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Abstract. Knowledge of the worm origin is necessary to forensic analysis, and
knowledge of the initial causal flows supports diagnosis of how network defenses
were breached. Fast and accurate online tracing network worm during its propa-
gation, help to detect worm origin and the earliest infected nodes, and is essential
for large-scale worm containment. This paper introduces the Accumulation Algo-
rithm which can efficiently tracing worm origin and the initial propagation paths,
and presents an improved online Accumulation Algorithm using sliding detection
windows. We also analyzes and verifies their detection accuracy and containment
efficacy through simulation experiments in large scale network. Results indicate
that the online Accumulation Algorithm can accurately tracing worms and effi-
ciently containing their propagation in an approximately real-time manner.
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1 Introduction

Network worms allow attackers to control thousands of hosts in a short time, launch
DDoS attacks, steal security information, and destroy critical data. Since 2001, Slam-
mer and other network worms[1, 2] have brought unprecedented threat and damage to
the Internet. There is increasing threat of network worms against computer system se-
curity and network security.

Tracing worm’s attack paths (i.e., obtaining the propagation paths of network worm)
[3, 5, 6] can dig out the initial victims and the infect sequence of hosts. Even if only
partial path can be obtained, it still has significance in worm containment, evidence
collecting and investigating.

Worm containment works by detecting that a worm is operating in the network and
then blocking the infected machines from contacting further hosts. A key problem in
containment of scanning worms is efficiently detecting and suppressing the scanning.
Since containment blocks suspicious machines, it is critical that the false positive rate
be very low[14].

In addition, the overwhelming majority of the attack traffic originates from victims
of the attack, as opposed to the true source of the attack. While network terminals
deploy corresponding defense gradually, the infected hosts may no longer participate
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in the following attack. In contrast, worm source and the initial infected hosts may
be artificially controlled, these hosts are more danger, and can not be easily detected
or recovered. So, reconstruct worm source and the initial causal flows, makes worm
containment more effective.

However, the reaction time of efficient worm containment could be less than a
few hours or even minutes[12]. For example, Code-Red II worms infected more than
359,000 computers on the Internet in less than 14 hours[2]. Slammer worms probed
all four billion IPv4 Internet addresses for potential victims in less than 10 minutes[1].
Therefore, it is necessary to do research on online worm tracing approaches in complex
network environments, to trace network worm origins in a real-time manner.

In order to achieve online tracing, the following issues must be resolved: (1) shorten
the time required for reconstructing worm propagation paths in order to reduce compu-
tation complexity; and (2) guarantee reconstruction of paths continuously.

Contribution of this paper includes: (1) introduction of the Accumulation Algorithm
for reconstructing worm propagation paths, which can fleetly and efficiently trace worm
attacking origins and initial propagation paths; (2) introduction of the online Accumula-
tion Algorithm using sliding windows, which can obtain worm origin and tracing initial
attack edges at the early days of worm propagating; and (3) deployment of a simulation
environment for worm propagation in large scale network, verify the performance of
our algorithm.

This paper is organized as follows. Section 2 introduces the related work of worm
detection and containment; section 3 gives some definitions and assumptions of the
following analysis; section 4 proposes the Accumulation Algorithm and prove its feasi-
bility through theoretical analysis; section 5 introduces the online Accumulation Algo-
rithm; section 6 verify the accuracy and efficiency of our algorithm through simulation
experiments in large scale network; finally section 7 gives a conclusion.

2 Related Work

Worm containment has been studied in previous work. Network-based worm contain-
ment techniques can be classified into two major categories, that is, address blacklisting
and signature-based filtering. Besides network-based techniques, Vigilante et al.[15]
employs the collaboration among end hosts to contain worms by using self-certified
alerts. Shield et al.[16] installs host-based network filters that are vulnerability specific
and exploit generic once a vulnerability is discovered and before a patch is applied.
DOMINO et al.[7] builds an overlay network among active-sink nodes to distribute
alert information by hashing the source IP addresses. Worminator et al.[13] summa-
rizes portscan alerts in Bloom filters and disseminates them among collaborating peers.
Our work is focus on online tracing worm origin and initial propagation paths, help to
quickly and effectively deploy worm containment.

To date, merely a few approaches for offline tracing the sequence of hosts infected
by a worm are proposed. Xie et al.[5, 11] offered a randomized approach that traces
the origin of a worm attack by performing a random walk over the hosts contact graph,
which is generated by collecting flow rates between potential victims during the worm’s
propagation. Besides, aiming at the flow characteristics of mobile worm in wireless net-
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works, Sarat et al.[9] improved random moonwalk algorithm so that the algorithm tends
to be effective continuously. Rajab et al.[3] presented a simple technique that uses the
history data acquired through a network telescope to infer the actual sequence of host
infections. A different approach was proposed by Kumar et al.[6] where a Witty worm
was reversely engineered to recover the random scanning algorithm and corresponding
initial seeds. Finally, using protocol graph, Collins et al.[8] detect hit-list worm and
identify attack origin through monitoring the abnormal changes in various of protocol
graphs.

3 Problem Formulation

We consult some definitions in [5]: the host communications in network is defined as
a directed graph G =< V, E >, called host contact graph. Nodes of G is a tuple set
V = H × T , where H is all hosts in the network and T is time. The set of edges E
is a subset of V × V . Each direct edge e =< u, ts, v, te > in the host contact graph
represents a network flow, where < u, ts >∈ H × T represents source host and start
time, < v, te >∈ H × T represents destination host and finish time. An edge is defined
as an attack edge if it carries attack traffic, whether or not it is successful in infecting
the destination host. An attack edge is defined as a causal edge if it corresponds to a
flow that successfully infects a normal host. All other edges in G besides attack edges
are called normal edge.

If two edges e1 =< u1, ts
1, v1, te

1 >, e2 =< u2, ts
2, v2, te

2 > in G satisfy the condition
u2 = v1 and te

1 < ts
2 < te

1 + ∆t (∆t is a pre-determined time interval parameters), then
e2 is called e1’s successor, e1 is called e2’s precursor. All e’s precursors represent as:
e1

pre, · · ·, e j
pre, · · ·, ePRE(e)

pre , PRE(e) is the total number of e’s precursor. Similarly, all
e’s successors represent as: e1

suc, · · ·, e j
suc, · · ·, eS UC(e)

suc , S UC(e) is the total number of
e’s successor. Precursor and successor describe the relationships between the neighbor
edges.

Under normal circumstances, we assume that there is only one worm origin in the
network, so the worm’s propagation process forms a tree (defined as causal tree). A
path in causal tree from the root to one of the leaves called a causal chain. Causal
tree is formed by all causal edges in G. The root of causal tree denotes the worm
attack origin, while causal edges from levels higher up in the causal tree denote the
initial attack sequences. Reconstructing worm origin and the initial attack sequences has
significance in restraining evolution of worm in investigating and collecting evidence.
After we know host contact graph G, our algorithm identifies a set of edges that, with
high probability, are edges from the top levels of the causal tree (i.e., initial attack
sequences after worm breaks out).

4 Accumulation Algorithm

Network worms can infect a large number of hosts in a very short period of time. This
requires worm tracing algorithms be able to obtain propagation path as soon as possible
in order to reduce loss. At the same time, traffic data in the network are generated
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very fast, usually occupying a large portion of bandwidth. Consequently, it requires
that the time and space complexity of the algorithm to be near-linear. We use dynamic
programming to optimize the implementation of our Accumulation Algorithm. With
even millions of input size, the algorithm is able to complete in a very short time,
implying more time for the deployment of defense against possible future attacks for
the same worm.

4.1 Algorithm Specification

In order to continuously infect other hosts, after a host has been infected, it usually sends
more flows compare to former, while there is no significant increase in the number
of received flows[5]. Compare to a normal edge, a causal edge has more successors
while the number of precursor is similar on average. Motivated on this difference, we
propose a worm propagation path reconstruction method - Accumulation Algorithm.
First of all, we assign each edge with the same weight; then after K iterations of weight’s
’aggregation - cumulation’ (accumulation process), more weights tend to aggregate to
causal edges; finally we pick out top Z edges (TOP-Z) which have the largest weight to
trace initial propagation paths and reconstruct top levels of causal tree.

We define p(e, i) as the weight increment in the i-th accumulation process, then

when the algorithm is complete e has its total weight value p(e) =
K∑

i=1
p(e, i). In fact each

accumulation process is a redistribution of the previous weight increment. Specifically,
each accumulation process evenly distributes the previous weight increment p(e, i−1) to
e’s every precursors e1

pre, · · ·, e j
pre, · · ·, ePRE(e)

pre , counting as a faction of the current weight
increment for each of the precursors. After K iterations, each edge’s weight increment is
continuously distributed to their precursors. In fact, the redistribution process of weight
increment is a weight accumulates process performed along the reverse causal chain.
The following snapshot illustrates the Accumulation Algorithm:

STEP 1: i = 0; p(e) = 0.0; p(e, 0) = 1.0;
STEP 2: i = i + 1;

p(e, i) =

S UC(e)∑

j=1

p(e j
suc, i − 1)

PRE(e j
suc)

; (1)

p(e) = p(e) + p(e, i);
STEP 3: If i ≤ K goto STEP 2, else goto STEP 4;

STEP 4: Pick out TOP-Z, Reconstruct top levels of causal tree.

Adjust of the weight increment can be treated as a redistribution process, no ad-
ditional weight is generated. The redistribution process of weight increment is called
’aggregation’, and adding one’s weight increment to its total weight is called ’cumula-
tion’. In the accumulation process, a weight value aggregates to the top levels of causal
tree along reverse causal chain. This becomes our primary evidence used to discover
the initial attack sequences.

During the K iterations, one can completely generates the (i + 1)-th weight incre-
ment according to the i-th value. That is, the ’future’ weight increment relies on only
the ’current’ weight, instead of the ’past’ weight. So we can use dynamic programming
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method gradually calculate all the p(e, i) (e ∈ E, 1 <= i <= K). Therefore, the time
and space complexity of weight redistribution is O(|E|). Accumulation Algorithm has K
iterations of weight redistribution, thus the total time complexity is O(K × |E|). Experi-
ments show that ideal accuracy can be achieved even if K is very small. Therefore, it is
roughly the case that Accumulation Algorithm has a linear time complexity and space
complexity.

4.2 Analysis and Prove

Accumulation Algorithm tries to identify initial causal edges with high accuracy and
reconstruct the causal tree. To illustrate the accuracy and feasibility of our algorithm,
we need to model the traffic data and worm attack. Suppose a normal host sends A
flows in ∆t seconds, and an infected host sends B flows in ∆t seconds, including A
normal flows and B − A attack flows (clearly there is B > A). For an aggressive worm,
the number of sending flows increase significantly after a host is infected (i.e., B >> A).
But before and after infection, the number of flows a host received in ∆t seconds remains
almost unchanged (defined as C).

We define an edge e =< u, ts, v, te > as a malicious-destination edge if host v is
infected at (or before) time te, marked as em. Other edges is called normal-destination
edge, marked as en. Every normal-destination edge is a normal edge, but malicious-
destination edges include all causal edges, some normal edges and a part of non-causal
attack edges (v has been infected before time te). Assume that, on average, x normal
edges sent by a host in ∆t seconds are malicious-destination edges.

Next we prove that p(em, i) > p(en, i) for all 1 <= i <= K, em, en ∈ E.

Proof. Using Mathematical Induction:
1. First, prove that p(em, 1) > p(en, 1):

p(em, 1) =
S UC(em)∑

j=1

p((em) j
suc,0)

PRE((em) j
suc)
≈ B

C , p(en, 1) =
S UC(en)∑

j=1

p((en) j
suc,0)

PRE((en) j
suc)
≈ A

C ,

∵ p(em, 1) − p(en, 1) ≈ B−A
C > 0, ∴ p(em, 1) > p(en, 1).

2. Assume p(em, i) > p(en, i) when 0 < i < K, prove that p(em, i + 1) > p(en, i + 1):

p(em, i + 1) =
S UC(em)∑

j=1

p((em) j
suc,i)

PRE((em) j
suc)
≈ A−x

C · p(en, i) + B−A+x
C · p(em, i),

p(en, i + 1) =
S UC(en)∑

j=1

p((en) j
suc,i)

PRE((en) j
suc)
≈ A−x

C · p(en, i) + x
C · p(em, i),

Thereinto p(em, i) =

∑
e∈E

p(em,i)
∑

e∈E
1 , p(en, i) =

∑
e∈E

p(en,i)
∑

e∈E
1 .

∵ p(em, i + 1) − p(en, i + 1) ≈ B−A
C · p(em, i) > 0, ∴ p(em, i + 1) > p(en, i + 1).

So we have proved that p(em, i) > p(en, i) for all 1 <= i <= K, em, en ∈ E.

From the above proof, we can get that p(em, i) − p(en, i) is proportional to B − A.
For aggressive worm p(em, i) >> p(en, i) because of B >> A. While the accumulation
process is proceeding, p(em, i) − p(en, i) increases gradually, and the weight advantage
of malicious-destination edges grows. Furthermore, because the accumulation process
follows the reverse order of causal chain, initial causal edge will get more weight. Thus
these early propagation paths can be highlighted from all the edges.
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However, malicious-destination edges include not only causal edge, but also some
of the normal edge and non-causal attack edge. In the early phase of worm propagation,
there is not much infected host, so the vast majority of malicious-destination edges are
causal edges. In the late phase, almost all the vulnerable hosts in the network have
been infected – the result being that the amount of normal edges and non-causal attack
edges in all malicious-destination edge increase. Therefore, tracing worm in the early
phase has a lower false negative rate, and thus is helpful for detecting worm as soon as
possible, saving more time for defense against continues spread of the worm.

5 Online Accumulation Algorithm

With online tracing, propagation paths can be detected in the initial phase (e.g. 30 min-
utes) after the worm breaks out. As a result, inhibition and defense can be launched in
the earlier stage, reducing some loss otherwise.

In the related works, we mention that enabling a detection algorithm to execute
in real-time usually exploits sliding windows [4, 17]. The Accumulation Algorithm is
able to promptly obtain the detection results and thus provides an ameliorate condition
for online tracing. Based on the offline Accumulation Algorithm, we propose an online
tracing algorithm also based on sliding window, as follow:

STEP 1. i = 0;
STEP 2. Collect traffic date within recent S seconds, construct

the host contact graph Gi using these traffic data;

STEP 3. Execute the Accumulation Algorithm in Gi, obtain top-zi;

STEP 4. Compose TOP-Zi by extracting Z edges with the highest

weight values from top-zi
⋃

TOP-Zi−1. Reconstruct current causal

tree via TOP-Zi;

STEP 5. i = i + 1, iterate again from STEP 2 after R seconds.

This algorithm has many advantages: First, it is triggered every R seconds, thus
worm can be detected as soon as possible. Second, each run needs to collect traffic data
only within the recent S seconds – a large amount of overhead is avoided and improves
its efficiency. One disadvantage of this algorithm is relatively low detection accuracy
cased by the fact that it relies on only partial data.

6 Simulation Experiments

This section is constructed as follows. Section 6.1 gives the performance metrics; sec-
tion 6.2 figure out our simulation methodology; section 6.3 discuss the parameters’
influence on the performance of Accumulation Algorithm; section 6.4 discuss the pa-
rameters’ influence on the performance of the online Accumulation Algorithm; section
6.5 illustrate effect of worm containment by the online Accumulation Algorithm.

6.1 Evaluation Methodology

To quantitatively evaluate the performance of Accumulation Algorithm, first we con-
sider the following two metrics:
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Attack edge Accuracy (AA) =
# attack edge in TOP-Z

Z ;

Causal edge Accuracy (CA) =
# causal edge in TOP-Z

Z ;
Further more, Accumulation Algorithm is designed to identify worms initial attack

sequences. In the following experiments the earliest 10% causal edges (defined as INIT-
10%) are considered as ’initial attack sequence’. Then there are two more metrics to
evaluate the ability of tracing initial causal edges:

False Negative (FN) =
# edge in INIT-10% but not in TOP-Z

# causal edge ;

False Positive (FP) =
# edge in TOP-Z but not in INIT-10%

# non-causal edge ;

6.2 Simulation Methodology

In the worm detection works, experimental data usually produced by mixing real-world
network traffic and man-made worm propagation flows [5, 8, 9]. Using pre-captured real
network flows as the background traffic makes repeating experiments more convenient.
Background flows often captured from main switches or routers. Worm attack flows are
added artificially base on the real-world background data.

We use a part of NZIX II[10] trace from WAND as our background traffic data.
This is a 9000 seconds long GPS-synchronized IP header traces captured at the New
Zealand Internet Exchange, including exchange flows between 6 intranets, involving
a total of 0.1 million hosts and 3 million flows. These flows are captured through the
SPAN port of router, only containing summary information of every flow, but not in-
cluding the specific contents of packages. Traces contain TCP, UDP and ICMP flows,
being anonymized by mapping the IP addresses into network 10.X.X.X.

We let the worm break out at second 900. After a host has been infected, it sends
an attack flow to a randomly chosen host every 30 seconds. A destination host will
be infected if it is a vulnerable host, otherwise it won’t. In the following experiments,
we choose 0.1 as the fraction of vulnerable hosts in the network. Some information of
experimental data is shown in Table 1. From Table 1 and Fig. 1 we can seen that, all
the vulnerable hosts have been infected after 5000 seconds, and 41% of flows are attack
flows.

Table 1. Three different worm scanning rates

Total flows (million) 5.08
Fraction of attack edges 0.41
Fraction of causal edges 0.0024
Fraction of vulnerable hosts 0.1
Fraction of infected hosts 0.100

When considering given parameter’s effect to the algorithm performance, we only
allow the corresponding parameter to change. Without special note, the initial values of
the parameters in the experiment are shown in Table 2.
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Table 2. The initial values of parameters

Number of accumulation process: K 10
Time interval on the definition of precursor: ∆t (seconds) 1000
Number of edges in the result set: Z 100
Running duration of online algorithm: R (seconds) 480
Size of sliding window: S (seconds) 2400

6.3 Preferences of Accumulation Algorithm

Parameter K Fig. 2 shows the impact of K on AA and CA. Algorithm performs the
best when K=9, while AA and CA are both the highest. From this we can see that a good
result only requires a few number of accumulation process. From Fig. 2 we also find that
when K continuous increases, its accuracy declines a little. Because while accumulating
along the reverse order of causal chain, excessive iterations of accumulation process
makes the weight more likely to be aggregated to some normal edges before the worm
breaks out, then more non-causal malicious-destination edge will enter TOP-Z.

400 800 1200 1600 2000
0

0.2

0.4

0.6

0.8

1

Delta t (seconds)

D
et

ec
t A

cc
ur

ac
y

AA
CA

Fig. 3. ∆t vs. AA, CA

400 800 1,200 1600 2000
0.092

0.094

0.096

0.098

0.1

Delta t (seconds)

F
al

se
 N

eg
at

iv
e

Fig. 4. ∆t vs. FN

400 800 1200 1600 2000
0

0.5

1

1.5

2
x 10

−5

Delta t (seconds)

F
al

se
 P

os
iti

ve

Fig. 5. ∆t vs. FP

Parameter ∆t Fig. 3 shows the impact of ∆t on AA and CA. When ∆t is increasing,
detection accuracy climbs up but finally drops slightly. The accuracy is very low when
∆t is very small, because reverse accumulation is more likely to arrive at a host that
has no precursor in the previous ∆t seconds, making some weights lost, reducing the
possibility of pooling the weight into the top levels of causal tree.
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Larger ∆t makes the weight have more chance to accumulate to the top levels of
causal tree, so detection accuracy will increase along with ∆t. But AA and CA both
lowered down when continuous increase ∆t. This is because a wider ∆t indicates more
precursors – weight has higher possibility to be aggregated to some normal edges before
the worm breaks out. We can also discover this from Fig. 4 and Fig. 5. The FP and FN
are both increasing along with ∆t, because of more normal edges are selected into TOP-
Z.

From Fig. 2 and Fig. 3 we can see that, CA is usually very close to AA. This is
because as the accumulation process proceeds, weights gradually accumulate to the
initial malicious-destination edges. While at the initial phase of worm breaks out, there
is not many infected host, the vast majority of malicious-destination edge are causal
edges.

6.4 Preferences of Online Accumulation Algorithm
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For an online algorithm, we hope its detect duration can be very short, so that worm
propagation can be detected as soon as possible. Fig. 6 and Fig. 7 shows the impact of
window size S and running duration R on detection accuracy. Using only partial data
is not only an inevitable demand and benefits (reducing running time and memory con-
sume) but also is a shortage (lower accuracy rate) for the online algorithm. As can be
seen in Fig. 6 and Fig. 7, a bigger size of window leads to a higher detection accuracy,
but there is only a little difference between the accuracy of S =2400 and S =3600. In-
creasing the running duration enables the algorithm accuracy to be increased. This is
because when merging two trees form adjacent slide windows, more edges in the over-
lapping time interval will cause more conflict edges. Yet the change of accuracy with
running duration is gentle, launching the Accumulation Algorithm every 60 seconds can
achieve 70% accuracy.

6.5 Effect of Containment

Fast and accurate tracing worm source and initial propagation paths is essential to con-
tain worms at the Internet scale. From Fig. 7 we can see that, when the parameters’
value of online Accumulation Algorithm are R = 120, S = 2400, Z = 100, CA is at least
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60%. To illustrate the effects of worm containment, we conduct the following simula-
tion experiments.

We add h infected hosts to the blacklist every 120 seconds (h = minimal {60,
total×0.002}). Which ’total’ is the amount of infected hosts (excluding hosts already
in the blacklist), ’minimal{x, y}’ return the smaller numerical value of x and y. Fig.
8 and Fig. 9 shows the simulation result. We can see thus containment delays worm
spread about 500 seconds, while it reduces the network traffic by 10%.

7 Conclusions

Online tracing the evolution of a worm outbreak reconstructs not only patient zero (i.e.,
the initial victim), but also the infection node list in evolution process. Even if the
proportion trails can be captured, it has significance in restraining evolution of worm in
investigating and collecting evidence.

Tracing network worm propagation from the initial attack can inhibit continuous
spread of the worm, ensuring that no more hosts is infected by the worm, and providing
basis for the determination of worm attack origins. Experiment results indicate that the
Accumulation Algorithm can achieve 90% detection accuracy.
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