assume that the APs allow the vehicles to share the channel

gé ﬁexglgi;e?:ceesif/é% tf?SmAltDrie AP with an equal probability. Thereforg;“ = 1/n,. The third_

o4 Transmit packets with total Size; At gara; heuristic schgme is the MAC protocol in _the multi-carrier

25: 5= [s — wi Atgara] burst contention (MCBC) scheme [11]. Similar to the greedy

26: end if scheme, a vehicle will send a request if it has data to send

27 end if in each time slot. However, the vehicles need to unddigo

28: t:=t+1,

29: end while rounds of contention in each time slot. First, in rounda

vehicle survives the contention with probability. Each of
these vehicles will choose a random integer{in..., F'}.
Vehicles that have chosen the largest number can proceed to
roundr + 1. The transmission is successful if there is only

Ve(a s 41) (8L 1)) = Ecamy 11 (5, DL, 41)) = h(s).  ONe vehicle left in roundy. Otherwise, packet collision will
3 ) sLg s ) Jy Ly )
(26) occur. _
The JDORA algorithm for joint AP optimization is given in FOr the evaluations of all the schemes, we use the convex
Algorithm 3. In Algorithm 3, the vehicle first needs to obtairfelf-incurred penalty function
the values ofp;““¢, V¢ € T, from the traffic monitor. In the h(s) =bs?, VseS, (27)

planning phase, for eache S andt € T, the optimal decision ) o
rule 57 (s, psUee) is the action that minimizes the expected tota¥hereb > 0 is a constant. The three heuristic schemes are

cost (line 10), where the expected total casts, p;“, a) evaluated using a similar trapsmission phase as in Algosth

for all possible actions is calculated (line 9) basedwpp, 1 @nd 3, but withz™ in Algorithms 1 and 3 replaced by the

obtained (line 11) in the previous iteratign+ 1. After the corresponding policies. The simulation parameters atedis

process is repeated for alle T (line 6) ands € S (line 8), in Table I. _

we obtain the optimal policyr*. In the transmission phase, Ve first study the impact of penalty paramefiem the total

the transmission decision in each time slot is made accgrdi#Ploaded file size foiS' = 100 Mbits andp = 20 veh/km in

to the optimal policyn*, and it follows the MAC protocol ©n€ AP. As shown in Fig. 4, by increasihga larger penalty

described in Section II-C. is incurred on the size of the file not yet uploaded by using
Theorem 3:The policyr* = (6% (s, p{“), Vs € S, ¢ € T) Algorithm 1. As a result, allarger file size is up_Ioaded to

obtained from Algorithm 3 is the optimal solution of problenféduce the penalty. Depending on the QoS requirements of

¢(J,Ty + 1), the boundary condition is

(13) whenp;ucc, V¢ € T are accurately known. different applications, different values éfshould be chosen
Proof: The result follows directly from the principle of that tradeoff the total uploaded file size and total payment
optimality [20, pp. 18]. m !o the AP by a different degree. Taking safety application

as an example, it may be more important to maximize the
uploaded file size than to reduce the total payment to the APs,
so a large value ob should be be chosen. Also, since the

In this section, we first compare Algorithms 1 and 3 witlransmission policies of the greedy, MCBC, and exponential
three heuristic schemes using the traffic model describedhbiackoff schemes do not consider the self-incurred penalty i
Section II-A in both the single-AP and multiple-AP scenario (27), their total uploaded file size are independent.of

V. PERFORMANCEEVALUATIONS



TABLE |
SIMULATION PARAMETERS 2000
Parameters Values
Number of APsJ 1,5
AP’s transmission radius 100 m 1500
Free-flow speed, 110 km/hr g
Vehicle jam densityp,,ax 100 veh/km o
Duration of a time slotAt 0.02 sec g
Duration for data transmission in 0.018 sec =
a time slotAtgqiq 10001 e
Channel bandwidtiV 20 MHz +;ng2€"“5' Backoff
Transmit signal-to-noise rati% 60 dB s Greedy
Path loss exponenf 3 5 DORA
Payment per time slof 1 5% 30 w0 50 60 70 80
Contention windowcw € [cWmin, CWmaz) [1,8] Density p (veh/km)
MCBC parameterK (used in [11]) 3
MCBC parameteifpipz, p3] (used in [11]) | [0.12,0.77, 0.86] Fig. 5. Total cost versus traffic densityfor file size S = 200 Mbits with
MCBC parameterF' (used in [11]) 15 a single AP. The DORA scheme has the minimal total cost.
o e e e 06 ; ; ; “orA
P b —&— DORA
90 f 4 0.557\170/ —o&— Exponential Backoff |-
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B sl | 1 050 —+— MCBC
= |
g 701 ‘\‘
N | i)
2 60 “ &
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g 30t
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° | —+#*— MCBC
= 10+‘ —=— DORA | i
i >— Exponential Backoff L)
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Penalty b Density p (veh/km

Fig. 6. Upload ratio (i.e., total uploaded file size / totaypeent to the APs)

Fig. 4. Total uploaded file size against the penalty paranteter S = 100
Mbits andp = 20 veh/km with a single AP. A% increases, a larger file size versus traffic density for file size S = 200 Mbits with a single AP. The
DORA scheme achieves the highest upload ratio.

is uploaded for the DORA scheme.

the precision of the estimation. The valuezgf< is obtained

Next, we plot the total cost against the traffic dengitfor
S = 200 Mbits with b = 0.1 for the case of one AP in Fig. by settingp;“¢ = g¢;(n,), Vt € T;,j € J. We plot the total

5. It is clear that the DORA scheme in Algorithm 1 achievesost and upload ratio in Figs. 7 and 8 1= 500 Mbits with
the minimal total cost as stated in Theorem 1, with 48% arbd= 0.01, respectively. In Fig. 7, we can see that the JDORA
24% cost reduction as compared with the exponential backeftheme with perfect estimation (i.¢.= 0) of p;““¢, V¢t € T
scheme at low and high, respectively. To measure the cosachieves the minimal total cost as stated in Theorem 3, where
effectiveness of the file uploading for the four schemes, vieachieves 53% and 71% cost reduction as compared with the
propose a metric called thepload ratiq which is defined exponential backoff scheme at low and high traffic dengity
as the total uploaded file size divided by the total paymergspectively. In Fig. 8, we can see that the JDORA scheme
to the APs. In other words, it represents the size of thwith perfect estimation achieves the highest upload rafio.
file uploaded per unit payment. As shown in Fig. 6, singearticular, it achieves an upload ratio 130% and 207% better
the DORA algorithm takes into account the varying chann@ian the exponential backoff scheme at low and high traffic
contention level and data rate in determining the transomiss density p, respectively. As shown in Figs. 7 and 8, the total
policy, it is cost effective and achieves the highest upl@aid. cost is increased and the upload ratio is reduced, respbgtiv
In particular, the performance gains in upload ratio over ttwhen the estimation precision decreases. However, thigtres

exponential backoff scheme are 17% and 77% at low and higased on equal share of bandwidth thgtc = 1/n,, Vt € T
is less sensitive to the estimation error when the trafficsiten

p, respectively.
Furthermore, we consider the case with five APs, whereis high. It suggests that the JDORA algorithm is suitable

we assume that all of them have the same transmission ra&sipecially for VANETs with high traffic densities.

R and priceq. For the JDORA scheme in Algorithm 3, we Finally, we study the threshold policy in a single AP
consider that the estimated number of vehic¢leattimet € T  obtained by Algorithm 2 when the penalty functidns) is

is obtained by rounding off a normally distributed randomonvex and data rate, is fixed. We consider that' = 100
variable with a meam; and a variancé to the nearest non- Mbits, » = 100 km/hr, w; = 54 Mbps Vt € T, and h(s)
negative integer. Thus, the lower the variaficehe higher is is defined as in (27). From Theorem 2, we know that the
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Fig. 7. Total cost versus traffic densjpyfor file size S = 500 Mbits with five
APs. The JDORA scheme with perfect estimationpgf has the minimal
total cost. Moreover, a higher total cost is required whenptecision of the
estimation reduces (i.e., when the variance of the estm#iincreases).

—+&— JDORA (Perfect Estimation)
1! —v— JDORA (8=1) H
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°
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Fig. 8. Upload ratio versus traffic density for file size S = 500

Mbits with five APs. The JDORA scheme with perfect estimatainp;* ¢

achieves the highest upload ratio as compared with threer diburistic
schemes. Moreover, a lower upload ratio is achieved wherptéeision of
the estimation reduces (i.e., when the variance of the agtmé increases).

penalty is large.
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epocht for different penalty parametets

In this paper, we studied the V2R uplink transmission from
a vehicle to the APs in a dynamic drive-thru scenario, where
optimal policy has a threshold structure. In Fig. 9, we pldioth the channel contention level and data rate vary over
the thresholdss;(p®“<¢) of the optimal policy against the time. Depending on the applications’ QoS requirements, the
decision epoch for different values ofp®“c¢. With the use vehicle can achieve different levels of tradeoff betweea th
of the convex penalty function, we can see that the threshatdal uploaded file size and the total payment to the APs
increases with. In Fig. 9(a), forb = 0.1, we can observe that by tuning the self-incurred penalty. For a single AP with
the threshold increases wheri“cc decreases. It is becauseaandom vehicular traffic, we proposed a DORA algorithm
a small penalty parameter is chosen, which places a higlbased on DP to obtain the optimal transmission policy for the
priority on the total payment than on the uploaded file sizgehicle in a coverage range. We prove that if the self-iredirr
Whenp*“< is small, the chance of successful transmission penalty functioni(s) is convex and the data rate, is non-
low, so the vehicle chooses a higher threshold and transna@tiaptive and fixed, then the optimal transmission policy has
less aggressively to reduce the amount of payment. In Fathreshold structure. A monotone DORA algorithm with a
9(b), we choose a larger penalty parameéter 10 such that lower computational complexity was proposed for this spleci
a higher priority is placed on the uploaded file size than arase. Next, for multiple APs with known vehicular pattemus,
the total payment. We can observe that the threshold deseansidered the transmission policy in multiple coveragees
when p*“c¢ decreases. It is because wheti“c is small, the jointly and proposed an optimal JDORA algorithm. Simulatio
vehicle needs to transmit more aggressively (i.e., withwelto results showed that our schemes achieve the minimal total
threshold) to prevent a large penalty. Moreover, we can seest and the highest upload ratio as compared with three
that the thresholds presented in Fig. 9(b) is lower than thather heuristic schemes. An interesting topic for futurekwo
in Fig. 9(a) due to the higher incentive to transmit when thie to consider joint AP optimization without traffic pattern
estimation.

VI. CONCLUSION
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APPENDIX ve([s — o —w]t, p*ec) = miﬂ{d)t([s —o—w|t, p™a)}
ac
A. Proof of Lemma 2 — ¢t([5 — 0 —w]T, puee, a4),
We prove it by induction. From (19), sineg- 1 (s, p*“¢) = (35)

h(s), vri1(s,p™cc) is a nondecreasing function im,

Vpuee € P. Assume thaty,q(s,p*“c¢) is a nondecreasing
function in s, vpsucc c P. Since pt(psucc’ |psucc) Z 0 vt(&psucc) _,Ut([s_w]Jr’psucc)
and 0 < ap®“cc < 1, it can be inferred from (18) that

We thus have

_ _ =+ succ _ _ + succ
P (s,p%“e¢, a) is a nondecreasing function i V ps“<c € P. Ut([ssucca] ) + Ut([s Zucc wltop )
Thus, v (s, p*“c©) in (16) is a nondecreasing function i = e(s, ™% a1) — Y ([s — ], p az)
v psuee e P B (s —o]", ™ as) +wt([s—a—w]*,p5““,a4)
A
B. Subadditivity ofi/; (s, p*““¢, a) = (s, p"", a1) — i ([s — o] T, p*", 1)
B

Becausew; = w, Vt € T, we letw = wAtyuq. Since
o7 (s,p*"°) is defined as in (21), we can establish the threshold + ; ([s — o] T, p*““, a1) — ¢ ([s — o] T, p*““, a3)

policy if we can prove thai): (s, p*““¢,a) is subadditive on c
Sx A, VteT[19, pp. 104, 115]. The following results from F— T
Lemma 3 and 4 establish the subadditivityaf(s, p*“<¢, a). - ‘/’t([s —w[p ,a2) + Uft([s —w",p ,a4)
First, Lemma 3 shows that;(s, p*““¢) has a nondecreasing D
difference ins if h(s) is a convex and nondecreasing function. — wt([s — w]t, ptuce a4) — wt([s — o —w]t, ptuee; a4))
Lemma 3:1f h(s) is a convex and nondecreasing function N AL BiC-D. 36
in s, then * (36)
ve (s, ™) = ve([s — W] T, p™) > v ([s — o] T, p™) We have
—v([s — o —w]t, p) VeS8, p " eP teTU{T +1}. 4 — Z D (psucd | p*°) [alpsucc [vrs1 (s — W], pouee’)
(28) suce?
p\ucc e’])
Proof: We prove it by induction. Sincé(s) is a nonde- —vpp1(s — 0 — w7, p )] + (1 — a1p*)

creasing convex function, we have

+ + " X [Ut-l—l(S psuCC’) —vey1([s _U]+’psucc’)”
B O O L AR IR

psucc/ cP

Let s € S, p*“cc € P be given. Fort =T + 1, we have )
—veri([s — o —w] T, p™e)]

vr1(5,0™) —vr1 ([s — @] p™) =h(s) —h([s — w]*)

> h([s — 0’]+) —h([s—0o— w]“r) > Z D ( succ’ |psucc) [a4psucc [Ut-i-l([s _ 2w]+,psucc/)
=vry1([s — U]Jr,psucc) — UT41 ([s — 0 — w]*,psucc , psuee’ eP /
) (30) — ’[}t+1([5 — 0 — 2w]+7p5ucc )] + (1 _ a4psucg)

where the equalities are due to (19) and the inequality is due * [vera(ls — wl T, p™) — v ([s — 0 — w] T, p™e )”

to (29). =D, (37)
Assume that for a givehe T, we have
e 4 suce © suee where the two equalities are obtained by using (18) and the
Vi1 (5,p) = vega ([s — W] Tp™) Z v ([s — o] TP™) o inequalities are due to the induction hypothesis in (31)
—vgg1([s — o —w]t,p*C), Vs € S, p™C € P. From (34) and (33), we havB > 0 andC > 0, respectively.
(31) Overall, from (36), we obtain

From (16), let actionsi, az, az, anday be defined such vy (s, p*™°) — vy ([s — w] ™, p***)
that —Ut([S _ U]+ succ) + ’Ut([S —0— w]-l—’psucc) >0,

ve(s,p mln{lﬂt( p* a)t = (s, p"", a1), (32)  which completes the proof. ]
Lemma 4 shows thatyy(s,p®° a) is subadditive if

o suee) _ s O suce ve(s, p*“c¢) has a nondecreasing differencesin
or(fs =], p™*) = min{oy ([s ], 9™, a)} Lemma 4:1f V5,5 € S, p™c € P,t € T with § > 3,

=P ([s — W™, ™ an), (33) where

Vt+1 (g’psucc) — Ut+41 ([§ - w]+,p
ve([s — o] T, p") = gélﬁ{‘/)t([s — o™, p*,a)} > v1(8,p°) — vigr ([8 — w] T, p™)

(38)

SUCC)

succ)

(39)

3 )

=r(ls — o], p™* as), and  (34) theny, (s, picc, a) is subadditive orS x A, ¥t € T.



Proof: Let 5,5 € S, a,a € A, p’“cc € P, andt € T be
given, wheres > s anda > a. Then

—1e(8, 07 )+ (8, p° @) — (8, 7 4) — (5, p" T 1)

- Z D (psucc’ |psucc)psucc(d _ d) |:vt+1(§7psucc,)_
psucc’ep

e ([8 = W] 1) —vrs1 (3,07 ) v ([ — w] Fpee)

<0, (40)

where the equality is obtained by using (18). The inequality

the end is due to the fact thpg(psucc' | p*uec) > 0, p*uec > 0,

[12]
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