
Lambda Set Selection in Roth-Karp Decomposition for LUT-Based FPGA Technology Mapping

Wen-Zen Shen, Juinn-Dar Huang, and Shih-Min Chao

Department of Electronics Engineering, National Chiao Tung University,

Hsinchu, Taiwan, the Republic of China

Abstract partition tends to produce better results.  However, to the best of

our knowledge, finding a good input partition in Roth-Karp

decomposition has not been formally addressed in previous

research.  In this paper, we propose a new heuristics to solve this

problem.

Roth-Karp decomposition is a classical decomposition method.

Because it can reduce the number of input variables of a function,

it becomes one of the most popular techniques used in LUT-based

FPGA technology mapping.  However, the lambda set selection

problem, which can dramatically affect the decomposition quality

in Roth-Karp decomposition, has not been formally addressed

before.  In this paper, we propose a new heuristic-based algorithm

to solve this problem.  The experimental results show that our

algorithm can efficiently produce outputs with better

decomposition quality than that produced by other  algorithms

without using lambda set selection strategy.

This paper is organized as follows.  Section 2 briefly

introduces some terminologies used in this paper.  Section 3

describes Roth-Karp decomposition and a classical

implementation for it.  In Section 4, our newly developed

heuristics for selecting a good λ set is given in detail.  Section 5

shows some experimental results and concluding remarks are

given in Section 6.

2.  Preliminaries

1.  Introduction

Some basic notations, terminologies and definitions used in

this paper are given in this section and most of them can be found

in [11] for more details.

Field Programmable Gate Arrays (FPGAs) are modern logic

devices which can be programmed by the users to implement

their own logic circuits.  Because of the short turnaround time

compared with that of the standard ASIC process, they become

very popular to be used in rapid system prototyping recently.

Many FPGA architectures have been proposed and the Look-Up

Table(LUT)-based architecture is the most popular one.  It

consists of many identical logic blocks which can implement any

Boolean function with k inputs.  For example, in Xilinx XC3000

architecture[1], k is equal to 5.  Many tools developed for LUT-

based FPGA technology mapping have been proposed in previous

studies[2-8].  Most of them first decompose the given Boolean

network to be k-feasible.  A Boolean network is said to be k-

feasible if all nodes in the network are k-feasible, and a node is

said to be k-feasible if the number of its fanin is no more than k.

Hence, the corresponding circuit can be directly realized by a one-

to-one mapping between nodes and LUTs.  If there are some

nodes that are not k-feasible, then they have to be decomposed to

a set of k-feasible nodes.  Many decomposition techniques, such

as AND-OR decomposition, cofactoring, disjoint decomposition,

if-then-else DAG, communication complexity reduction[9] and

Roth-Karp decomposition, are widely used in logic synthesis.  In

this paper, we concentrate on Roth-Karp decomposition[10].  This

method can decompose a Boolean function with a given input

partition.  In general, the quality of this decomposition strongly

depends on what the input partition is.  Some previous studies

showed that grouping symmetric input variables into the same

Let B = {0, 1}.  A completely specified single-output function f

with n input variables x
1
, x

2
, ..., x

n
, is denoted as f : X → Y

where the domain X is the Cartesian product Bn  and the range Y

is B.  A minterm x = [x
1
 x

2
 ... x

n
] ∈ Bn  is a vertex in the

Boolean n-space.  The on-set of f, X
f

ON  ⊆ Bn , is the set of

minterms x such that f(x) = 1, and the off-set of f, X
f

OFF  ⊆ Bn ,

is the set of minterms x such that f(x) = 0.  The complement of f,

denoted as f , is also a completely specified function and is

defined as X
f

ON = X
f

OFF and  X
f

OFF  =X
f

ON  .  A cube c which

represents a product term (a set of minterms) p is specified by a

row vector c = [c
1
 c

2
 ... c

n
] where

c
i
 = 0 if x

i
 appears complemented in p.

c
i
 = 1 if xi appears not complemented in p. 1 ≤ i ≤ n.

c
i
 = 2 if x

i
 does not appear in p.

The size of a cube c, denoted as π(c), indicates the number of

minterms contained by c.  The cube d is said to be contained by

the cube c, denoted as c ⊇ d, if all minterms contained by d is

also contained by c.  The intersection of two sets of cubes C and

D, denoted as C ∩ D, is also a set of minterms (possibly empty)

contained both by C and D.  Two cubes c and d are said to be

orthogonal if c ∩ d = ∅.  The union of two sets of cubes C and

D, denoted as C ∪ D, is a set of minterms contained by at least

one cube in either C or D.  A set of cubes C = { c1, c2, ..., ck} is

said to be a cover of f if c i

i 1

k

=U contains all vertices of X
f

ON  and

32nd ACM/IEEE Design Automation Conference 
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or  distributed  for direct  commercial advantage,
the ACM copyright notice and  the title of the publication and its date appear,
and  notice  is  given that  copying  is  by  permission  of  the  Association for
Computing  Machinery.   To copy otherwise,  or  to  republish,  requires a fee
and/or specific permission.  1995 ACM 0-89791-756-1/95/0006 $3.50



no vertex of X
f

OFF .  The matrix representation, f = M(C), of a

cover C is a matrix simply obtained by stacking the row vectors

representing cubes contained by C.

Lemma 3: Given C and D are covers of F and F , respectively, if

there exists a cube c in C and a cube d in D such that c
m 

∩ d
m
 ≠ ∅,

then for all l minterms m
l0

 contained by c
l
 and all l minterms m

l1
 contained by d

l
, m

l0 !~ ml1
.

3.  Classical Roth-Karp Decomposition

Thus, the compatible classes can be identified by applying

Lemma 1 and 3.  Firstly, a complete graph G(V, E) is constructed

where |V| = 2
λ .  Each vertex represents a l minterm and an

edge represents the compatibility of two connected vertices (l

minterms) in G.  Secondly, all edges (v
0
, v

1
) can be deleted where 

l minterms represented by v
0 and v

1
 are found to be incompatible

by Lemma 3.  Finally, from Lemma 1, each connected subgraph is

a complete graph, and hence represents a compatible class.

Finding all connected subgraphs is a very simple work, so

compatible classes are also easily identified.  Notice that the

number of connected subgraphs is equal to the number of

compatible classes.

In this section, a brief introduction to Roth-Karp

decomposition and a classical implementation method are both

given.

Let E and W be two sets of variables, and let X and Y be two

nonempty subsets of E such that X ∪ Y = E.  Then, given a

function F : E → B, we say that x
1
, x

2
 ∈X are compatible with

respect to F, denoted as x
1
 ~ x

2
 , if ∀ y ∈Y, (x

1
, y) and (x

2
, y) ∈ E

such that F(x
1
, y) = F(x

2
, y); otherwise, x

1 is incompatible with x
2
,

denoted as x
1
 !~ x

2
.

Lemma 1: If F is a completely specified function, then the

transitivity of the compatibility holds, i.e., if x
1
 ~ x

2 and x2
 ~ x

3

then x
1
 ~ x

3
. Example 1:

Given X = {x1, x2, x3, x4}, l = {x1, x2}, m = {x3, x4},

F = M(C) =

2 2 0 1
0 0 0 2
0 0 2 1
1 1 0 2
1 1 2 1



















, and F = M(D) =

2 2 1 0
0 1 1 2
0 1 2 0
1 0 1 2
1 0 2 0



















,

Thus, all mutually compatible elements can be grouped

together to form a compatible class, and all compatible classes

are pairwisely disjoint.

Theorem: Given two functions 
v

α  : X → W and G : W×Y → B,

such that

∀ (x, y) ∈ E, F(x, y) = G(
v

α (x), y)  (1)

holds if and only if

∀ x1, x2 ∈X, 
v

α (x1) = 
v

α (x2) ⇒ x1 ~ x2. identify all compatible classes.

According to Lemma 3, we obtain thatEquation (1) is called a decomposition of F.  
v

α  could be a

multiple-output function.  X is called the bound (ll) set, and Y is

called the free (mm) set.  The decomposition is disjoint if the

bound set and the free set are disjoint, i.e., X ∩ Y = ∅.  In this

paper, only the disjoint decomposition is considered.  The ll cube

of a cube c, denoted as c
l
, is a subvector of c which contains

entries corresponding to the variables in the l set.  The mm cube of

c, denoted as c
m
, is defined similarly.  A ll minterm m

l
 ∈ B

λ  is

a l cube which does not contain any 2s.  The mm cover of a cover

C, denoted as C
m
, is the set containing all m cubes in C.

Q c 2

µ  ∩ d 3

µ  ≠ ∅ ⇒ [0 0] !~ [0 1]

Q c 2

µ  ∩ d 5

µ  ≠ ∅ ⇒ [0 0] !~ [1 0]

Q c 4

µ  ∩ d 3

µ  ≠ ∅ ⇒ [1 1] !~ [0 1]

Q c 4

µ  ∩ d 5

µ  ≠ ∅ ⇒ [1 1] !~ [1 0]

The corresponding compatibility graph is illustrated in Fig. 1.

00 01

1110

Lemma 2: The number of elements of W must be no less than

the number of compatible classes in X.

From Lemma 2, if there are k compatible classes in X, then

|W| must be no less than  log k
2

.  Let t ≥  log k
2

, then (1) can

be rewritten as

Fig. 1 : Compatibility graph in Example 1.

It is obvious that two compatible classes, {[0 0], [1 1]} and

{[0 1], [1 0]}, are identified.
F(x, y) = G(a

1
(x), a

2
(x), ..., a

t
(x), Y)

where 
v

α (x) = (a
1
(x), a

2
(x), ..., a

t
(x)), a

i
(x) is a single-output

function for 1≤ i ≤ t.  It is clear that this technique can be used to

reduce the number of fanins of the function under the condition t 

< |X|.

When applying Roth-Karp decomposition for LUT-based

FPGA technology mapping, the major problem is how to choose a

good l set instead of how to decompose a node with a given one.

Unfortunately, no useful information about selecting a good l set



can be extracted from the implementation described above.  In the

next section, another implementation of Roth-Karp decomposition

will be given and a novel heuristics on picking a good l set are

proposed.

l minterm [0 0] [0 1] [1 0] [1 1]

cube index of on-set {1, 2, 3} {1} {1} {1, 4, 5}

cube index of off-set {1} {1, 2, 3} {1, 4, 5} {1}

Fig. 2(b) : The cube index table.

4.  Lambda Set Selection

According to Lemma 5, we obtain

[ ]O' =
1 1 1
1 1 0
1 0 1

     ,  and      O' '  =  1    












As shown below, Lemma 3 can be simply rewritten as Lemma

4.

Lemma 4: Given C = {c1, c2, ..., c
i } and D = {d1, d2, ..., d

j } are

covers of F and F , respectively; two l minterms, m
l0 and m

l1
,

are said to be compatible if and only if

Thus, [0 0] and [0 1]  are found to be incompatible.

From the implementation described above, any 0 in either O'

or O'' will make two corresponding l minterms to be

incompatible.  So it is intuitive to predict that fewer compatible

classes will be found if there are fewer 0s in the m-orthogonal

matrix.  Based on this idea, we propose a novel heuristics for l

set selection in the following discussion.

C' = {c | c k
λ  ⊇ m

l0
, 1≤ k ≤ i},

D' = {d | d
k
λ  ⊇ m

l1
, 1≤ k ≤ j} ⇒ C '

µ  ∩ D '
µ  = ∅, and

C" = {c | c
k
λ  ⊇ m

l1
, 1≤ k ≤ i},

Assume that C = {c1, c2, ..., c
i } and D = {d1, d2, ..., d

j } are

covers of F and F , respectively.  An i×j mm-orthogonal input

index table R is constructed such that R
mn is a set of input

indices k where x
k 

∈m and c k
m ∩ d k

n  = ∅.  Notice that O
mn

 = 0

only when R
mn

 is ∅.  At first, all input variables are put into m set

and thus no entry in R is ∅.  But after picking some variables out

from the m set to form the l set, some entries in R might become

empty sets and it means that some elements in O  become 0s.

The heuristics that we propose here is to define a reasonable

weight function to pick input variables out such that the reference

count of 0s in O' and O'' is minimized while checking the

compatibility by Lemma 5.    The weight function W of an input

variable x
k is defined as

D" = {d | d k
λ  ⊇ m

l0
, 1≤ k ≤ j} ⇒ C"

µ  ∩ D"
µ  = ∅  hold.

In order to apply Lemma 4, an i×j mm-orthogonal matrix O is

created such that O
mn

 = 1 if cm
µ is orthogonal to d n

µ , otherwise

O
mn

 = 0, for 1 ≤ m ≤ i and 1 ≤ n ≤ j.  A 2× 2
λ  cube index table I

is also constructed such that I
1n is a set containing all cube indices

i where c
i
λ  ⊇ the n

th  l minterm and I
2n is a set containing all

cube indices i where d
i
λ  ⊇ the n

th  l minterm.  Then, Lemma 4

can be transformed into Lemma 5.

Lemma 5: The i
th  l minterm and the jth  l minterm are said to

be compatible if and only if

W(x
k
) = ( )ϖ  x ,  ck

m

m=1

i

∑  + ( )ϖ  x ,  dk
m

m=1

j

∑ (2)O', a submatrix of O, contains rows specified by I
1i and

columns specified by I
2j
, and O'', a submatrix of O, contains rows

specified by I
1j and columns specified by I

2i
 such that all elements

in O' and O'' are 1s.

where

( )ϖ x ,  ck
m =

π( cm
λ ) * old_#0(m) if c k

m = 2,Example 2:

Check whether [0 0] and [0 1] are compatible in Example 1.

π( c
m
λ ) * ( )inc_ #0 m,  n,  x k

n=1

j

∑ if c k
m

 = 0 or 1.The corresponding m-orthogonal matrix and the cube index

table are shown in Fig. 2(a) and Fig. 2(b), respectively.

( )ϖ x ,  dk
m =

O =  

1 1 1 1 1
1 1 0 1 0
1 0 1 0 1
1 1 0 1 0
1 0 1 0 1



















π( d m
λ ) * old_#0(m) if d k

m = 2,

π( d
m
λ ) * ( )inc_ #0 n,  m,  x k

n=1

i

∑ if d k
m

 = 0 or 1.

Fig. 2(a) : The µ-orthogonal matrix.



 While calculating ( )ϖ x ,  ck
m  in (2), π( cm

λ ) estimates how

many times the m
th  row of O tends to be referenced while

checking the compatibility and is initialized to 1.  old_#0(m)

represents how many 0s in the m
th  row of O currently and

should be initialized to 0.  When c k
m

 = 2, it never generates any

new 0 in O but just doubles the size of c
m
λ .  Hence, if  x

k is out

of the m set, the product of π( c
m
λ ) and old_#0(m) gives an

estimation about the newly increased reference count of 0s while

checking the compatibility.  When c k
m

 = 0 or 1, inc_#0(m, n, x
k
)

estimates a potential of a 0 being newly generated in  the m
th

row of O if  x
k is out of the m set.  inc_#0(m, n, x

k
) is defined as

W(x
1
) = (1*0 + 1*3/2 + 1*3/2 + 1*3/2 + 1*3/2) + (1*0 +

1*3/2 + 1*3/2 + 1*3/2 + 1*3/2) = 12

W(x
2
) = (1*0 + 1*3/2 + 1*3/2 + 1*3/2 + 1*3/2) + (1*0 +

1*3/2 + 1*3/2 + 1*3/2 + 1*3/2) = 12

W(x
3
) = (1*5/2 + 1*2 + 1*0 + 1*2 + 1*0) + (1*5/2 + 1*2 +

1*0 + 1*2 + 1*0) = 13

W(x
4
) = (1*5/2 + 1*0 + 1*2 + 1*0 + 1*2) + (1*5/2 + 1*0 +

1*2 + 1*0 + 1*2) = 13

Since W(x
1
) and W(x

2
) are both minimum, x

1
 is chosen

randomly.  Then, the m-orthogonal input index table becomes

ON\OFF 1 2 3 4 5

1 {3, 4} {3} {4} {3} {4}

2 {3} {2, 3} {2} {3} ∅
3 {4} {2} {2, 4} ∅ {4}inc_#0(m, n, x

k
) = 0 if  R

mn
 = ∅ or k ∉ R

mn
 or

|R
mn

| > the number of

variables still to be selected,

4 {3} {3} ∅ {2, 3} {2}

5 {4} ∅ {4} {2} {2, 4}

2
1  |R |mn−

otherwise.
The weight functions are

  Since c k
m

 = 1 or 0, it might increase the number of 0s in O

but never affects the size of c
m
λ .  Then the product of π( cm

λ ) and

( )inc_ #0 m,  n,  x k
n=1

j

∑  can also estimate about newly increased

reference counts of 0s while checking the compatibility.

( )ϖ x ,  dk
m  is defined similarly.  In our algorithm, the weights of

all candidates are calculated.  The input variable with the

minimum weight is selected to join the l set and then the related

information is updated.  This procedure does not terminate until

the desired l set size is achieved.

W(x
2
) = (2*0 + 1*3/2 + 1*3/2 + 1*3/2 + 1*3/2) + (2*0 +

1*3/2 + 1*3/2 + 1*3/2 + 1*3/2) = 12

W(x
3
) = (2*5/2 + 1*5/2 + 1*0 + 1*5/2 + 1*0) +  (2*5/2 +

1*5/2 + 1*0 + 1*5/2 + 1*0) = 20

W(x
4
) = (2*5/2 + 1*5/2 + 1*0 + 1*5/2 + 1*0) +  (2*5/2 +

1*5/2 + 1*0 + 1*5/2 + 1*0) = 20

Obviously, x
2
 should be selected.  Thus, the l set is {x

1
, x

2
}.

This is the best selection since it results in the minimum number

of compatible classes in this example.

5.  Experimental Results

The algorithm described above has been integrated into SIS

environment which is developed by UC Berkeley and is a

superset of mis-pga[3, 12].  In order to demonstrate the quality

and the efficiency of our algorithm, two experiments are

conducted over a large set of MCNC and ISCAS benchmark

circuits to compare with another implementation, which has no l

set selection strategy, of Roth-Karp decomposition in mis-pga.

One experiment is performed on two-level circuits obtained by

the SIS script

Example 3:

Given a function F defined in Example 1, chose a l set with

two input variables such that the number of compatible classes is

minimum.

At the beginning, the l set is empty and then the m-orthogonal

input index table is shown below

ON\OFF 1 2 3 4 5 collapse

1 {3, 4} {3} {4} {3} {4} simplify -d

and the other is performed on multi-level circuits obtained by the

SIS standard optimization script.  After obtaining the initial

networks, the same mapping script

2 {3} {2, 3} {2} {1, 3} {1}

3 {4} {2} {2, 4} {1} {1, 4}

xl_k_decomp -n 54 {3} {1, 3} {1} {2, 3} {2}
xl_partition -n 5 -tm

5 {4} {1} {1, 4} {2} {2, 4} xl_cover

is used in both experiments to obtain 5-feasible networks.  Thus,

each node in these networks can be one-to-one mapped into a 5-

input LUT directly.  The experiments are run on a SUN SPARC 2
The weight functions are calculated according  to (2).



workstation and the results are shown in Table I and II,

respectively.

Table I: The experimental results of two-level benchmark circuits.

SIS_RK_decomp OUR_RK_decomp

From Table I, we can see that out of 16 two-level circuits,

OUR_RK_decomp is better on 13 cases and even on the rest of 3

cases when compared with SIS_RK_decomp. On average, our

algorithm produces 27% fewer nodes than that of SIS.  Moreover,

this algorithm is also very time-efficient.  The CPU time taken by

SIS is 6.3 times more than that used by our algorithm to complete

this experiment.  From Table II, out of 26 multi-level circuits,

OUR_RK_decomp is better on 16 cases, worse on 3 cases and

even on the rest of 7 cases.  On average, our algorithm produces

29% fewer nodes than that of SIS, and also takes 21% less CPU

time than SIS in this experiment.

CKT name #nodes time(sec) #nodes time(sec)

5xp1 21 5.2 19 3.1

9sym 7 4.8 6 8.2

alu2 122 182.7 77 51.4

apex4 984 3418.6 426 243.4

b9 115 55.6 92 46.5

clip 79 50.9 36 21.6

count 80 54.9 52 70.2

duke2 763 2870.8 722 450.8

e64 544 73.6 544 117.2

f51m 23 3.6 16 3.3

misex1 17 2.2 16 3.8

6.  Conclusions misex2 49 12.6 43 10.8

rd73 8 3.3 8 6.9

In this paper, we propose a novel heuristics to select a good l

set in Roth-Karp decomposition.  Experimental results show that

our algorithm can efficiently use fewer extra nodes to decompose

either a two-level network or a multi-level network to satisfy the

given fanin constraint than a plain implementation of Roth-Karp

decomposition.  Thus, this new technique is especially useful in

the field of combinational circuit synthesis for LUT-based FPGA

technology mapping.

rd84 13 8.4 13 23.2

sao2 52 19.6 37 16.0

z4ml 10 3.1 6 1.6

Total 2887 6769.9 2113 1078.0

Tabel II: The experimental results of multi-level benchmark

circuits.

SIS_RK_decomp OUR_RK_decomp

CKT name #nodes time(sec) #nodes time(sec)
References

5xp1 26 6.7 26 4.9

9sym 111 48.3 74 40.6
[1] Xilinx Inc., 2100, Logic Drive, San Jose, CA-95124, The

Programmable Logic Data Book. 9symml 96 50.3 76 32.0

bw 49 35.4 56 27.8[2] R. Murgai, Y. Nishizaki, N. Shenoy, R. K. Brayton, and A. Sangiovanni-

Vincentelli, "Logic Synthesis for Programmable Gate Arrays," in Proc.

27th Design Automation Conf., June 1990, pp.620-625.
duke2 177 111.3 125 55.9

f51m 27 12.8 27 9.1
[3] R. Murgai, N. Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli,

"Improved Logic Synthesis Algorithms for Table Look Up

Architectures,"  in Proc. Int. Conf. Computer-Aided Design, Nov. 1991,

pp.564-567.

misex1 19 3.5 18 2.7

misex2 32 6.5 32 6.5

misex3 223 22.7 165 87.4

rd53 3 5.8 3 2.2[4] R. J. Francis, J. Rose, and K. Chung, "Chortle : A Technology Mapping

Program for Lookup Table-Based Field Programmable Gate Arrays," in

Proc. 27th Design Automation Conf., June 1990, pp.613-619.
rd73 55 28.2 30 29.8

rd84 129 72.7 75 35.2
[5] R. J. Francis, J. Rose, and Z. Vranesic, "Chortle-crf : Fast Technology

Mapping for Lookup Table-Based FPGA's," in Proc. 28th Design

Automation Conf., June 1991, pp.227-233.

sao2 72 26.2 51 20.2

vg2 28 8.1 23 7.4

z4ml 5 0.4 5 0.4[6] K. Karplus, "Xmap : A Technology Mapper for Table-Lookup Field

Programmable Gate Arrays," in Proc. 28th Design Automation Conf.,

June 1991, pp.240-243.

alu2 190 140.9 119 97.8

alu4 381 83.6 239 52.8
[7] N. Woo, "A Heuristic Method for FPGA Technology Mapping Based on

the Edge Visibility," in Proc. 28th Design Automation Conf., June 1991,

pp.248-251.

apex6 229 21.5 232 27.3

apex7 63 15.2 65 17.3

b9 38 8.6 37 8.9[8] D. Filo, J. C. Yang, F. Mailhot, and G. D. Micheli, "Technology

Mapping for a Two-Output RAM-based Field-Programmable Gate

Arrays," in Proc. European Design Automation Conf., Feb. 1991,

pp.534-538.

count 31 5.7 31 5.7

des 1919 624.7 1211 405.0

rot 225 24.4 195 116.8
[9] TingTing Hwang, Robert M. Owens, and Mary J. Irwin, "Efficiently

Computing Communication Complexity for Multilevel Logic Synthesis,"

in IEEE Trans. on Computer-Aided Design, May 1992, pp.545-554.

clip 41 16.6 32 13.4

e64 80 14.8 80 14.6

C499 70 27.4 70 27.8[10]J. P. Roth, and R. M. Karp, "Minimization Over Boolean Graphs," in

IBM Journal of Research and Development, April 1962, pp.227-238. C880 170 83.9 106 41.0

[11]R. K. Brayton,  C. McMullen, G. D. Hachtel, and A. Sangiovanni-

Vincentelli, Logic Minimization Algorithms for VLSI Synthesis, Kluwer

Academic Publishers, 1984.

Total 4489 1506.2 3203 1190.5

[12]R. K. Brayton, R. Rudell,  A. Sangiovanni-Vincentelli, and A. R. Wang,

"MIS : A Multi-Level Logic Optimization System," in IEEE Trans. on

Computer-Aided Design, Nov. 1987, pp.1062-1081.


	DAC95
	Front Matter
	Table of Contents
	Session Index
	Author Index


