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Abstract Sleep scheduling, which is putting some sen-
sor nodes into sleep mode without harming network

functionality, is a common method to reduce energy

consumption in dense wireless sensor networks. This
paper proposes a distributed and energy efficient sleep

scheduling and routing scheme that can be used to ex-

tend the lifetime of a sensor network while maintaining
a user defined coverage and connectivity. The scheme

can activate and deactivate the three basic units of

a sensor node (sensing, processing, and communica-

tion units) independently. The paper also provides a
probabilistic method to estimate how much the sensing

area of a node is covered by other active nodes in its

neighborhood. The method is utilized by the proposed
scheduling and routing scheme to reduce the control

message overhead while deciding the next modes (full-

active, semi-active, inactive/sleeping) of sensor nodes.
We evaluated our estimation method and scheduling

scheme via simulation experiments and compared our

scheme also with another scheme. The results validate

our probabilistic method for coverage estimation and
show that our sleep scheduling and routing scheme can

significantly increase the network lifetime while keep-
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ing the message complexity low and preserving both
connectivity and coverage.
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1 Introduction

In recent years, advances in wireless communications

and electronics have enabled the development of low-

power and small size sensor nodes. A Wireless Sensor

Network (WSN) consists of a large number of these

sensor nodes deployed in a geographic area. Wireless

sensor networks are utilized in a wide range of appli-
cations including battlefield surveillance, smart home

environments, habitat exploration of animals and vehi-

cle tracking.

Each sensor node in a WSN has three basic units;

a sensing unit, a processing unit and a communication

unit. The sensing unit can sense various phenomena in-
cluding light, temperature, sound and motion around

its location [3]; the processing unit can process and

packetize the sensed data; and the transmission unit

can send the packetized data to a base station (also
called sink node) possibly via multihop routing.

In general, a sensor node can be considered to have
two associated ranges: a transmission range (Rt) and

a sensing range (Rs). As a simple and quite common

model, a sensor node can be assumed to detect every
event happening within a circular area with radius Rs

around itself. Similarly, a sensor node can be assumed

to communicate with all other sensor nodes located

within the circular region with radius Rt around itself.

In a sensor node, energy is primarily consumed by

its three basic units. It is usually observed and assumed
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that the most energy consuming operations are data re-

ceiving and data sending which are provided by the
communication unit. Energy consumption in sensing

unit is usually assumed to be less than these opera-

tions. However, in some studies such as [23], it is as-
sumed that energy dissipated to sense a bit is approx-

imately equal to the energy dissipated to receive a bit.

Processing operations, on the other hand, are assumed
to be consuming very little energy compared to sensing

and communication operations. Therefore it is impor-

tant to be able to put sensing and communication units

into sleep mode whenever possible.

There are several ways of reducing the energy con-
sumption in a sensor network in order to increase the

network lifetime. In sufficiently dense networks, a com-

mon technique is to put some sensor nodes into sleep
and use only a necessary set of active nodes for sens-

ing and communication. This technique is called sleep

scheduling or density control. A sleep schedule has to
provide an even distribution of energy depletion among

sensor nodes so that the network can function for a long

time. Using only a required set of nodes as active, can

also reduce redundant network traffic, decrease packet
forwarding delay and help in avoiding packet collisions.

While putting nodes into sleep or active mode, a

sleep scheduling algorithm should be able to maintain

connectivity and coverage. A sensor network is connected
if every functioning node in the network can reach the

sink via one or multiple hops. Coverage is defined as

the area that can be monitored by the active sensor

nodes which can reach the sink. Both connectivity and
coverage are important objectives to meet to properly

monitor a given region. While deciding to put a sen-

sor node into sleep, it is important to know if the area
sensed by the sensor node can be sufficiently covered by

some active neighboring nodes and if the sensor node

is crucial for the connectivity of the network.

In this paper, we first provide a probabilistic and
analytical method to estimate the amount of overlap-

ping sensing coverage between a node and its neigh-

bors. The method helps in estimating whether a node

can be put into sleep without violating desired cover-
age. The method assumes that a large number of sensor

nodes are deployed uniformly and randomly to target

region. Based on this assumption and by just knowing
the number of neighbors of a node, the expected amount

of overlapping coverage is computed, without requiring

to know the exact locations of nodes. This coverage es-
timation method is the first main contribution of the

paper.

We then propose a distributed sleep scheduling and

routing scheme that also utilizes our coverage estima-

tion method. Our scheme assumes a static sensor net-

work where nodes are densely, randomly and uniformly

distributed. It works with local interactions only, re-
duces the energy consumption in the network, and works

with low control messaging overhead while each node

is learning about the status of the neighborhood nodes
and deciding its mode for the next round. The routing

scheme is a tree-based routing scheme that can adapt to

node-state changes and to node failures due to lack of
energy. Our sleep scheduling scheme considers commu-

nication and sensing units of a sensor node separately

and is able to put only one unit into sleep instead of

putting all units into sleep together. The scheme also
can maintain a desired coverage and connectivity. This

combined sleep scheduling and routing scheme is the

second main contribution of our paper.
The remaining of the paper is organized as follows:

In Section 2, we discuss the related work in comparison

with our work here. In Section 3, we provide an analysis
and method for coverage estimation of a node’s sensing

area by its neighbors. In Section 4, we introduce and de-

tail our combined sleep scheduling and routing scheme.

In Section 5, we present our simulation experiments for
evaluating our scheme and discuss the results. Finally,

in Section 6 we give our conclusions.

2 Related Work

The papers [6] and [11] give a detailed description and

comparison of the most recent energy saving algorithms

based on sleep scheduling technique. An important as-
pect that distinguishes the proposed algorithms is whether

they are centralized or distributed. Usually, central-

ized algorithms can provide more accurate results about
which nodes should be sleeping, but they usually suffer

from high messaging overhead and difficulty in quickly

adapting to changing conditions. Distributed algorithms,
on the other hand, have less messaging cost, can adapt

to dynamic conditions better, are scalable, but it is

more difficult to obtain optimal results with them.

There are various centralized sleep scheduling tech-
niques proposed. Two similar solutions are [15] and [18].

They work in a dense deployment and aim to provide

energy efficiency while preserving coverage. They are
based on dividing the nodes into disjoint sets, so that

each set can independently accomplish monitoring the

area, and the sets are activated periodically while the
nodes in other sets are put into low-energy mode. There

are also sleep scheduling schemes based on ILP tech-

niques, basing their decisions on remaining energy lev-

els of nodes ([14] and [16]). But these solutions can not
scale well for very large networks. The works of [17]

and [24] also apply centralized and greedy approaches.

While deciding which nodes should stay active, [17]
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considers the nodes with better coverage first, whereas

[24] considers the nodes with more remaining energy
first. Our scheme in this paper is a distributed one,

hence differing from these works in this aspect.

There are also various sleep scheduling schemes fol-
lowing distributed approach. GAF [1] divides a region

into equal-sized grid cells and tries to leave only one

node active in each cell. In PEAS [2] [4], a node decides
to go into sleep mode if there is an active neighbor in its

probing range. Otherwise, it stays active. In SPAN [12],

all nodes are classified as either a coordinator or a non-

coordinator such that at the end every node is in the
radio range of at least one coordinator. Only coordina-

tors forward traffic. These studies do not focus on pre-

serving coverage, and therefore they are different from
our work here.

There are also some protocols that consider main-

taining coverage. [5] shows a way of finding the over-
lapping sensing area between a node and its neighbors.

However, it only considers 1-hop neighbors. But, 1-hop

neighbors may not include all sensor nodes that might

cover the same area. We also consider 2-hop neighbors
in this paper. Additionally, even though [5] guarantees

coverage, it does not guarantee connectivity.

There are some algorithms, OGDC [9] and CCP [10],
that consider both coverage and connectivity, as we do

in this paper. In [9], Zhang and Hou prove that coverage

implies connectivity if the ratio between the transmis-

sion range and sensing range is at least two. Depend-
ing on this, they propose Optimal Geographic Density

Control (OGDC) algorithm to maximize the number

of sleeping sensor nodes while maintaining coverage.
A sensor node is active only in the case it minimizes

the overlapping area with the existing active sensor

nodes and it covers an intersection point of two sen-
sors. A sensor node decides this by using its own lo-

cation and the location of other active nodes. In [10],

Wang et al. propose coverage and connectivity config-

uration protocol (CCP) which tries to maximize the
number of sleeping nodes while maintaining k-coverage

and k-connectivity. Here, k-coverage means each point

in the monitoring area of the sensor network is sensed
by at least k different nodes of the network. The authors

prove that k-coverage implies k-connectivity and to de-

cide k-coverage, a node only needs to check whether
the intersection points inside its sensing area are k-

covered. Similar to OGDC, CCP assumes the trans-

mission range is at least twice the sensing range. But if

it is not the case, it combines its algorithm with SPAN
so that SPAN can control connectivity. In this case, a

node decides to sleep if it satisfies the eligibility rules

in both schemes. Otherwise it stays active.

Our work here is different from the above two schemes

and others in many aspects. Below we summarize the
main features and contributions of our work and how

it is different from the similar work described in this

section.

– A probabilistic and analytical method is proposed to
estimate the overlapping sensing coverage between

a node and its neighbors. The method is then used

by the proposed sleep scheduling scheme to reduce

the number of control messages required to learn
the status of neighbors.

– A combined sleep scheduling and routing scheme is

proposed. Hence we consider sleep scheduling and
routing together. Most other works consider routing

and sleep scheduling independently from each other,

which may cause extra overhead.
– Both the sensing coverage and connectivity of the

network are maintained for a wide range of trans-

mission range (Rt) and sensing range (Rs) values.

Previous work usually considers them one at a time,
or for restricted values of Rt/Rs.

– Different units of a sensor node are considered sep-

arately for switching on and off. We define three
modes of operation: full-active (both sensing unit

and communication unit is on), semi-active (sens-

ing unit is off, communication unit is on) and inac-
tive (both sensing and communication unit is off).

Previous work usually does not consider the units

separately and defines just two modes of operation:

active or sleep. Hence, our scheme is multi-mode.
– The desired coverage is a parameter of the proposed

scheme. In this way, the protocol can work to main-

tain a desired partial coverage (let say 70 % of the
sensing area of each sensor node has to be covered).

This is different from many previous studies which

consider overlapping coverage amount as a boolean
value.

3 Expected Common Coverage Analysis

In this section we provide an analysis and method about
how to find the expected overlap between a node’s sens-

ing area and its neighbors’ sensing areas. Then this

method is used in our combined sleep scheduling and
routing protocol. However, the coverage estimation anal-

ysis and method we propose may find its place in some

other applications as well. For example, it can be adapted

to estimate if a point in a region is k-covered or not.

A sensor node is coverage redundant (or coverage el-

igible) if its sensing area is covered (fully or partially,

depending on the requirements) by the sensing areas of
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some other active nodes. Many sleep scheduling proto-

cols consider only the 1-hop communication neighbors
(i.e. nodes in the transmission range) to check whether

they cover the sensing area of the node. There may be,

however, nodes that are not reachable in 1-hop, but still
may have overlapping sensing coverage with the node.

Consider the example illustrated in Figure 1. The

nodes B, C, and D are 1-hop neighbors of the node A,

and the nodes E, F , G, H are other nodes which have
common sensing areas with node A. If node A only

considers its 1-hop neighbors while deciding whether it

is sensing area is covered by other nodes (that is, it is
coverage eligible or not), it decides to be non-eligible,

since the sensing area of node A is not totally covered

by 1-hop neighbors. However, if other closer nodes to

node A could be considered, the sensing area of node A
is totally covered by other nodes. Hence, we should also

consider the effect of other nodes which are closer than

2Rs to a sensor node, while applying coverage check on
the node.

When Rt/Rs ratio decreases, we encounter such cases

more frequently. Therefore, a general coverage check al-

gorithm should work for a wide range of Rt/Rs values.
In today’s sensor node technology, we may see different

values for this ratio. It mostly lies in the range [1/2,

3] [27], [28].

On the other hand, even a node can not communi-

cate with another node having an overlapping sensing
area, this may not always have a critical effect on cov-

erage check. Moreover, it may be too costly to learn

about such multi-hop neighbors and constantly main-
tain their current status information. In Figure 1, for

example, even though node H is not far away from

node A, node A can communicate with node H over
5 hops. As the hop count increases to reach such nodes,

messaging overhead to maintain up-to-date information

about these nodes increases as well. Therefore, there is

a tradeoff between a good coverage check and control
messaging overhead.

To find out how much other nodes cover the sensing

area of a node, we may collect precise information (i.e.

location, status) about the other nodes and then use ge-
ometric computations to find out the overlap. This may

be, however, costly in terms processing and communica-

tion. Another alternative is using probabilistic models.
Assuming the nodes are randomly deployed with uni-

form distribution, we can derive a probabilistic model

which gives the expected coverage of a node’s sensing

area using only the number of other nodes that may
have common coverage with this node and the Rt/Rs

value.

Next, we are proposing such a probabilistic and ana-

lytical method to compute the expected coverage. Here,

C

A

E

B

G

H

D

F

Fig. 1: Node A’s sensing area is totally covered by not only the
1-hop nodes of A but also another node H.

note that, the analysis is based on a network model
where nodes are identical and uniformly distributed.

Hence it can be applicable for certain applications and

scenarios where a large number of nodes are expected

to be randomly and uniformly distributed. The method
needs to be modified for networks consisting of hetero-

geneous and non-uniformly distributed nodes. We leave

this out of the scope of this paper.

3.1 Expected Common Sensing Coverage with 1-hop
Neighbors

In this section we derive a model to find out the ex-

pected common sensing coverage (i.e. overlap) between
a node and its 1-hop communication neighbors. The

expected common sensing coverage (which is a value

between 0 and 1) depends on the number of 1-hop
neighbors of the node (n), the transmission range of the

nodes (Rt), and the sensing range of the nodes (Rs).

Assume we have a sensor node of interest located

at point O. Let X denote a random variable indicating
the distance of the sensor node to a point in its sensing

range. Possible values x of X are 0 ≤ x ≤ Rs. The

probability density function for X is fX(x) = 2x/Rs
2.

Assume that the probability of a point P that is
inside the sensing area of the node and that is x m away

from the node is covered by a neighbor of the sensor

node is p(x). Obviously, this probability is not same for
all points and it depends on the distance x of the point

to the sensor node. When there are n neighbors of the

node, then the probability that a point is covered by any

of these neighbors is 1−(1−p(x))n. If we integrate p(x)
over the sensing area of the node, we can find out the

expected common coverage (overlap) between a node’s

sensing area and its n 1-hop neighbors’ sensing areas.
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Fig. 2: Probability that a point P inside the sensing area is cov-

ered by a neighbor of the node is proportional to the shaded area.

Consider the Figure 2. We have the sensor node lo-
cated at point O. We want to find p(x) of point P. For

point P to be covered by a neighbor of the sensor node,

there should be a neighbor inside the shaded region. In
other words, a neighbor which is not more than Rs dis-

tant from point P and which is inside Rt of node should

exist. Therefore, p(x) of point P is equal to the ratio of

shaded area in Figure 2 to whole communication area
of the sensor node, i.e., πR2

t .

To calculate the area of the shaded region, we first

place our model into an x-y coordinate plane as it is
shown in Figure 3-a. Then we calculate the area of the

shaded region using the integral of the difference of cir-

cle equations enclosing it. Note that, in some cases (Fig-
ure 3-b) we first find the complementary region and

subtract it from the whole communication area. For

instance, we first find A(NKTL) and then subtract it

from πR2

t . These two different cases separate from each
other when the height of the required region becomes

Rt. Figure 3-c shows this case. For the points which

have longer distance to the center (i.e. sensor node)
than this point the first approach is used, otherwise the

second approach is applied.

In Figure 3-a, let x denote the distance between the
sensor node and the point (i.e. x=|OP|). Note that, x

is not the x−axis value anymore for this analysis. Let

|OS| = b; then |PS| = x − b, and:

b =
R2

t − R2

s + x2

2x

h =
√

R2
t − b2

A(TKML) = 2

∫ y=h

y=0

(

√

R2
t − y2 +

√

R2
s − y2 − x

)

dy

p1(x) =
A(TKML)

πR2
t

And in Figure 3-b, let |OS| = b again. Then |PS| =

x + b, and in a similar way:

A(TKML) = πR2

t − A(TKNL)

L

K

P

Rs

Rs

Rt

O

Fig. 4: Border case when Rt > Rs.

A(TKNL) = 2

∫ y=h

y=0

(

√

R2
t − y2 −

√

R2
s − y2 + x

)

dy

p2(x) = 1 − A(TKNL)

πR2
t

The border value xborder, that separates these cases
is equal to

√

R2
s − R2

t . As a result, when Rt < Rs, the

expected value of the probability (E[p(X)]) that a point

inside the sensing area is covered by a neighbor is:

p = E[p(X)] =

∫ x=Rs

x=0

p(x)fX(x)dx

p = E[p(X)] =

∫ x=Rs−Rt

x=0

(Rt/Rs)
2fX(x)dx +

∫ x=xborder

x=Rs−Rt

p2(x)fX(x)dx +

∫ x=Rs

x=xborder

p1(x)fX(x)dx where,

fX(x) = 2x/R2

s

In other words, p expresses the expected common
coverage between a node and one of its neighbors. When

Rt > Rs we can find p in a similar way. But there

are two different calculations in this case. The border
case, which happens when Rt = Rs

√
2, is illustrated in

Figure 4.

When Rs ≤ Rt ≤ Rs

√
2:

p =

∫ x=Rt−Rs

x=0

(Rs/Rt)
2fX(x)dx +

∫ x=xborder

x=Rt−Rs

p2(x)fX(x)dx +

∫ x=Rs

x=xborder

p1(x)fX(x)dx

When Rs

√
2 ≤ Rt ≤ 2Rs:

p =

∫ x=Rt−Rs

x=0

(Rs/Rt)
2fX(x)dx +

∫ x=Rs

x=Rt−Rs

p2(x)fX(x)dx
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(a) Projection on the right of center O.
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(b) Projection on the left of center O.
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(c) Projection on center O.

Fig. 3: Different projections of the height of the region

Now, let pn,d1,d2
denote the expected overlap of a

node i’s sensing area by n nodes, where these nodes have

distance from the node in the interval [d1, d2]. And, let

pn denote the expected overlap by n 1-hop neighbors.
Then, pn=pn,0,Rt

. When n=1, it is equal to p0,Rt
or

simply p.

Assume there are n nodes in interval [0,Rt] after
deployment (i.e. n 1-hop neighbors). Then1,

pn = pn,0,Rt
=

∫ x=Rs

x=0

(1 − (1 − p(x))n)fX(x)dx

We did some simulation experiments to check the

validity of our estimation method. In our simulation

experiments, we created random multiple neighbors to
a node within its transmission range and calculated the

overlap of the node’s sensing area by its neighbors. Be-

sides, for each multiple neighbor count, the simulation

is run 1000 times and the result is obtained as the aver-
age of them. The Figure 5 show the comparison of sim-

ulation and analytical results for three different Rt/Rs

values. As it can be seen from the figure, the analytical
results completely overlap with the simulation results.

3.2 Expected Common Sensing Coverage With 2-hop

Neighbors

A sensor node may have not only 1-hop communica-

tion neighbors but also two- or more hop communica-

tion neighbors which have overlapping sensing area with
itself. Especially, when the Rt/Rs value gets smaller,

multi-hop neighbors may create a significant overlap

on the node’s sensing area. To see the effect of multi-
hop neighbors we need to calculate expected overlap

1 In this analysis, we assumed that the links between the nodes
are mostly reliable and there are no frequent link failures which
may affect the data acquisition significantly. However, we can
reflect the failure-prone nature of sensor node connections to this

formula by multiplying n by λ (the probability that a connection
between two connections may fail). Moreover, we can also include
non-uniform node distribution in the network by updating the
density function fX(x).

1 2 3 4 5 6 7

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of one−hop neighbors

E
xp

ec
te

d 
O

ve
rla

p
Simulation Rt/Rs=0.5
Formula Rt/Rs=0.5
Simulation Rt/Rs=1
Formula Rt/Rs=1
Simulation Rt/Rs=1.5
Formula Rt/Rs=1.5

Fig. 5: Expected overlap values from simulation and formula with
different Rt/Rs ratios.

Rt

L

K

Rs

2Rt

E

D

P

M
A B

O

Fig. 6: Expected overlap by a node located at a point P which
has a distance to the node in the interval [Rt, 2Rt].

as in 1-hop neighbor case. Here, we calculate the ex-

pected overlap with only 2-hop neighbors. Computing

expected overlap for more than two hops is more com-
plex and we leave it out of the scope of this paper.

Additionally, as we discuss, using only 1-hop and 2-hop

neighbors addresses a wide range of realistic scenarios.

Consider the Figure 6. First, we will find the ex-
pected overlap by another node which has a distance

to the node of interest in the interval [Rt, 2Rt]. As it

is stated before, we denote this with pRt,2Rt
. We can
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calculate this expected value similar to 1-hop case as

follows:

p0,Rt
=

∫ x=Rs

x=0

A

πR2
t

fX(x)dx

p0,2Rt
=

∫ x=Rs

x=0

A + B

π(2Rt)2
fX(x)dx

pRt,2Rt
=

∫ x=Rs

x=0

B

π(2Rt)2 − πRt
2
fX(x)dx

=
4p0,2Rt

− p0,Rt

3

For example, when Rt = Rs, p0,Rt
= 0.58 and p0,2Rt

= 0.25, then pRt,2Rt
= (4(0.25) − 0.58)/3 = 0.13.

Furthermore, if there are n such nodes (located at a

distance in the interval [Rt, 2Rt]), the expected overlap
by these nodes is:

pn,Rt,2Rt
=

∫ x=Rs

x=0

(1 − (1 − B

3πR2
t

)n)fX(x)dx

In the above, note that, we found the expected over-

lap by possible 2-hop neighbors, i.e. nodes that are lo-

cated at a distance between Rt and 2Rt. But for a node
to be an actual 2-hop neighbor, being located at a dis-

tance between Rt and 2Rt is not sufficient because it

should also be in the transmission range of a 1-hop
neighbor of the node.

In Figure 7, the existence of an actual 2-hop neigh-

bor at point P is possible with the existence of at least

one 1-hop neighbor in the shaded region. Following the
same calculation approach used before, given that there

are n1 1-hop neighbors of the node, we conclude that

the average probability (αn1,Rt
) that there will be an

actual 2-hop neighbor at any point in the range [Rt,

2Rt] is:

αn1,Rt
=

∫ x=2Rt

x=Rt

(

2x

3R2
t

(1 − (1 − β)n1)

)

, where

β = 2

∫ y=

√

Rt
2
−

x2

4

y=0

(

2

√

Rt
2 − y2 − x

)

.

Let pn1,n2
denote the expected overlap by n1 1-

hop and n2 2-hop neighbors. Then, to find the value

of pn1,n2
, we again use the same probabilistic approach

and combine the expected overlap of each hop. For in-
stance, if there are n1 1-hop neighbors and n2 2-hop

neighbors, the expected overlap by 1-hop and 2-hop

neighbors (pn1,n2
) together can be calculated as:

∫ x=Rs

x=0

(

1 −
(

1 − A

πR2
t

)n1
(

1 − Bαn1,Rt

3πR2
t

)n2
)

fX(x)dx

Consequently, when a node knows the number of

1-hop and 2-hop neighbors, it can find the expected

overlap of its sensing area by these nodes.

Fig. 7: The probability that there will be a 2-hop neighbor at
point P is proportional with the probability that shaded area
contains a 1-hop neighbor

To check the validity of our analysis for 2-hop case,
we also did simulations. When Rs = Rt, we found the

expected overlap for different n1 and n2 values by us-

ing both analysis and simulation. Figure 8 shows the
expected overlap for a node for all cases when 1 ≤ n1

≤ 3 and 0 ≤ n2 ≤ 6. As Figure 8 shows, the results

obtained with analysis are matching with simulation
results. For instance, if a node has one 1-hop neighbor

and two 2-hop neighbors, then it can expect that 60.9%

of its sensing area is covered by these neighbors. Here,

note that, the overlap shows only a small increase with
increasing n2. Moreover, the effect of 2-hop neighbors

on the overlap gets almost when n1 increases. These

two observations are expected because 2-hop neighbors
are located around 1-hop neighbors so that the most

part of the overlap resulting from 2-hop neighbors are

already covered by 1-hop neighbors.
At the beginning of a network deployment, if we

know the Rt and Rs values, we can calculate the ex-

pected overlap values for different 1- and 2-hop neigh-

bor counts into a table (we call it Expected Overlap

Table) where cell (i, j) of the table shows the expected

overlap with i 1-hop and j 2-hop neighbors, and install

this table in each sensor node. Then during network op-
eration, sensor nodes can use the table to estimate the

common coverage with their neighbors at any moment

by just using their count.

4 Our Combined Sleep Scheduling and Routing

Scheme

In this section we introduce our combined sleep schedul-

ing and routing scheme that works in a distributed and

localized manner. It preserves both coverage and con-

nectivity. It utilizes our probabilistic coverage estima-
tion method, presented in the previous section, to re-

duce messaging overhead while collecting status infor-

mation from neighboring nodes.
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Fig. 8: Expected overlap values from simulation and formula with
different n1 and n2 counts and when Rt/Rs=1.

We assume all sensor nodes in the network are iden-

tical and have the same Rt and Rs. Besides, we as-
sume that all nodes know their locations. This may be

achieved via GPS modules or by use of localization al-

gorithms [7], [8]. We also assume that nodes use data
aggregation while forwarding the data they receive from

their descendants. This is, however, not crucial. The

scheme will work with no data aggregation as well.

Our combined sleep scheduling and routing scheme

consists of four phases; global tier assignment, neigh-

borhood table construction, mode selection, and oper-
ation phases. Global tier assignment phase and neigh-

borhood table construction phase run only at network

setup time; and the mode selection and operation phases
run in each round (see Figure 9).

Our scheme requires network to operate in rounds.
A round is a fixed time interval, determining the fre-

quency of mode re-assignments to nodes. A round con-

sists of two phases executed sequentially one after an-
other: mode selection phase and operation phase. Those

two phases are of fixed length as well. The operation

phase should be much longer than the mode selection

phase. During mode selection phase, the mode of each
node (which can either be ON-DUTY, or TR-ON-DUTY,

or DEEP-SLEEP) is decided. During the operation phase,

each node stays at the decided mode and data gathering
from the sensor nodes to the sink happens. The round

duration and the duration of its inner phases are same

for all nodes and we assume all nodes are aware of this.

At each round, modes are re-assigned to nodes. At

the beginning of each round, each node starts with a
new mode selection phase where it selects a random de-

lay and waits that much time before running the mode

selection algorithm. Then it runs the algorithm and

decides on its mode. Nodes may finish deciding their
modes at different times, and wait until the start the

operation phase to operate. Moreover, during the op-

eration phase of a round, there can be multiple data

Start Global Tier
Assignment

Neighborhood Table
Construction

Mode
Selection Operation End

round = round + 1

Fig. 9: Running order of the phases during the network lifetime.

gathering operations from full-active sensor nodes to

the base station depending on the length of the round.

Round duration is a parameter that may affect en-

ergy consumption. The smaller the round duration is,
the higher is the number of mode re-assignments, hence

the higher is the energy consumption due to mode re-

assignments. On the other hand, performing frequent
mode re-assignments allows active nodes to be changed

more frequently and enables a more even distribution

of energy consumption among the nodes. This issue is
discussed in [29] and a method about how to define an

optimum round duration that provides minimum en-

ergy consumption is proposed.

During the execution of our algorithm, different con-
trol/management messages are used. In Table 1, we list

all these control messages used by our scheme together

with their important fields (inside square brackets) and
the situations when they are used. Here, sid indicates

the id of the source node (i.e. the node generating the

message), did indicates the id of the destination node.
Each control message has a code field indicating which

control message it is. Since we have less than 16 dif-

ferent control messages, a 4-bit field is enough to hold

the message code information. When a node receives a
control message, it first looks to the 4-bit code field and

then reacts according to the code and other fields of the

message.

In the following sections, we describe the phases of

our scheme in more detail. Moreover, we also explain

how our scheme handles sensor network dynamics, such
as transient and permanent link and node failures, new

node arrivals and node departures.

4.1 Global Tier Assignment Phase

In this phase, the goal is to create a tree-like routing

structure rooted at the sink node that will be used in
routing the packets from sensor nodes to the sink node.

As a result of this phase, each node in the network is

assigned a tier number (indicating how many hops the

node is away from the sink node) and a parent node.
Each node in the network that is active or semi-active

forwards the data that it has generated or received to

its parent node which has a smaller tier number. By
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Message When It is used

Hello At the beginning of each round, [sid]

GlobTier

Assignment

In Global Tier Assignment phase, [sid,

tier-no]

TierQuery To learn tier numbers of neighbors [sid]

TierReply To reply to TierQuery messages [sid, tier-
no]

Discovery In Neighborhood Table Construction
phase [sid, Location, TTL]

StatusUpdate In Mode Selection phase [sid, status]

StatusQuery To learn the status of 2- and 3-hop neigh-

bors [sid, TTL]

StatusReply To reply StatusQuery messages [sid, sta-
tus, did]

Bye Message When a node predicts to lose its energy in
the next round [sid]

LocalTierUpdate When a node changes its tier number [sid,
tier no]

LocalFindParent When a node can not find a parent among
its 1-hop neighbors [sid]

Connectivity-
Ok

When a node can connect to another par-
ent node [sid]

Connectivity-

Not-Ok

Used when a node cannot connect to an-

other parent node [sid]

Table 1: All control messages used by our scheme.

this way, shortest path routing in terms of hop count is

achieved and the possible routing loops are avoided.

After deployment, the sink node initiates the pro-

cess of assigning tier numbers to all nodes in the net-

work. For that it broadcasts a GlobTierAssignment mes-
sage containing its ID and a tier number set to zero.

Each node receiving a GlobTierAssignment message cre-

ates its own GlobTierAssignment message by increment-
ing the tier number by one and putting its own ID, and

then broadcasts this new message to its neighbors. If a

node receives multiple GlobTierAssignment messages,
it only considers the message which has lower tier num-

ber than its current tier number. However, the node can

record the IDs of all neighbors and their tiers as well.

Furthermore, among the GlobTierAssignment messages
having same tier number, the one coming from the clos-

est node is considered (by utilizing the RSSI value) and

that node is recorded as the current parent.

4.2 Neighborhood Table Construction Phase

Throughout this phase, each sensor node starts a dis-
covery phase to learn about the other nodes in its vicin-

ity and constructs a Neighborhood Table. This is needed

for coverage check: a node may need to find out all other

sensor nodes which have overlapping sensing areas with
itself. Our scheme tries to discover the neighbors up

to three hops and within 2Rs distance. Using multiple

hop neighbors may provide better performance in the

coverage check algorithm. However, this also causes a

remarkable increase in the number of control messages.
Therefore there is a tradeoff between a good coverage

check and control message overhead. In [29], Bulut et

al. discuss this tradeoff and find the conditions that
give the maximum gain. As we mentioned earlier, since

Rt/Rs value usually lies in the range [1/2, 3] [27], [28],

even if the Rt/Rs value is quite small (i.e. 0.5), the
neighbors that are more than 3-hops away cover either

minor or no extra part of the node’s sensing area as it

is shown in Section 3.2 (Figure 8).

At the beginning of the Neighborhood Table Con-

struction phase, each sensor node broadcasts a Discov-

ery message which contains the ID and the location of

itself and a TTL value. Since each node may search for

up to three hops, the TTL is set to 3 initially. Each
node receiving this Discovery message records the ID

and the location value in the message into its Neighbor-

hood Table, unless the node originating the message is
further than 2Rs. Moreover, the receiver node decreases

the TTL by 1 and if the TTL is still bigger than zero,

the node forwards the message to other nodes within its

transmission range. If a node receives multiple Discov-

ery messages with the same ID (same source), it uses

the one that has traveled the smallest number of hops

(i.e. that has the largest TTL value). As a result of this
process, each node learns about its 1-, 2-, and 3-hop

communication neighbors.

4.3 Mode Selection Phase

In this phase each node of the network decides its mode

for the remainder of the current round. Our scheme puts
a sensor node in one of three modes:

ON-DUTY (full-active): Both the communication

and sensing units are turned on.

TR-ON-DUTY (semi-active): Sensing unit is turned

off, but communication unit is turned on. Hence the

node can not sense the environment, but can transmit
and receive data.

DEEP-SLEEP (inactive): Both the communication

and sensing units are turned off. The node can neither

sense, nor communicate.

We ignore the energy consumption in the processing
unit and therefore we assume it is always on. However,

the processing unit can be turned off as well when a

node enters DEEP-SLEEP mode, provided that there
is a timer hardware that can wake up the node when a

round ends.

Mode selection phase consists of three parts which

are executed sequentially in each node: 1) backoff delay

computation and waiting, 2) coverage eligibility check,
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Fig. 10: The overall mechanism to decide which mode a sensor

node will be in each round.

and 3) connectivity eligibility check. If a node passes

coverage eligibility test, that means the sensing area of
the node is covered by some other nodes, hence its sens-

ing unit can be turned off. If a node passes connectivity

check, that means its neighbors can by-pass the node

while transporting packets towards the sink, hence its
communication unit can be turned off. While perform-

ing these checks, however, due to the independent and

distributed operation, some nodes may act simultane-
ously and attempt to change their modes at the same

time. This can cause unhealthy results for eligibility

checks. Therefore, we assign randomized backoff delays
for each node so that when this time expires the node

decides on its mode and informs its neighbors about

this new mode via StatusUpdate messages.

Figure 10 shows the overall mechanism in mode se-

lection phase. At the beginning of each round, each

node selects a random backoff delay time and waits that
much time in TR-ON-DUTY mode (other nodes may

need to communicate with this node). When the back-

off timer expires, the node first applies our coverage
check algorithm. If it can not pass the coverage check,

it goes into ON-DUTY mode, otherwise it applies our

connectivity check algorithm. If it passes connectivity

check, it goes into DEEP-SLEEP mode; otherwise it
goes into TR-ON-DUTY mode. When operation phase

comes, each node fulfills the requirements of its new

mode.

4.3.1 Backoff Delay Computation

If the nodes attempt to determine their modes at the

same time, no reasonable results may occur due to mes-

sage contentions. We resolve this problem by using a
backoff delay mechanism similar to the one proposed

in SPAN [12]. Each node chooses a backoff value and

when it expires the node decides its mode according to
the states of the nodes in its neighborhood table at that

moment.

In our solution, the backoff delay depends on two
factors: the remaining energy levels and the number of

neighbors of the nodes. A node with a lower remaining

energy should have a shorter backoff delay, so that it

can be the one who will decide to go to sleep earlier.
A node with larger number of neighbors should have a

longer backoff delay, so that it can be less likely to go

to sleep and can stay active, since it can contribute to
the coverage and communication of many other nodes.

Let N(i) be the neighbor count of node i and Nmax

be the maximum of N(i)’s in a network. The nodes
having higher value of N(i)/Nmax should have lower

priorities for turning off their units due to their effect on

coverage and connectivity. The following is our backoff

time computation formula:

Delay =

(

α(
Er(i)

Et(i)
) + β(

N(i)

Nmax

) + R

)

× T (1)

Here R is a uniform random value in the interval
[0,1-α-β], T is the size of random backoff time choices,

and α, β are weights of energy and coverage parameters.

Although this delay mechanism produces different
delays, some nodes may still have same or very close

backoff delays. Thus, some nodes may decide their mode

at the same time and some blind points covered by no
nodes may occur. To prevent such kind of cases, we force

each node to wait a short period of time Tw after decid-

ing its mode. This time interval should be enough to re-

ceive possible StatusUpdate messages from a neighbor.
If a message is received from a neighbor in this period,

the node recalculates its off-duty eligibility. Otherwise,

it changes its status to what it has decided. Besides it
sends a StatusUpdate message to its neighbors. Choos-

ing bigger T values can also decrease the contentions.

Note that, starting from the beginning of each round
(including the backoff time), each node can receive mes-

sages from its neighbors and reply them accordingly.

For instance, a StatusUpdate message from a 1-hop neigh-

bor can be received and Neighborhood Table of the
node can be updated. But, the states of 2-hop and 3-hop

nodes are updated when they are needed, as described

in the next section.
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4.3.2 Coverage Eligibility Check

As soon as the backoff timer expires for a node, it runs
the coverage eligibility algorithm with its current neigh-

borhood information to check if its sensing area is cov-

ered by its neighbors with a ratio greater than a thresh-
old value dr. Here, dr is a user defined parameter (0 ≤
dr ≤ 1). If the amount of common coverage is 0, that

means no neighbor is covering the sensing area of the
node. If it is 1, that means the sensing area of the node

is completely covered by the nodes in the neighborhood.

Given the location of nodes, there are various ways

of computing common sensing area of a node with other

nodes [5], [9], [13]. Some of these methods can only be
used to decide whether the area is totally covered by

other nodes or not, but can not be used to find out how

much of the area is covered. A method that can give
how much of a node’s sensing area is covered by other

nodes is a grid based approach. It first assumes a very

fine grained grid put over the sensing area of the node.

Hence the sensing area consists of many tiny grid cells.
Then for each grid cell, it checks if the cell is covered

by another node. This can be done by computing the

distance of the grid cell to each of the other nodes. If the
distance is less than Rs for any of the other nodes, then

the grid cell is covered by another node. This is done for

each grid cell, and then the percentage of the sensing
area of the node covered by other nodes is computed.

To achieve a good coverage check, a node should

know all of other nodes which have common sensing

area with itself. However the number of nodes within

2Rs distance may be remarkably large and this may
require creating lots of control messages to have an up-

dated knowledge of these nodes’ current modes. Here,

we propose to utilize the expected overlap tables which
are derived in the previous section. Note that in the

expected overlap table of a node, the table cell (n1,n2)

contains the expected overlap of this node’s sensing area
when it has n1 1-hop and n2 2-hop active neighbors.

Algorithm 1 shows the pseudo-code of our coverage
check algorithm (N1 stands for set of 1-hop neighbors

and dr stands for desired coverage ratio). We assume

Expected Overlap Table is installed to each node before
deployment. According to the desired overlap, the node

decides on the set of nodes in its Neighborhood Table

that will be considered in the coverage check (we call
this set as coverSet). Here, if the required set is only

1-hop neighbors, no extra messaging is needed to learn

their status because 1-hop neighbor information is al-

ways updated via StatusUpdate messages. However, if
the set also includes other nodes, the node should try

to learn their current status from its neighbors. By this

algorithm, we not only reduce the load due to control

messages which update the status of nodes in the Neigh-

borhood Table, but also make a good coverage check of
nodes.

Algorithm 1 CoverageCheck(N1 : set of 1-hop neigh-
bors, dr: desired coverage ratio)

1: if (ExpectedOverlapTable(|N1|, 0)≥ dr) ∨ (Rt/Rs ≥ 2)

then

2: coverSet = N1;
3: else

4: Broadcast StatusQuery message with TTL 1;
5: Wait Tw time for receiving StatusReply messages;
6: N2 = The set of 2-hop nodes in ON-DUTY mode;
7: if ExpectedOverlapTable(|N1|, |N2|)≥ dr then

8: coverSet = N1 ∪ N2;
9: else

10: Broadcast StatusQuery message with TTL 2;
11: Wait Tw time for receiving StatusReply messages;

12: coverSet = {active nodes in Neighborhood Table};
13: end if

14: end if

15: coveredArea = 0;
16: desiredCover = dr × πR2

s;
17: for each node i in coverSet do

18: coveredArea = coveredArea ∪ SensingArea(i);
19: if coveredArea ≥ desiredCover then

20: return TRUE;
21: end if

22: end for

23: return FALSE;

If the node decides to use the nodes in two and three

hops in coverage check, it needs to update the status

information of these nodes. The node creates a Sta-

tusQuery message and broadcasts it with a TTL value

which is set to 1 if the node wants to learn the updated

status of 2-hop neighbors, and to 2 if the node wants
to learn the status of 3-hop neighbors. A node receiv-

ing a StatusQuery message decreases the TTL value by

1. If TTL becomes zero after decrementing, the node

replies back with a StatusReply message which contains
the updated status of 1-hop neighbors in the Neighbor-

hood Table of the node. Otherwise, the StatusQuery

message is forwarded to other nodes. Moreover, when
Rt/Rs is greater than 2, the algorithm defines the co-

verSet as the set of 1-hop neighbors because only they

may have an overlapping area with the node.

It is important to note that our protocol never causes

under coverage (i.e. coverage below the desired ratio).
In Algorithm 1, using the Expected Overlap Table we

find the upper hop level of the members of coverSet

which will be used in coverage check algorithm. Once

we have decided the coverSet, we do a real coverage
check using only the information of nodes in coverSet

(lines 18-23). Here, note that, expectedly the neighbors

in coverSet may provide a higher overlap than the de-
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sired ratio but when the node performs the real cov-

erage check using the locations of only these neighbors
in coverSet, it may result that the sensing area of the

node is not covered sufficiently by these neighbors so

that the node decides to be in active mode. The re-
verse case is also possible: even if the coverSet with all

neighbors in Neighborhood Table (all active neighbors

up to three hops) does not provide the desired cover-
age expectedly, the real check may result in that the

desired ratio of the node’s sensing area is covered. But

whatever the case is, a node is not put into sleep mode

without a real coverage check. The most important ben-
efit of using this coverSet and Expected Overlap Table

idea is to save from unnecessary control messages. Al-

though our protocol may result some nodes to be in
active mode due to the difference of real coverage check

and expected ratio, it achieves same or better perfor-

mance (as it is shown in simulations) as the protocols
updating the status of all hop neighbors continuously

and it achieves this with less energy consumption by

eliminating unnecessary control messages.

Moreover, in real sensor network applications, some-

times a node may not receive status information of
some of its 2- and 3-hop neighbors due to transient

link failures. In those cases, the node assumes that such

neighbors are in DEEP-SLEEP mode during a round.
Note that, this does not affect the regular running of

our scheme and also it does not increase the cost of

the protocol. But it can affect the number of neighbor

nodes used in the coverage eligibility check of a node
(coverSet in Algorithm 1 may change) and this may

cause that node to select different modes.

4.3.3 Connectivity Eligibility Check

If a sensor node passes coverage check, it runs connec-

tivity check algorithm as the next step of the mode
selection phase. Even the sensing area of a sensor node

is covered by its neighbors desirably, the node may be

vital for the connectivity of other nodes. The active

nodes (ON-DUTY or TR-ON-DUTY) in a sensor net-
work must be connected to be able to send their data

to the sink node.

A node can be turned off without harming connec-

tivity, if and only if its 1-hop active neighbors can send
their data to sink over a path that does not contain

this node. Hence the node should check if its 1-hop

neighbors consider itself as the next-hop node (i.e. par-

ent) in the route to the sink. If a node passes cover-
age check, it first changes its mode to a temporary

mode called READY-TO-OFF and informs its 1-hop

neighbors via Status Update messages. Then each 1-hop

neighbor evaluates its current condition as follows and

sends a reply message to the questioning node.

If the parent node of the neighbor node is not the
questioning node, it sends a Connectivity-Ok message,

since it does not need the questioning node for send-

ing its data to the sink. Otherwise, the node looks for
another possible parent (PP) among its neighbors. It

sends a TierQuery message asking their tier numbers to

its 1-hop neighbors. According to the TierReply mes-

sages, it creates the set of PP nodes which have one
less tier number than its tier number. If PP set is not

empty, the node selects one of them as a new parent

node and sends a Connectivity-Ok message to the ques-
tioning node. Otherwise it sends back a Connectivity-

Not-Ok message, because there is no way to send its

data to the sink node without using the questioning
node and without possibly making the path longer.

After waiting sufficient time for the operations above,
the questioning node checks whether it has received a

Connectivity-Not-Ok message or not. If it is the case,

it changes its mode to TR-ON-DUTY mode, otherwise
it passes the connectivity check as well and goes into

DEEP-SLEEP mode. Additionally, the node informs its

1-hop neighbors about its new mode via a StatusUpdate

message, so that they can update their Neighborhood

Tables.

In each round, the connectivity eligibility check al-

gorithm is executed as part of mode selection. While

putting some nodes into sleep and modifying the paths
due to this, the connectivity check algorithm does not

make the paths longer, since it selects a new parent that

has one less tier number. If such a new parent can not
be found for at least one child, the communication unit

of the node is not turned off.

4.4 Operation Phase

After mode selection phase is over, each sensor node
has its mode determined for the operation phase, hence

for the rest of the round. The node stays at that mode

until that round finishes. When the round finishes and

next round starts, all sleeping nodes (nodes in DEEP-
SLEEP) wake up and start in TR-ON-DUTY (semi-

active) mode. They again enter the mode selection phase

and select a mode for the new round.

4.5 Handling Network Dynamics

The proposed scheme is designed to handle also some

common sensor network dynamics to a certain degree

such as transient and permanent node failures (due to
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hardware/software problems or energy depletion), tran-

sient and permanent link failures (due to obstacles, in-
terference, fading, or relocation), and new node addi-

tions.

To detect transient link failures between nodes, our

protocol requires each node to broadcast a Hello mes-
sage to its 1-hop communication neighbors at the be-

ginning of each round. Then, if a node i cannot receive a

Hello message from one of its 1-hop neighbors (let’s call
that neighbor as node j) due to the failure of the wire-

less link in-between, it assumes that the node j will stay

in DEEP-SLEEP mode during that round2. Therefore,

node i decides its mode for the current round with-
out considering the existence (so the status) of node j

(hence the protocol behaves conservatively).

If, however, node i’s current parent is j, node i needs

to find a new parent node. In such a case, node i looks
for a new parent node among its 1-hop neighbors. First,

it searches for a neighbor having the same tier num-

ber with its previous parent (so that it can connect to
that node without changing its tier number and without

making the path to the sink node longer). If there is no

neighbor with the same tier number, a non-child neigh-

bor that has the smallest tier number (if exists any)
is selected as the parent. This will cause the node i to

change its tier number. Additionally, in this case, node

i will instruct its children to update their tier numbers
as well by broadcasting a LocalTierUpdate message in

its subtree.

In some cases, a node i may not find a new parent

to connect to among its 1-hop neighbors. In this case,

node i sends a LocalFindParent message to its subtree
(its descendants) and wants them to find a parent node

which is not in this subtree. The first child node find-

ing such a parent becomes the new root of this subtree.
Then it starts a local tier update procedure by broad-

casting a LocalTierUpdate message to the other nodes

in this subtree.

It is important to not trigger the parent finding and
tier update procedure (i.e. local recovery) for short du-

rational failures. For this we can use a threshold time to

trigger local recovery. That means, local recovery will

be triggered only when the failure duration is longer
than the threshold. Otherwise, local recovery is not

triggered. Some data messages may be lost during this

time. This is acceptable for link layers that are not de-
signed to be totally reliable. We suggest the value of the

2 We consider the links between nodes individually. If other

neighbors of node j can receive Hello message from j (that link
may not fail) even though node i can not receive it, they continue
with the regular procedure and consider node j’s status while
deciding their own status.

threshold-time to be in the order of at least a certain

fraction of one-round-duration.

Note that, while nodes continue to die, network may

become disconnected after some time and in this case it
may not be possible to find an alternative parent even

from the nodes in the subtree, i.e. even LocalFindParent

message does not work. No recovery can be done when
network becomes physically disconnected.

In the above procedure, the probability that a node

i may find a new parent among its 1-hop neighbors de-
pends on the density of the network. Hence if the net-

work is dense enough, then an alternative parent can

be found instantly most of the time. However, depend-
ing on the tier of the new parent, we still may need

to update the tiers in the subtree. We next show the

relationship between the probability of finding a new
parent among 1-hop neighbors, the density of the net-

work, and link-failure probability.

Let ni and ci denote the number of neighbors and
the number of children of a node i, respectively. Assume

that node i’s link to its parent has failed and node i is

looking for a new parent node. The number of possible
parents for i among its 1-hop neighbors is Pi = ni − ci −
1 (i.e. all neighbors except the children and the previous

parent). Then, assuming that the average number of
neighbors of a node is d and the total node count in the

network is N , the average value of such possible parents

for any node, Pavg, becomes:

Pavg =

∑i=N

i=1
ni − ci − 1

N
=

Nd − N − N

N
= d − 2

Here, note that a node can be the child of only one

node in the network at a given time. Therefore, the sum
∑

ci is equal to N. As a result, the above formula states
that a node can select one of the d− 2 neighbors as its

new parent node on the average.

However, the link between a node i and its possible

parent node may fail for some time. Assume the failure

probability for such a link is pf . Then, the probability

of finding a new parent Pparent, becomes 1 − pf
d−2. In

Figure 11, we show the computed values of Pavg for

different pf and d values. Clearly, as pf decreases and

d increases, Pavg increases.

In many real applications of sensor networks, d =

4 − 5 is assumed to be a reasonable average neighbor
count. Moreover, although it can change with respect to

the sensor types, environment and hardware/software,

etc., in some recent papers such as [30] and [31], the

average link failure rate in sensor networks is assumed
to be %15. Hence, when d=5 and pf = 0.15, Pparent is

%99.66, which is a very high average probability. There-

fore we can say that most of the time a node can in-
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Fig. 11: The probability of finding a new parent node among the
neighbors vs. average neighbor count with different link failure
(pf ) rates.

stantly find a new parent among its 1-hop communica-

tion neighbors so that not much extra messaging will
be required while searching for an alternative parent.

Above, we explained how the proposed scheme han-

dles link failures. The failure of a node can simply be
considered as the failure of all links from the node to

its neighbors. Then the same procedure described above

can be used to handle node failures. If a node failure oc-
curs unexpectedly, some data can be lost until the situ-

ation is handled. But if the node failure happens due to

the battery exhaustion, proactive rerouting may be per-

formed before the node dies, and in this way data packet
losses can be minimized. In our protocol, if a node no-

tices that it will soon die due to very low remaining

energy in its battery, it informs its 1-hop neighbors via
a Bye message and asks them to find new parents and

bypass itself while routing their messages towards the

sink. Then each child of the dying node tries to find
a new parent node similar to the procedure described

above.

Note that, as nodes die and the number of nodes
in the network decreases, one may think that the local

parent search procedure done on the subtree (initiated

by LocalFindParent messages) will be invoked more fre-

quently and therefore the messaging cost will increase.
However, our simulation results show that even nodes

continue to die, the local parent search is invoked very

infrequently. In a network of 100 nodes with Rt = Rs

= 10 m on 50 m by 50 m region, on the average 60.6

nodes die before the total sensing coverage of connected

nodes (with sink) becomes below %20 of whole network
region. Of these 60.6 dead nodes, in the death of only

1.2 of them, the children of dying node cannot find a

node to assign as a new parent from their neighbors

so that they want help from the nodes in their own
subtrees by LocalFindParent messages. Besides, the av-

erage number of nodes in such a subtree is 18.3, which

is much less than the total node count in the network.

Moreover, our protocol can handle new node arrivals

due to new node deployments or due to infrequent node
relocations. A newly arriving node will not have a par-

ent assigned or it will not be able to find its parent in

its new neighborhood. Therefore, the new node, after
detecting its new neighbors, will select one of them as

its new parent and will set its tier number accordingly.

The neighbors that will detect this new node will also
update their neighbor list (at the beginning of the round

when Hello messages are received) and if selecting this

new node provides smaller tier number, they will also

update their own tier numbers and tier numbers of their
descendents.

5 Performance Evaluation

To evaluate our algorithm, we implemented a visual

sensor network simulator in Java. The reason why we

used a self-constructed custom simulator rather than a
well-known one such as ns2 is, by this way, we could test

our algorithm visually (nodes’ locations and status after

and before running our scheme) and skipped dealing
with the unnecessary layers of nodes and protocol stack.

We assume that nodes are randomly and uniformly

deployed (as it is assumed in [9,10,16]) and the sink

node is located at the center of the region. We per-

formed two types of simulations: 1) coverage perfor-
mance tests to see the performance of our coverage

check algorithm; and 2) system lifetime tests to see the

extension of network lifetime with our solution.

5.1 Coverage Performance Tests

In this part of simulations we wanted to see what per-
cent of nodes can be put into sleep mode by our algo-

rithm maintaining the initial coverage and connectivity.

We used a sensor network model similar to the one used
in CCP [10]. We deployed 100 static nodes into 50 m by

50 m region with 10 m of Rs and Rt values. The coor-

dinates of nodes are determined in a random manner at
each run of the simulation experiments. The reported

results in the graphs are obtained as the average of 100

different runs.

Figure 12-a and Figure 12-b show the active node

count for different number of nodes in the network when
Rt/Rs is 1 and 1.5, respectively (we set dr = 100%).

Both graphs show that our algorithm needs less num-

ber of nodes than CCP-SPAN algorithm and nearly the

same number of nodes as CCP-SPAN-2Hop algorithm.
However, the number of working nodes needed in our

algorithm include both ON-DUTY and TR-ON-DUTY

nodes. Figure 12-c shows the number of TR-ON-DUTY
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Fig. 12: Working node counts and their distribution in our protocol.
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Fig. 13: Working node count vs. Rt/Rs ratio.

and ON-DUTY node count for the case in Figure 12-

a. As it is stated before, the nodes in TR-ON-DUTY

mode turn off their sensing units hence their energy

consumption is less than the nodes in ON-DUTY mode
in which all units are turned on.

We also did simulations to see the effect of Rt/Rs

ratio on the number active nodes. This time, we have

decreased the value of Rs to 6.25 m to see the difference

more clearly when Rt/Rs ratio is bigger. The number
of deployed nodes is 800 when the Rt/Rs ratio is 0.5,

and 200 in all other ratios.

Figure 13 shows the number of working node count

for different Rt/Rs ratios. Our algorithm needs less

number of nodes than CCP-SPAN algorithm for all ra-

tios. On the other hand the difference in the number
of working nodes needed by our algorithm and CCP-

SPAN-2Hop algorithm is very small for all ratios; our

algorithm needs a little less number of nodes. When the
Rt/Rs ratio is 0.5 the difference is the biggest. This is

due to our predictive coverage check algorithm which

gives better results for small Rt/Rs ratios.

While in CCP algorithm nodes always update the

status of their 1-hop neighbors via HELLO messages,

in CCP-2Hop algorithm, nodes also update the status
of their 2-hop neighbors. When they are combined with

SPAN algorithm, each node needs to update their 2-hop

neighbors because SPAN needs them for the coordina-
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Fig. 14: Total number of neighbors used while performing the
coverage check rule in a network.

tor announcement rule. However, in our algorithm, at

first we only know the status of 1-hop neighbors and

whenever it is needed, we update the status of 2- and

3-hop neighbors.

We wanted to compare the overhead due to these
kinds of messages used by our algorithm and CCP-

SPAN and CCP-SPAN-2Hop algorithm. Figure 14 shows

the total number of neighbors whose information is
used by nodes to perform their coverage check. Our

algorithm uses slightly more nodes than CCP-SPAN

algorithm; however, it uses remarkably less number of
nodes than CCP-SPAN-2Hop algorithm. It achieves the

same number of working nodes as CCP-SPAN-2Hop al-

gorithm while using less number of neighbors in cover-

age check. This figure only shows the total number of
neighbors used in coverage check, but if we consider

the messaging cost, our algorithm needs less messaging

than both algorithms due to 2-hop neighbor updates re-
quired by SPAN algorithm. Besides, the more neighbors

are used, the more messaging cost is incurred, since the

status of neighbors need to be updated.

Furthermore, we also did simulations to show the

coverage conservative behavior of our algorithm. We
ran the two algorithms on a network with 100 nodes (Rt

= Rs) and computed the percentage of each k-covered

area within the whole network region. We set dr = 90%
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Fig. 15: Sample network snapshots before and after running two algorithms.

in these simulations. In Figure 15, we show the working

nodes and their coverages in the initial network (Fig-

ure 15-a), in the network formed after running CCP-

SPAN-2Hop algorithm (Figure 15-b) and in the network
after running our algorithm (Figure 15-c). Moreover in

Figure 15-d, we show the computed average number of

nodes covering each point in the whole network region
(it is computed as

∑n

k=1
pkk, where pk is the percentage

of k-covered regions within the whole network region,

and n is the number of nodes in the network). Both our
algorithm and CCP-SPAN-2Hop algorithm keep more

than 90% of the area covered (i.e. 99% and 98%, respec-

tively). However, the redundant coverage resulted by

CCP-SPAN-2Hop algorithm is significantly more than
the redundant coverage resulted by our algorithm as

shown in Figure 15-d (our algorithm achieves this by

shutting down the sensing units of some unnecessary
nodes). In Figure 15-d, with the second vertical bar, we

also show the average number of nodes covering each

point in case of using all 3-hop neighbors in coverage
check eligibility rule (we call it as AlgoReal) of our al-

gorithm (normally, we use them if expected coverage

ratio is not bigger than desired ratio). In other words,

nodes do not consider the Expected Overlap Tables and
always use information of active 2- and 3-hop neigh-

bors, which requires continuous status update process

for those nodes. From the figure, we observe that using
expected values causes an insignificant redundant cov-

erage over AlgoReal, but on the other hand, it achieves

a great saving in control message overhead.

5.2 System Lifetime Tests

In this part of the simulations, we evaluated the energy

efficiency and sensing coverage performance of our al-
gorithm. In most of the early studies, only the energy

spent in communication unit is considered. However,

sensor nodes also consume energy in sensing and pro-

cessing units. Since the energy consumed while process-

ing data is very small compared to the energy consumed

in other units, it is generally ignored. However, in some

simulations authors also ignore the energy consumption
in sensing unit. But according to [23] and [25], the en-

ergy dissipated for sensing one bit of information is ap-

proximately equal to the energy dissipated in receiving
a bit. Therefore, in our simulations we consider the en-

ergy consumptions in both sensing and communication

units.

In the communication unit, we use the following en-

ergy consumption model for a node i in a network that
applies a tree-based routing scheme. This is the model

used in [20]. We also assume that the sensor nodes in

the network perform data aggregation while forwarding
their data.

Ei,Communication = EReceiving ∗ ni + ESending (2)

A node spends energy while receiving data from

its ni children and while sending the aggregated data
packet to its parent. The constants EReceiving and ESending

depend on the communication technology. Some stud-

ies assume they are equal [20], and some others consider
ESending to be slightly larger than EReceiving [21], [22].

We assume a ratio of 2/2.5 for EReceiving/ESending. Be-

sides, we also consider the energy consumption in sens-
ing unit. According to [23] and [25], EReceiving is equal

to ESensing for a bit worth of information. Therefore,

we assume energy consumption ratio while sensing, re-

ceiving and sending data as 2:2:2.5, respectively. More-
over, if the size of a data message is q times the size

of a StatusUpdate message, we assume that q is 20 in

all simulations. However, we also made a simulation ex-
periment showing the effect of the q constant.

For energy and coverage performance experiments,
we set Rs = 10 m and dr =90%. Besides, to see the

effect of range ratio, we performed three different sim-

ulations for ratios 0.5, 1.0 and 1.5. The number of de-
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Fig. 16: Network statistics from a sample run when Rt/Rs = 0.5.
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Fig. 17: Network statistics from a sample run when Rt/Rs = 1.
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Fig. 18: Network statistics from a sample run when Rt/Rs = 1.5.

ployed nodes are 300, 150 and 80, respectively. The re-

gion is a square of 50 m x 50 m. The base station is

located at the center of the region. Initially, each node
is assumed to have 100 units of energy. In each round

of communication, each node senses the environment

multiple times, packetizes the information, and sends

it towards the sink. The system is simulated until the
coverage becomes very low.

Figures 16-a, 16-b, 16-c show the coverage percent-

age, number of still alive nodes, and total remaining

energy in nodes respectively. The range ratio is set to

0.5, that is, Rt = 5 m and Rs = 10 m. Here, coverage
percentage is calculated considering only the coverages

of nodes which can reach the sink node, i.e. which can

send data to the sink node. From Figure 16-a, we ob-

serve that our algorithm maintains better coverage per-

centage in the later times of the network lifetime than

CCP-SPAN-2Hop algorithm. This is mainly achieved
by a quite distributed selection of active nodes in each

round and the putting each unit of the sensor nodes

into sleep separately. The higher number of alive nodes

shown in Figure 16-b and the higher total energy in the
nodes shown in Figures 16-c are also the consequences

of these properties of our algorithm.

Figures 17-a, 17-b, 17-c show the same metrics when

the Rt/Rs ratio is 1 and Figures 18-a, 18-b, 18-c show
them when range ratio is 1.5. Note that as Rt/Rs ratio

increases, the performance of CCP-SPAN-2Hop algo-

rithm gets closer to our algorithm due to the decreasing
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Fig. 19: Total energy in nodes in a sample run with different q values.

messaging cost of CCP-SPAN-2Hop. We also observe

this fact in Figure 14.

We also simulated the effect of changing q value. Fig-

ures 19-a, 19-b and 19-c show the remaining energy of
nodes in a sample network (with nodes having the same

Rs and Rt) when CCP-SPAN-2Hop and our algorithm

are applied, and when q is equal to 10, 20 and 50, re-

spectively. Note that, when q increases, the energy con-
sumption in CCP-SPAN-2Hop and our algorithm get

closer to each other. Our algorithm reduces the amount

of messages for maintenance and reduces the effect of
these messages in energy consumption. However, if the

size of these messages gets smaller with respect to data

messages, then performance of our algorithm and CCP
algorithm get closer.

6 Conclusion

In this paper, we investigated the sleep scheduling prob-

lem for energy conservation in wireless sensor networks.

We first analyzed the coverage of a node’s sensing area,
and we found out that a sensor node can find the ex-

pected coverage ratio of its sensing area by knowing the

transmission/sensing range ratio and the number of its

1-hop and 2-hop neighbors assuming uniform node dis-
tribution. Based on this analysis, we proposed a method

to find out expected coverage that can be used in vari-

ous problems as well.

As the second contribution of the paper, we pro-
vide a combined sleep scheduling and routing scheme

that preserves connectivity and coverage with predic-

tive coverage and multiple mode selections. In our so-
lution, a sensor node can be in one of the three differ-

ent modes. In ON-DUTY (full-active) mode, the sen-

sor node has both its sensing and communication units

turned on. In TR-ON-DUTY (semi-active) mode, the
sensor node has the communication unit turned on, but

the sensing unit turned off. In SLEEP (inactive) mode,

the sensor node has both the sensing and communi-

cation units turned off. This is different than previous

studies which only consider a sensor node as either ac-

tive or sleeping.
Our algorithm is also flexible in terms of the trans-

mission and sensing range ratio. That is, we do not

assume a certain range ratio. This is also different from

most of the previous studies which provide a solution
for only a certain ratio. Our solution preserves a desired

coverage and connectivity independent of this range ra-

tio. Furthermore, our algorithm also reduces the num-
ber of control messages that update the information

about the states of the sensor nodes in the network. We

use the update messages whenever they are required.
The simulation results show that our scheme can be ef-

fectively used in dense sensor networks for energy effi-

cient sleep scheduling while preserving connectivity and

coverage with low control messaging overhead.
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