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Abstract. Adaptive systems research is mainly concentrated around optimizing 
cost functions suitable to problems. Recently, Principe et al. proposed a particle 
interaction model for information theoretical learning. In this paper, inspired by 
this idea, we propose a generalization to the particle interaction model for 
learning and system adaptation. In addition, for the special case of supervised 
multi-layer perceptron (MLP) training we propose the interaction force 
backpropagation algorithm, which is a generalization of the standard error 
backpropagation algorithm for MLPs. 

 
 

1. Introduction 
 
Adaptive system training algorithms research has long been driven by pre-defined 
cost functions deemed suitable for the application. For instance, mean-square-error 
(MSE) has been extensively utilized as the criterion in supervised learning and 
adaptation, although alternatives have been proposed and investigated relatively less 
frequently [1]. Second order statistics, by definition, have also been the cost function 
for principal component analysis [2]. Other higher order statistics, including higher 
order cumulants like the kurtosis, high order polyspectra, etc., and information 
theoretic cost functions have mainly been studied in the context of blind signal 
processing with applications to independent component analysis (ICA), blind source 
separation (BSS), and blind deconvolution [3-5]. The commonality of all the research 
on these is that the analyses are mainly motivated by the corresponding selected 
adaptation criterion.  

Working on the same problems, Principe et al. have utilized Renyi’s quadratic 
entropy definition and introduced the term information theoretical learning to the 
adaptive systems literature [6]. Their nonparametric estimator for Renyi’s quadratic 
entropy, which is based on Parzen windowing with Gaussian kernels, incited the idea 
of particle interactions in adaptation. Specifically considering the blind source 
separation problem, they have defined and demonstrated the quadratic information 
forces and the quadratic information potential at work in this context. Their insight 
on the adaptation process as an interaction between information particles deserves 
further investigation. Erdogmus and Principe have recently extended the entropy 
estimator to any entropy order and kernel function in Parzen windowing [7]. This 
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generalization of the entropy estimator also led to the extensions of the definitions of 
information potential and force. Successful applications of this entropy estimator in 
supervised and unsupervised learning scenarios have increased confidence and 
interest on information theoretic learning [8,9].  

Inspired by the above-mentioned information-particle interaction model for 
learning proposed in [6], we investigate in this communication the possibility of 
generalizing the concept of particle interaction learning. Our aim is to determine a 
unifying model to describe the learning process as an interaction between particles, 
where for some special case these may be the information particles or for some other 
special case, we may end up with the commonly utilized second order statistics of the 
data. The formulations to be presented in the sequel will achieve these objectives and 
we will call this general approach the potential energy extremization learning 
(PEEL). Also, specifically applied to supervised learning, we will obtain the minimum 
energy learning (MEL). In addition, we will propose a generalized backpropagation 
algorithm to train MLPs under MEL principle. For the specific choice of the potential 
field (to be defined later) that reduces the minimum energy criterion to MSE, we will 
observe that the generalized backpropagation algorithm reduces to the standard 
backpropagation algorithm. 
 
 
2. Adaptation by Particle Interactions 
 
Traditionally, the adaptation process is regarded as an optimization process, where a 
suitable pre-defined performance criterion is maximized or minimized. In this 
alternative view, we will treat each sample of the training data set as a particle and let 
these particles interact with each other according to the interactions laws that we 
define. The parameters of the adaptive system will then be modified in accordance 
with the interactions between the particles. 
 
 
2.1 Particle Interaction Model 
 
Suppose we have the samples {z1,…,zN} generated by some adaptive system. For 
simplicity, assume we are dealing with single dimensional random variables; 
however, note that extensions to multi-dimensional situations are trivial. In the 
particle interaction model, we assume that each sample is a particle and a potential 
field is emanated from it. Suppose zi generates a potential energy field. If the potential 
field that is generated by each particle is v(ξ), we require this function to be 
continuous and differentiable, and to satisfy the even symmetry condition v(ξ) = v(-ξ). 
Notice that due to the even symmetry and differentiability, the gradient of the 
potential function at the origin is zero. With these definitions, we observe that the 
potential energy of particle zj due to particle zi is V(zj|zi) = v(zj -zi). The total potential 
energy of zj due to all the particles in the training set is then given by 
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Defining the interaction force between these particles, in analogy to physics, as 
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we obtain the total force acting on particle zj  
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Notice that the force applied to a particle by itself is 0)0()|( =′= vzzF jj . 

Finally, the total potential energy of the sample set is the sum (possibly weighted) of 
the individual potentials of each particle. Assuming that each particle is weighted by a 
factor γ(zj) that may depend on the particle’s value, which may as well be independent 
from the value of the particle, but different for each particle, the total energy of the 
system of particles is found to be 
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Assuming that γ(zj)=1 for all samples, we can determine the sensitivity of the 
overall potential of the particle system with respect to the position of a specific 
particle zj. This is given by  
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In the adaptation context, since the samples are generated by a parametric adaptive 
system, the sensitivity of the total potential with respect to the weights of the system 
is also of interest. This sensitivity is directly related to the interaction forces between 
the samples as follows 
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2.2 Some Special Cases 
 

Consider for example the potential function choice of )2/()( 22 Nv ξξ =  and 

weighting function choice of 1)( =jzγ  (i.e. unweighted) for all samples. Then upon 

direct substitution of these values in (4), we obtain V(z) equals the biased sample 
variance, i.e. minimization of this potential energy will yield the minimum variance 
solution for the weights of the adaptive system. In general, if we select potential 

functions of the form pv ξξ =)( , where p>1, with no weighting of the particles we 

obtain cost functions of the form  
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which are directly related to the absolute central moments of the random variable Z, 
for which zj’s are samples. Each value of p corresponds to a different choice of the  
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Fig. 1. A snapshot of the information particles (output vector samples) and the 
instantaneous information forces acting on these particles in two-dimensional BSS.  
 
 
distance metric between the particles from the family of Minkowski norms.  

The information potential estimators of [6] and [7] also fall into this same category 
of cost energy functions. The quadratic information potential (based on Renyi’s 
quadratic entropy) estimator in [6], which uses Gaussian kernels Gσ(.) with standard 
deviation σ (named the kernel size), is  
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The generalized information potential estimator in [7], on the other hand is 
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In (9), α is the entropy order for Renyi’s definition and κσ(.) is the kernel function, 
which must be a valid pdf. Notice that for the potential function choice 

2/)()( NGv ξξ σ=  and 1)( =jzγ  in (4), we obtain the quadratic information 

potential of (8). Additionally, for 2/)()( Nv ξκξ σ=  and 2)(ˆ)( −= αγ jj zpz , we 

obtain (9) from (4). In the latter, )(ˆ jzp  is the Parzen window estimate, using kernel 

κσ(.), of the probability density of particle zj [10].  
 
 
2.3 Illustration of Information Forces in Independent Component Analysis 
 
As an example consider the quadratic information forces acting on the samples in a 
two-dimensional ICA/BSS scenario where the topology is a square matrix of weights 
followed by nonlinearities matched to the cumulative densities of the sources as 
described in [6]. Renyi’s quadratic joint entropy of the outputs of the nonlinearities is 
to be maximized to obtain two independent sources. It is shown in [6] that 



maximizing Renyi’s quadratic entropy is equivalent to minimizing the quadratic 
information potential given in (8). In this expression, a circular two-dimensional 
Gaussian kernel is employed as the potential field emanating from each particle and 
this is used to evaluate the information forces between particles. Under these 
circumstances, a snapshot of the particles and the instantaneous quadratic information 
forces, which can be calculated from (3), acting on these particles are shown in Fig. 1. 
Since the optimal solution is obtained when the joint entropy is maximized, these 
forces are repulsive and as clearly seen in the figure, the particles repel each other to 
arrive at a uniform distribution in the unit square in the two-dimensional output space. 
 
 
3. BackPropagation of Interaction Forces in MLPs 
 
In this section, we will derive the backpropagation algorithm for an MLP trained 
supervised under the MEL principle. This extended algorithm backpropagates the 
interaction forces between the particles through the layers instead of the error, as is 
the case in the standard MSE criterion case. For simplicity, consider the unweighted 
potential of the error as the cost function. For multi-output situations, we simply sum 
the potentials of the error signals from each output. Assume the MLP has l layers with 
mo processing elements (PE) in the oth layer. We denote the input vector with layer 
index zero. Let o

jiw  be the weight connecting the ith input to the jth output in the oth 

layer. Let )(sv o
j  be the synapse potential of the jth PE at oth layer corresponding to the 

input sample x(s), where s is the sample index. Let ϕ (.) be the sigmoidal nonlinearity 
of the MLP, same for all PEs, including the output layer. Assume v(.) is the potential 
function of choice and we have N training samples. The total energy of the error 
particles, where )(tek is the error at the kth output for training sample t is then 
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In order to save space, we skip the derivation and present the algorithm. It suffices to 
tell that the derivation of the algorithm follows the same lines as the derivation of the 
standard backpropagation, which can be found in numerous textbooks on neural 
networks [1]. In the algorithm below, η is the learning rate and (.)ϕ ′  is the derivative 
of the MLP’s sigmoid function.  

Algorithm. Let the interaction force acting on sample s due to the potential field of 
sample t be ))()(())(|)(( tesevteseF jjjj −′=  in the jth output node of the MLP. 

These interactions will minimize the energy function in (10). 
1. Evaluate local gradients for the output layer for s,t=1,…,N and j=1,…,m l using 
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2. For layer index o going down from l-1 to 1 evaluate the local gradients 
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3. For each layer index o from 1 to l evaluate the weight updates (to minimize V) 
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Notice that for the squared error criterion with 2)( ξξ =v , the interaction force 

becomes ))()((2))(|)(( teseteseF jjjj −=  and the algorithm reduces to the 

backpropagation of error values. 
 
 
4. Discussion 
 
Adaptive systems research is traditionally motivated by the optimization of suitable 
cost functions and is centered on the investigation of learning algorithms that achieve 
the desired optimal solution. In this paper, inspired by the idea of information 
theoretic learning through particle interactions, we have proposed an alternative 
approach to adaptation and learning. This new approach allows us to regard this 
process in analogy with interacting particles in a force field in physics. Besides the 
intellectual appeal of this viewpoint provides us for further theoretical study on 
learning, it may be promising in designing real systems that utilize physical forces to 
change its state and eventually adapt to its environment to need. It might also 
fascilitate self-organization in distributed systems, through pairwise interactions. 
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