

Flow computations on imprecise terrains

Citation for published version (APA):
Driemel, A., Haverkort, H. J., Löffler, M., & Silveira, R. I. (2013). Flow computations on imprecise terrains.
Journal of Computational Geometry, 4(1), 38-78.

Document status and date:
Published: 01/01/2013

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

Download date: 01. Jul. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357338186?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.tue.nl/en/publications/flow-computations-on-imprecise-terrains(702214c6-40c8-448b-bb2e-cda66b551bb8).html

JoCG 4(1), 38–78, 2013 38

Journal of Computational Geometry jocg.org

FLOW COMPUTATIONS ON IMPRECISE TERRAINS

Anne Driemel,∗Herman Haverkort,†Maarten Löffler,‡Rodrigo I. Silveira§

Abstract. We study water flow computation on imprecise terrains. We consider two
approaches to modeling flow on a terrain: one where water flows across the surface of a
polyhedral terrain in the direction of steepest descent, and one where water only flows along
the edges of a predefined graph, for example a grid or a triangulation. In both cases each
vertex has an imprecise elevation, given by an interval of possible values, while its (x, y)-
coordinates are fixed. For the first model, we show that the problem of deciding whether
one vertex may be contained in the watershed of another is NP-hard. In contrast, for the
second model we give a simple O(n log n) time algorithm to compute the minimal and the
maximal watershed of a vertex, or a set of vertices, where n is the number of edges of the
graph. On a grid model, we can compute the same in O(n) time.

Rose knew almost everything that water can do,
there are an awful lot when you think what.

Gertrude Stein, The World is Round.

1 Introduction

Simulating the flow of water on a terrain is a problem that has been studied for a long time
in geographic information science (gis), and has received considerable attention from the
computational geometry community due to the underlying geometric problems [7, 8, 21].
It can be an important tool in analyzing flash floods for risk management [2], for stream
flow forecasting [18], in the general study of geomorphological processes [5], and it could
contribute to obtaining more reliable climate change predictions [27].

When modeling the flow of water across a terrain, it is generally assumed that
water flows downward in the direction of steepest descent. It is common practice to compute
drainage networks and catchment areas directly from a digital elevation model of the terrain.
Most hydrological research in gis models the terrain surface with a grid in which each cell
can drain to one or more of its eight neighbors (e.g. [26]). This can also be modeled
as a computation on a graph, in which each node represents a grid cell and each edge

∗Dept. of Information and Computing Sciences, Utrecht Univ., Netherlands, anne@cs.uu.nl. A.D. is
supported by the Netherlands Organisation for Scientific Research (NWO) under project no. 612.065.823.
†Dept. of Mathematics and Computer Science, Eindhoven Univ. of Technology, Netherlands, cs.herman@

haverkort.net.
‡Dept. of Information and Computing Sciences, Utrecht Univ., Netherlands, m.loffler@uu.nl.M.L. was

supported by the U.S. Office of Naval Research under grant N00014-08-1-1015, and by the Netherlands
Organisation for Scientific Research (NWO) under grant 639.021.123.
§Dept. de Matemàtica Aplicada II, Universitat Politècnica de Catalunya, Spain, rodrigo.silveira@

upc.edu. R.S. is supported by the FP7 Marie Curie Actions Individual Fellowship PIEF-GA-2009-251235.

http://jocg.org/

JoCG 4(1), 38–78, 2013 39

Journal of Computational Geometry jocg.org

Figure 1: Left: An imprecise terrain. Each vertex of the triangulation has a elevation
interval (gray). Center: a realization of the imprecise terrain. Right: the same realization
together with the highest and lowest possible realizations of the imprecise terrain.

represents the adjacency of two neighbors in the grid. Alternatively, one could use an
irregular network in which each node drains to one or more of its neighbors, which may
reduce the required storage space by allowing less interesting parts of the terrain to have
a lower sampling density. We will refer to this as the network model, and we assume that,
from every node, water flows down along the steepest incident edge. Assuming the elevation
data is exact, drainage networks can be computed efficiently in this model (e.g. [6]). In
computational geometry and topology, researchers have studied flow path and drainage
network computations on triangulated polyhedral surfaces (e.g. [8, 9, 20]). In this model,
which we call the surface model, the flow of water can be traced across the surface of a
triangle. This avoids creating certain artifacts that arise when working with grid models.
However, the computations on polyhedral surfaces may be significantly more difficult than
on network models [10].

Naturally, all computations based on terrain data are subject to uncertainty, which
comes from various sources like measurement, interpolation, and numerical errors. The
gis community has long recognized the importance of dealing with uncertainty explicitly,
in particular for hydrological modeling [1, 29]. A natural approach is to model the eleva-
tion at a point of the terrain using stochastic methods. However, the models available in
the hydrology literature are unsatisfactory [3, 22, 25] and computationally expensive [28].
A particular challenge is posed by the fact that hydrological computations can be extremely
sensitive to small elevation errors [15, 19]. While most of these studies have been done in
the network model, we note that there also exists work on the behavior of watersheds on
noisy terrains in the surface model [14].

A non-probabilistic model of imprecision that is often used in computational geom-
etry consists in representing an imprecise attribute (such as location) by a region that is
guaranteed to contain the true value. This approach has also been applied to polyhedral
terrains (e.g. [13, 17]), replacing the exact elevation of each surface point by an imprecision
interval (see Figure 1). In this way, each terrain vertex does not have one fixed elevation, but
a whole range of possible elevations which includes the true elevation. Choosing a concrete
elevation for each vertex results in a realization of the imprecise terrain. The realization
is a (precise) polyhedral terrain. Since the set of all possible realizations is guaranteed to
include the true (unknown) terrain, one can now obtain bounds on parameters of the true
terrain by computing the best- and worst-case values of these parameters over the set of all

http://jocg.org/

JoCG 4(1), 38–78, 2013 40

Journal of Computational Geometry jocg.org

possible realizations. Note that we assume that there is only an error in the z-coordinate
(and not in the x, y-coordinates). This is partially motivated by the fact that commercial
terrain data suppliers often only report elevation error [11]. However, it is also a natural
simplification of the model, since the true terrain needs to have an elevation at any exact
position in the plane.

In this paper we apply this model of imprecise terrains to problems related to the
simulation of water flow, both on terrains represented by surface models and on terrains
represented by network models. One of the most fundamental questions one may ask about
water flow on terrains is whether water flows from a point p to another point q. In the
context of imprecise terrains, reasonable answers may be “definitely not”, “possibly”, and
“definitely”. The watershed of a point in a terrain is the part of the terrain that drains to
this point. Phrasing the same question in terms of watersheds leads us to introduce the
concepts of potential (maximal) and persistent (minimal) watersheds.

Results In Section 3 we show that the problem of deciding whether water can flow between
two given points in the surface model is NP-hard. Fortunately, the situation is much better
for the network model, and therefore as a special case also for the D-8 grid model which is
widely adopted in gis applications. We present various results using this model in Section 4
and Section 5. In Section 4.1 we present an algorithm to compute the potential watershed
of a point. On a terrain with n edges, our algorithm runs in O(n log n) time; for grid
models the running time can even be improved to O(n). We extend these techniques and
achieve the same running times for computing the potential downstream area of a point
in Section 4.2 and its persistent watershed in Section 4.3. In order to be able to extend
these results in the network model, we define a certain class of imprecise terrains which we
call regular in Section 5.1. We discuss an algorithm that turns a non-regular terrain into
a regular one in Section 5.2. We prove that persistent watersheds satisfy certain nesting
conditions on regular terrains in Section 5.3. This leads to efficient computations of fuzzy
watershed boundaries in Section 5.4, and to the definition of the fuzzy ridge in Section 5.5,
which delineates the persistent watersheds of the “main” minima of a regular terrain and
which is equal to the union of the areas where the potential watersheds of these minima
overlap. We can compute this structure in O(n log n) time (see Theorem 6). We conclude
the paper with a discussion of open problems in Section 6.

2 Preliminaries

In this section we give the definition of imprecise terrains and realizations and discuss the
two flow models used in this paper.

2.1 Basic de�nitions and notation

We define an imprecise terrain T as a possibly non-planar geometric graph G with nodes
V ⊂ IR2 and edges E ⊆ V × V , where each node v ∈ V has an imprecise third coordinate,
which represents its elevation . We denote the bounds of the elevation of v with low(v) and

http://jocg.org/

JoCG 4(1), 38–78, 2013 41

Journal of Computational Geometry jocg.org

high(v). A realization R of an imprecise terrain T consists of the given graph together
with an assignment of elevations to nodes, such that for each node v its elevation elevR(v)
is at least low(v) and at most high(v). We denote with R− the realization such that
elevR−(v) = low(v) for every node v and, similarly, we denote with R+ the realization such
that elevR+(v) = high(v). The set of all realizations of an imprecise terrain T is denoted RT .

For any set of nodes P ⊆ V , we define the neighborhood of P as the set of nodes
N(P) = {s : s /∈ P ∧ ∃ t ∈ P : (s, t) ∈ E}. Now, consider a realization R of an imprecise
terrain as defined above. A set of nodes P ⊆ V constitutes a local minimum in R if the
following conditions are met: (i) the subgraph of G induced by P is connected, (ii) all nodes
of P have the same elevation according to R, and (iii) their elevation is strictly lower than
the elevation of any node in N(P) according to R. Likewise, a local maximum is a set of
nodes at the same elevation of which the neighborhood is strictly lower.

2.2 A model of discrete water
ow

Consider a realization R of an imprecise terrain as defined above. If water is only allowed to
flow along the edges of the realization, then the realization represents a network. Therefore
we refer to this model of water flow as the network model . Below, we state more precisely
how water flows in this model and give a proper definition of the watershed. This model or
variations of it have been used before, for example in [6, 23, 26].

The steepness of descent (slope) of an edge (p, q) ∈ E in realization R is defined
as σR(p, q) = (elevR(p) − elevR(q))/|pq|, where |pq| is the Euclidean distance between p
and q. The node q is a steepest-descent neighbor of p in R, if and only if σR(p, q) is
non-negative and maximal over all neighbors q of p. In the realization R, water that arrives
in p will continue to flow to each of its steepest-descent neighbors, unless p constitutes a
local minimum. If there exists a local minimum P 3 p, then the water that arrives in p will
flow to the neighbors of p in P and eventually reach all the nodes of P , but it will not flow
further to any node outside the set P . If water from p reaches a node q ∈ V then we write
p→
R
q (“p flows to q in R”), and for technical reasons we define p→

R
p for all p and R.

The discrete watershed of a node q in a realization R is defined as the union of
nodes that flow to q in R, that is WR(q) := {p : p→

R
q}. Similarly, we define the discrete

watershed of a set of nodes Q in this realization as WR(Q) :=
⋃
q∈QWR(q).

Consider the graph G of the imprecise terrain. A path π in G is a flow path for a
realization R if it does not self-intersect (any node appears on the path at most once) and
each node on the path (except the first) is a steepest-descent neighbor of its predecessor on
the path. For any pair of nodes p, q in π, we write p π→ q if π contains p and q in this order.
For any set of realizations S ⊆ RT , we denote with Π∗(S) the set union of all flow paths
induced by a realization in S. We define a maximal flow path as a flow path that ends
in a local minimum and cannot continue without intersecting itself.

http://jocg.org/

JoCG 4(1), 38–78, 2013 42

Journal of Computational Geometry jocg.org

2.2.1 Flow paths are stable

This subsection is a note on flow paths, which we defined for the network model above. We
define when a flow path is stable and argue that any flow path induced by a realization
in RT is stable with respect to some ε-neighborhood of RT . Intuitively, the analysis in this
section shows that the flow paths considered in our model are never the result of an isolated
degenerate situation, but could also exist if the estimated elevation intervals of the vertices
would be slightly different. This may serve as a justification or proof of soundness of the
network model.

For two realizations R,R′ ∈ RT , we call R′ an ε-perturbation of R if for all nodes
v ∈ V it holds that | elevR(v)− elevR′(v)| ≤ ε. For a set of realizations S, let Sε denote the
union of S with the ε-perturbations of elements of S. We say that a flow path π is stable
with respect to S if for some ε > 0 the flow path exists in any ε-perturbation of some R ∈ S.
In this context, we call R a perturbation center of π.

Lemma 1. Given a set of realizations S and any value δ > 0, it holds that any flow path π
induced by a realization in S is stable with respect to Sδ.

Proof. We call a realization which does not contain horizontal edges and in which any node
has at most one steepest-descent neighbor non-ambiguous, similarly, a realization for
which any of these properties does not hold is called ambiguous. Any flow path π induced
by a non-ambiguous realization R ∈ S is stable with perturbation center R, since we can
pick ε small enough such that the order of the slopes of the edges does not change. Now, let
π = p1, p2, . . . , pk be a flow path from p1 to pk which is induced by an ambiguous realization
R ∈ S. We lower each node pi by δ/2+(iδ)/(4k) and perturb the remaining vertices by some
value smaller than ε/4. Since π is non-intersecting, we create a non-ambiguous realization
R′ ∈ Sδ in this way which also induces π. This proves the claim.

2.3 A model of continuous water
ow

Consider an imprecise terrain, where the graph that represents the terrain forms a planar
triangulation in the (x, y)-domain. Any realization of this terrain is a polyhedral terrain
with a triangulated surface. If we assume that the water which arrives at a particular
point p on this surface will always flow in the true direction of steepest descent at p across
the surface, possibly across the interior of a triangle, then we obtain a continuous model
of water flow. Since the steepest-descent paths do not necessarily follow along the edges of
the graph, but instead lead across the surface formed by the graph, we call this model the
surface model . This model has also been used before, for example in [8, 9, 20].

Since, as we will show in the next section, it is already NP-hard to decide whether
water from a point p can potentially flow to another point q, we will focus on the network
model in the rest of the paper, and we do not formally define watersheds in the surface
model. Therefore, we will simply use the term “watershed” to refer to discrete watersheds
in this paper.

http://jocg.org/

JoCG 4(1), 38–78, 2013 43

Journal of Computational Geometry jocg.org

3 NP-hardness in the surface model

In the surface model water flows across the surface of a polyhedral terrain; refer to Sec-
tion 2.3 for the details of the model. In this section we prove that it is NP-hard to decide
whether water potentially flows from a point s to another point t in this model. The re-
duction is from 3-SAT; the input is a 3-CNF formula with n variables and m clauses. We
first present the general idea of the proof, then we proceed with a detailed description of
the construction, and finally we prove the correctness.

3.1 Overview of the construction

The main idea of the NP-hardness construction is to encode the variables and clauses of
the 3-SAT instance in an imprecise terrain, such that a truth assignment to the variables
corresponds to a realization—i.e., an assignment of elevations—of this terrain. If and only
if all clauses are satisfied, water will flow from a certain starting vertex s to a certain target
vertex t. We first introduce the basic elements of the construction: channels and switch
gadgets.

Channels We can mold channels in the fixed part of the ter-
rain to route water along any path, as long as the path is
monotone in the direction of steepest descent on the terrain.
We do this by increasing the elevations of vertices next to the
path, thus building walls that force the water to stay in the
channel. We can end a channel in a local minimum anywhere
on the fixed part of the terrain, if needed.

Switch gadgets The general idea of a switch gadget is that it provides a way for water to
switch between channels. A simple switch gadget has one incoming channel, three outgoing
channels, and two control vertices a and b, placed on the boundary of the switch. The
water from the incoming channel has to flow across a central triangle, which is connected
to a and b. Depending on their elevations, the two vertices a and b divert the water from
the incoming channel to a particular outgoing channel and thereby “control” the behavior
of the switch gadget. This is possible, since the slopes of the central triangles, which the
water needs to pass, depend on the elevations of a and b and those two are the only vertices
with imprecise elevations. The elevations of the remaining vertices which define the gadget
are fixed. Refer to Figure 2 for an illustration.

We can also build switches for multiple incoming channels. In this case, every
incoming channel has its own dedicated set of outgoing channels, and it is also controlled
by only two vertices, see Figure 3. Note that we can lead the middle outgoing channel to
a local minimum as shown in the examples and, in this way, ensure that, if any water can
pass the switch, the elevations of its control vertices are at unambiguous extremal elevations.
Depending on the particular construction of the switch, we may want them to be at opposite
extremal elevations or at corresponding extremal elevations.

http://jocg.org/

JoCG 4(1), 38–78, 2013 44

Journal of Computational Geometry jocg.org

a

b

a

b

a

b

Figure 2: Three different states of a simplistic switch gadget.

a

b

a

b

Figure 3: Sketch of a switch with multiple incoming channels.

Global layout The global layout of the construction is depicted in Figure 4. The construc-
tion contains a grid of m× n cells, in which each clause corresponds to a column and each
variable to a row of the grid. The grid is placed on the western slope of a “mountain”;
columns are oriented north-south and rows are oriented east-west. We create a system of
channels that spirals around this mountain, starting from s at the top and ending in t at
the bottom of the mountain. We ensure that in no realization, water from s can escape
this channel system and, if it reaches t, we know that it followed a strict course that passes
through every cell of the grid exactly once, column by column from east to west, and within
each column, from north to south. Embedded in this channel system, we place a switch
gadget in every cell of the grid, which allows the water from s to “switch” from one chan-
nel to another within the current column depending on the elevations of the vertices that
control the gadget. In this way, the switch gadgets of a row encode the state of a variable.
To ensure that the state of a variable is encoded consistently across a row of the grid, the
switch gadgets in a row are linked by their control vertices. Every column has a dedicated
entry point at its north end, and a dedicated exit point at its south end. If and only if
water flows between these two points, the clause that is encoded in this column is satisfied
by the corresponding truth assignment to the variables. The slope of the mountain is such
that columns descend towards the south, and the exit point of each column (except the
westernmost one) is higher than the entry point of the adjacent column to the west; water
can flow between these points through a channel around the back of the mountain. The
easternmost column’s entry point is the starting vertex s, and the westernmost column’s
exit point is the target vertex t.

http://jocg.org/

JoCG 4(1), 38–78, 2013 45

Journal of Computational Geometry jocg.org

s

N E

SW

xy

t

x4

x3

x2

x1 ∨ ¬x2 ∨ x4

x1

Figure 4: Left: Global view of the NP-hardness construction, showing the grid on the
mountain slope. The fixed parts are shown in gray, the variable parts are shown light
yellow and the imprecise vertices are filled light green; Right: Detail of a clause, which
forms one of the columns of the grid.

Clause columns To encode each clause, we connect the switch gadgets in a column of
the global grid by channels in a tree-like manner. By construction, water will arrive in a
different channel at the bottom of the column for each of the eight possible combinations
of truth values for the variables in the clause. This is possible because a switch gadget can
switch multiple channels simultaneously. We let the channel in which water would end up if
the clause is not satisfied lead to a local minimum; the other seven channels merge into one
channel that leads to the exit point of the clause. The possible courses that water can take
will also cross switch gadgets of variables that are not part of the clause: in that case, each
course splits into two courses, which are merged again immediately after emerging from the
switch gadget. Figure 4 (right) shows an example.

Sloped switch gadgets Since the grid is placed on the western slope of a mountain, water
on the central triangle of a switch will veer off towards the west, regardless of the elevations
of its control vertices. However, as we will see, we can still design a working switch gadget
in this case. Recall that we link the switch gadgets of a variable row by their control
vertices, such that each switch gadget shares one control vertex with its neighboring cell
to the west and one with its neighboring cell to the east. As mentioned before, such a row
encodes the state of a particular variable. We say that it is in a consistent state if either all
control vertices of the switches are high or all control vertices are low. Thus, we will use the
following assignment of truth values to the elevations of the control vertices of our switch
gadgets: both vertices set to their highest elevation encodes true; both vertices set to their
lowest elevation encodes false; other combinations encode confused. Depending on the truth
value encoded by the elevations of the imprecise vertices, water that enters the gadget will
flow to different channels. The channels in which the water ends up when the gadget reads
confused always lead to a local minimum. For the other channels, their destination depends
on the clause. In Figure 5 you can see a sketch of a sloped switch gadget which works the
way described above.

http://jocg.org/

JoCG 4(1), 38–78, 2013 46

Journal of Computational Geometry jocg.org

false true confused

Figure 5: Illustration of a sloped switch gadget similar to the one used in the final con-
struction. The final gadget has multiple incoming channels, which is not shown in this
figure.

3.2 Details of the construction

Recall that we are given a 3-SAT instance with n variables and m clauses. The central part
of the construction, which will contain the gadgets, consists of a grid of n rows—one for each
variable—and m columns—one for each clause. We denote the width of each row, measured
from north to south, by B = 400, and the width of a column, measured from west to east,
by A = max((n+1) ·B, 4000). Ignoring local details, on any line from north to south in this
part of the construction, the terrain descends at a rate of dz/dy = 1, and on any line from
east to west, it descends at a rate of dz/dx = 1; thus we have z = x+ y. Observe that each
column measures nB < A from north to south; thus the southern edge of each column is at
a higher elevation than the northern edge of the next column to the west. The dedicated
entrance and exit points of column 1 ≤ j ≤ m are placed at (jA− 1

2A,nB, jA− 1
2A+ nB)

and (jA − 1
2A, 0, jA − 1

2A), thus allowing the construction of a descending channel from
each column’s exit point to the entry point of the column to the west.

For every variable vi, 1 ≤ i ≤ n, we place m+1 imprecise vertices vij , for 0 ≤ j ≤ m,
in row i, on the boundaries of the columns corresponding to the m clauses. Vertex vij has
x-coordinate jA, y-coordinate iB − 1

2B, and an imprecise z-coordinate [jA + iB − 1
2B,

jA+ iB− 1
2B+ 20]. On every pair of imprecise vertices vi(j−1), vij we build a switch gadget

Gij ; thus there is a switch gadget for each variable/clause pair. The coordinates of the
vertices in each gadget, relative to the coordinates of vi(j−1), can be found in Figure 6.

Switch gadget construction We use the sloped switch gadget described above and illus-
trated in Figure 5. Our switch gadget occupies a rectangular area that is A wide from west

http://jocg.org/

JoCG 4(1), 38–78, 2013 47

Journal of Computational Geometry jocg.org

0 1
2A A

40

0

−1

A+ 20β

−1

20α

A− 1

z = 40 A+ 40

1
1−α/2

1
1+20α

1
1−β/2

1
1+20β

a cb

d e

f g h

sij1 sij2 sij3 sij4

1
2A+ 901

2A− 172

tij1 cij1 fij1 tij2 cij2 fij2 tij3 cij3 fij3 tij4 cij4 fij4

1+20(β−α)/A
1+10(α+β)

1
2A− 1

1+20(β−α)/A
1−(α+β)/4

1
2A+ 40

x

y

Figure 6: Distances and gradients on a connector gadget. All coordinates are relative to
the lowermost position of the control vertex d = vi(j−1). The other control vertex is e = vij .
Thus, e and d are the only imprecise vertices. The x- and y-coordinates of the vertices are
indicated on the axes. The elevations of the key vertices are written next to the vertices.
The elevations of the control vertices are expressed as a function of α, β ∈ [0, 1]. The
directions of steepest descent on the different faces of the gadget (marked with arrows) are
expressed in the form dx/dy, as a function of α and β.

to east, and 41 wide from north to south. Its key vertices and their coordinates, relative
to each other, can be found in Figure 6. There are two imprecise vertices, d and e, with
elevation range [0, 20] and [A,A + 20], respectively—so in any realization, their elevations
have the form 20α and A+ 20β, respectively, where α, β ∈ [0, 1].

On the north edge of the gadget, there may be many more vertices, all collinear
with a, b and c. The vertices on the western half of the north edge are connected to the
western control vertex, and the vertices on the eastern half of the north edge are connected
to the eastern control vertex. In particular, each gadget Gij is designed to receive water
from four channels that arrive at four points sij1, sij2, sij3, sij4 on the north edge, close to b;
the coordinates of these points are sijk = (1

2A− 150 + 60k, 40, 1
2A− 110 + 60k).

On the south edge of the gadget, there is a similar row of vertices, all collinear with
f , g and h, that are connected to the control vertices. To the south, the gadget is connected
to twelve channels that catch all water that arrives at certain intervals on the south edge:
for each k ∈ {1, 2, 3, 4}, there is a western channel tijk catching all water arriving between
sijk − (82, 41, 123) and sijk − (77, 41, 118), a middle channel cijk catching all water arriving
between sijk − (77, 41, 118) and sijk − (44, 41, 85), and an eastern channel fijk catching all
water arriving between sijk − (44, 41, 85) and sijk − (39, 41, 80).

http://jocg.org/

JoCG 4(1), 38–78, 2013 48

Journal of Computational Geometry jocg.org

In a particular realization R, we define the switch gadget to be in a false state if
α = β = 0, in a true state if α = β = 1, and in a confused state if α ≤ 1

2 while β ≥ 1
2 , or

if α ≥ 1
2 while β ≤ 1

2 . As we will show below, in the true, false, and confused states the
gadget leads any water that comes in at any point sijk into tijk, fijk, and cijk, respectively.

We model the fixed part of the terrain such that the middle channels all lead to
local minima. The western and eastern channels correspond to a (partial) truth assignment
of the variables of the clause that is represented by the column that contains the gadget;
these channels lead to a local minimum or to the next row, as described below.

Constructing the clause columns Each clause is modeled in a column j by making certain
connections between the outgoing channels of each gadget to the dedicated entrance points
of the gadget in the next row. Observe that by our choice of B, the entrance point of
column j lies above all entrance points of Gnj , all outgoing channels of any gadget G(i+1)j

start at higher elevations than all entrance points of Gij , and all outgoing channels of G1j

start at an elevation higher than the exit point of the column. This ensures that all channels
described below can indeed be built as monotonously descending channels, so that water
can flow through it. We will now explain the connections which we use to build a clause.

Let p > q > r be the indices of the variables that appear in the clause. The water
courses modeling the clause start at the entry point of the column, from which any water
is led through a channel to entry point snj1 of gadget Gnj .

For i 6= {p, q, r}, k ∈ {1, 2, 3, 4}, we connect both tijk and fijk to s(i−1)jk (if i > 1)
or to the exit point of the column (if i = 1).

We connect tpj1 and fpj1 to s(p−1)j1 and s(p−1)j2, respectively. Thus, for i ∈ {q, ...,
p − 1}, water that enters Gij at sij1 and sij2 represents the cases that p is true and p is
false, respectively.

We connect tqj1, fqj1, tqj2 and fqj2 to s(q−1)j1, s(q−1)j2, s(q−1)j3 and s(q−1)j4, respec-
tively. Thus, for i ∈ {r, ..., q − 1}, water that enters Gij at sij1, sij2, sij3 and sij4 represents
the four different possible combinations of truth assignments to p and q, respectively.

The eight channels trj1, frj1, trj2, frj2, trj3, frj3, trj4, frj4 now represent the eight dif-
ferent possible combinations of truth assignments to the variables of the clause. The channel
that corresponds to the truth assignment that renders the clause false, is constructed such
that it ends in a local minimum. The other seven channels all lead to s(r−1)j1 (if r > 1) or
to the exit point of the clause column (if r = 1).

3.3 Analysis of
ow through a gadget

Below we will analyze where water may leave a gadget Gij after entering the gadget at
point sijk, with x-coordinate xk. In the discussion below, all coordinates are relative to the
lowermost position of the western control vertex of the gadget—refer to Figure 6, which
also shows the directions of steepest descent (i.e. the surface gradients, expressed as dx/dy)
on each face of the gadget.

First observe that in any case, the directions of steepest descent on 4abd, 4bce and

http://jocg.org/

JoCG 4(1), 38–78, 2013 49

Journal of Computational Geometry jocg.org

4bed are at least 1− 20/A ≥ 199/200 = 0.995 and at most (1 + 20/A)/(1/2) ≤ 201/100 =
2.01. Thus, when the water reaches y-coordinate 38, it will be at x-coordinate at least
xk − 4.02 and at most xk − 1.99.

Note that the line bd intersects the plane y = 38 at x = 1
2A− 1

40A ≤ 1
2A− 100, and

the line be intersects the plane y = 38 at x = 1
2A + 1

40A ≥ 1
2A + 100. By our choice of

coordinates for the entrance points sijk, we have |xk − 1
2A| ≤ 90; therefore the water will

be on 4bed when it reaches y = 38. Let gmax and gmin be the maximum and minimum
possible gradients dx/dy on 4bed, respectively. Thus, the water will reach the line de at
x-coordinate at least xk − 4.02− 38gmax and at most xk − 1.99− 38gmin.

Finally, the directions of steepest descent on4dgf , 4egh and4deg are more than 0
and less than 1 + 20/A ≤ 201/200 < 1.01. Thus, the water will reach the line fh at x-
coordinate more than xk − 5.03− 38gmax and less than xk − 1.99− 38gmin.

We will now consider five classes of configurations of the control vertices in the
gadget, and compute the interval of x-coordinates where water may reach the line fh in
each case.

• α = β = 1 (true state) In this case we have gmax = gmin = 2, so water will reach the
line fh within the x-coordinate interval (xk − 81.03, xk − 77.99), and thus it will flow
into channel tijk.

• α + β > 3
2 (true-ish state) In this case we have gmax ≤ (1 + 20/A)/(1/2) ≤ 2.01 and

gmin ≥ (1 − 20/A)/(1 − 3/8) ≥ 199/125 > 1.59. Thus water will reach the line fh
within the x-coordinate interval (xk − 81.41, xk − 62.41), and thus it will flow into
channel tijk or cijk.

• 1
2 ≤ α + β ≤ 3

2 (this includes all proper confused states) In this case we have gmax ≤
(1 + 20/A)/(1− 3/8) ≤ 201/125 < 1.61 and gmin ≥ (1− 20/A)/(1− 1/8) ≥ 199/175 >
1.13. Thus water will reach the line fh within the x-coordinate interval (xk −
66.21, xk − 44.93), and thus it will flow into channel cijk.

• α + β < 1
2 (false-ish state) In this case we have gmax ≤ (1 + 20/A)/(1 − 1/8) ≤

201/175 < 1.15 and gmin ≥ (1 − 20/A) ≥ 199/200 > 0.99. Thus water will reach the
line fh within the x-coordinate interval (xk − 48.73, xk − 39.61), and thus it will flow
into channel cijk or fijk.

• α = β = 0 (false state) In this case we have gmax = gmin = 1, so water will reach the
line fh within the x-coordinate interval (xk − 43.03, xk − 39.99), and thus it will flow
into channel fijk.

3.4 Correctness of the NP-hardness reduction

Lemma 2. If water flows from s to t in some realization, then there is a truth assignment
that satisfies the 3-CNF formula.

Proof. Water that starts flowing from s, which is the entrance point of the clause column m,
is immediately forced into a channel to entrance point snm1 of gadget Gnm. As calculated

http://jocg.org/

JoCG 4(1), 38–78, 2013 50

Journal of Computational Geometry jocg.org

above, any water that enters a gadget at one of its designated entrance points will leave
the gadget in one of its designated channels, which leads either to a local minimum, or to
a designated entrance point of the next gadget. Therefore, water from s can only reach t
after flowing through all switch gadgets.

Since all middle outgoing channels cijk lead to local minima, we know that if there
is a flow path from s to t, then the water from s is nowhere forced into a middle outgoing
channel. It follows that no gadget is in a proper confused state. As a consequence, in any
row, either all gadgets have their control vertices in the lower open half of their elevation
range, or all gadgets have their control vertices in the upper open half of their elevation
range. In the first case, all gadgets in the row are in a false-ish state, and any incoming
water from s leaves those gadgets in the same channels as if the gadgets were in a proper
false state. In the second case, all gadgets in the row are in a true-ish state, and any
incoming water from s leaves those gadgets in the same channels as if the gadgets were in
a proper true state.

We can now construct a truth assignment A to the variables, in which each variable
is true if the control vertices in the corresponding row are in the upper halves of their
elevation ranges, and false otherwise. It follows from the way in which channel networks
in clause columns are constructed, that in each clause column, water will flow into one of
the seven channels that corresponds to a truth assignment that satisfies the corresponding
clause—otherwise the water would not reach t. Therefore, A satisfies each clause, and thus,
the complete 3-CNF formula.

Lemma 3. If there is a truth assignment to the variables that satisfies the given 3-CNF
formula, then there is a realization of the imprecise terrain in which water flows from s to t.

Proof. We set all control vertices in rows corresponding to true variables to their highest
positions and all control vertices in rows corresponding to false variables to their lowest
positions. One may now verify that, by construction, in each clause column water from the
column’s entry point will flow into one of the seven channels that lead to the column’s exit
point, and thus, water from s reaches t.

Thus, 3-SAT can be reduced, in polynomial time, to deciding whether there is a
realization of T such that water can flow from s to t. We conclude that deciding whether
there exists a realization of T such that water can flow from s to t is NP-hard.

Theorem 1. Let T be an imprecise triangulated terrain, and let s and t be two points on
the terrain. Deciding whether there exists a realization R ∈ RT such that p→

R
q is NP-hard.

4 Watersheds in the network model

In the network model we assume that water flows only along the edges of a realization.
More specifically, water that arrives in a node p continues to flow along the steepest-descent
edges incident to p, unless p is a local minimum. For a formal definition of the watershed
and flow paths please refer to Section 2.2.

http://jocg.org/

JoCG 4(1), 38–78, 2013 51

Journal of Computational Geometry jocg.org

4.1 Potential watersheds

The potential watershed of a set of nodes Q in a terrain T is defined as

W∪(Q) :=
⋃

R∈RT

⋃

q∈Q
WR(q),

which is the union of the watersheds of Q over all realizations of T . This is the set of nodes
from which there exists a flow path to a node of Q in some realization. With slight abuse
of notation, we may also write W∪(q) to denote the potential watershed of a single node q.

4.1.1 Canonical realizations

We prove that for any given set of nodesQ in an imprecise terrain, there exists a realizationR
such that WR(Q) = W∪(Q). For this we introduce the notion of the overlay of a set of
watersheds in different realizations of the terrain. Informally, the overlay is a realization
that sets every node that is contained in one of these watersheds to the lowest elevation it
has in any of these watersheds.

Definition 1. Given a sequence of realizations R1, ..., Rk and a sequence of nodes q1, ..., qk,
the watershed-overlay of WR1(q1), ...,WRk

(qk) is the realization R such that for every
node v, we have that elevR(v) = high(v) if v /∈ ⋃WRi(qi) and otherwise

elevR(v) = min
i:v∈WRi

(qi)
elevRi(v).

Note that we allow ourselves a slight abuse of wording and notation here: the input
to the watershed-overlay operation is not a set of watersheds, but a sequence of realizations
and a sequence of nodes.

Lemma 4. Let R be the watershed-overlay of WR1(q1), . . . ,WRk
(qk), and let Q =

⋃
1≤i≤k qi,

then WR(Q) contains WRi(qi), for any 1 ≤ i ≤ k.

Proof. Let u be a node of the terrain. We prove the lemma by induction on increasing
symbolic elevation to show that if u is contained in one of the given watersheds, then it
is also contained in WR(Q). To this end, we define level(Ri, u) as the smallest number of
edges on any path along which water flows from u to qi in Ri; if there is no such path,
then level(Ri, u) = ∞. Now we define the symbolic elevation of u, denoted elev∗(u), as
follows: if u is contained in any watershed WRi(qi), then elev∗(u) is the lexicographically
smallest tuple (elevRi(u), level(Ri, u)) over all i such that u ∈WRi(qi); otherwise elev∗(u) =
(high(u),∞).

Now consider a node u that is contained in one of the given watersheds. The base
case is that u is contained in Q, and in this case the claim holds trivially. Otherwise,
let Ri be a realization such that u ∈ WRi(qi) and such that (elevRi(u), level(Ri, u)) is
lexicographically smallest over all 1 ≤ i ≤ k. By construction, we have that elevRi(u) =
elevR(u). Consider a neighbor v of u such that (u, v) is a steepest-descent edge incident
on u in Ri, and level(Ri, v) is minimal among all such neighbors v of u. Since elevR(v) ≤

http://jocg.org/

JoCG 4(1), 38–78, 2013 52

Journal of Computational Geometry jocg.org

elevRi(v) ≤ elevRi(u) = elevR(u) and level(Ri, v) = level(Ri, u) − 1, it holds that v has
smaller symbolic elevation than u. Therefore, by induction, v ∈ WR(Q). If v is still a
steepest-descent neighbor of u in R, then this implies u ∈ WR(Q). Otherwise, there is a
node v̂ such that σR(u, v̂) > σR(u, v) ≥ 0. There must be an Rj such that v̂ ∈WRj (qj), since
otherwise, by construction of the watershed-overlay, we have elevR(v̂) = high(v̂) ≥ elevRi(v̂)
and thus, σRi(u, v̂) ≥ σR(u, v̂) > σR(u, v) ≥ σRi(u, v) and v would not be a steepest-descent
neighbor of u in Ri. Moreover, we have σR(u, v̂) > 0 and, therefore, elevR(v̂) < elevR(u),
so v̂ has smaller symbolic elevation than u. Therefore, by induction, also v̂ ∈ WR(Q) and
thus, u ∈WR(Q).

The above lemma implies that for any set of nodes Q, the watershed-overlay R of the
watersheds of the elements of Q in all possible realizations RT , would realize the potential
watershed of Q. That is, we have that W∪(Q) ⊆WR(Q) and since W∪(Q) is the union of all
watersheds of Q in all realizations, we also have that WR(Q) ⊆ W∪(Q), which implies the
equality of the two sets. Therefore, we call R the canonical realization of the potential
watershed W∪(Q) and we denote it with R∪(Q).

Note, however, that it is not immediately clear that the canonical realization always
exists: the set of possible realizations is a non-discrete set, and thus the elevations in
the canonical realization are defined as minima over a non-discrete set. Therefore, one may
wonder if these minima always exist. Below, we will describe an algorithm that can actually
compute the canonical realization of any set of nodes Q; from this we may conclude that it
always exists.

4.1.2 Outline of the potential watershed algorithm

Next, we describe how to compute W∪(Q) and its canonical realization R∪(Q) for a given
set of nodes Q. Note that for all nodes p /∈W∪(Q), we have, by definition of the canonical
realization, elevR∪(Q)(p) = high(p). The challenge is therefore to compute W∪(Q) and the
elevations of the nodes of W∪(Q). Below we describe an algorithm that does this.

The idea of the algorithm is to compute the nodes of W∪(Q) and their elevations
in the canonical realization in increasing order of elevation, similar to the way in which
Dijkstra’s shortest path algorithm computes distances from the source. The complete al-
gorithm is laid out in Algorithm 1. The correctness and running time of the algorithm are
proved in Theorem 2. A key ingredient of the algorithm is a subroutine, Expand(q′, z′),
which is defined as follows.

Definition 2. Let Expand(q′, z′) denote a function that returns for a node q′ and an
elevation z′ ∈ [low(q′), high(q′)] a set of pairs of nodes and elevations, which includes the
pair (p, z) if and only if p ∈ N(q′), there is a realization R with elevR(q′) ∈ [z′, high(q′)]
such that p→

R
q′, and z is the minimum elevation of p over all such realizations R.

http://jocg.org/

JoCG 4(1), 38–78, 2013 53

Journal of Computational Geometry jocg.org

Algorithm 1 PotentialWS(Q)

1: for all q ∈ Q do enqueue (q, z) with key z = low(q)
2: while the queue is not empty do
3: Extract a pair (q′, z′) with minimum key z′ from the queue
4: if q′ is not already in the output set then
5: Output q′ with elevation z′

6: Enqueue each (p, z) ∈ Expand(q′, z′)
7: end if
8: end while

4.1.3 Expansion of a node using the slope diagram

Before presenting the algorithm for the expansion of a node, we discuss a data structure
that allows us to do this efficiently.

Definition 3. For given elevations of the neighbors of a node p, we define the slope
diagram of p as the set of points q̂i = (δi, zi) such that qi is a neighbor of p, zi is its
elevation and δi is its distance to p.

The intuition behind the slope diagram is the following. For a given elevation z of p,
let p̂ = (0, z) be a point on the vertical axis of the slope diagram. Note that for any neighbor
qi, the slope of the line through p and qi is the same as the slope of the line through p̂ and
q̂i in the slope diagram. If qi is a steepest descent neighbor of p under the given assignment
of elevations, then all other neighbors q̂j lie above or on the line through p̂ and q̂i in the
slope diagram.

Now, let q1, q2, ... be a subset of the neighbors of p indexed such that q̂1, q̂2, ... appear
in counter-clockwise order along the boundary of the convex hull of the slope diagram,
starting from the leftmost point and continuing to the lowest point. We ignore neighbors
that do not lie on this lower left chain. Let Hi be the halfplane in the slope diagram that
lies above the line through q̂i and q̂i+1. Let U(p) be the intersection of these halfplanes
H1, H2, ... with the halfplane to the right of the vertical line through the leftmost point,
and the halfplane above the horizontal line through the bottommost point of the convex
chain; see the shaded area in Figure 7.

The tangent of U(p) through p̂ in the slope diagram passes through exactly the
neighbors of p which are steepest descent neighbors of p. If U(p) does not have a tangent
through p, then p is a local minimum.

For a neighbor p of q′, we can now compute the elevation of p as it should be returned
by Expand(q′, z′) as follows. We use the slope diagram of p with the neighbors of p set to
their highest position (that is, for a neighbor qi we use high(qi)) and compute the tangents
to U(p) which pass through the point q̂′ = (δ′, z′), where δ′ is the distance from q′ to p.
Assume for now that U(p) has two tangents through q̂′ and let [low ′, high ′] be the interval
where the two tangents intersect the vertical axis of the slope diagram. Lemma 5 below
implies that the lowest elevation that p can have in order to send flow via q′ to the watershed
is the lower endpoint of the interval I = [low(p), high(p)]∩ [low ′, high ′]. This is the elevation

http://jocg.org/

JoCG 4(1), 38–78, 2013 54

Journal of Computational Geometry jocg.org

q̂j

high(qi)

δi

q̂i

q̂′

low ′

U(p)high ′

Figure 7: Querying the slope diagram.

which we return for p in the output of Expand(q′, z′), unless the interval is empty. In the
latter case we omit p from the output.

Lemma 5. If q′ is at elevation z′, then the interval I = [low(p), high(p)] ∩ [low ′, high ′]
defines the elevations of p for which q′ can be the steepest descent neighbor of p.

Proof. Fix p at some arbitrary elevation z and let p̂ = (0, z) be its corresponding point
in the slope diagram. If z ∈ I, then all neighbors of p lie above or on the line through p̂
and q̂′ in the slope diagram. Thus, q′ is steepest descent neighbor for this configuration of
elevations. On the other hand, if there exists a configuration of the elevations of the other
neighbors of p, such that they lie above or on the line through p̂ and q̂′, then they also lie
above or on this line if we set them to their highest possible position. Thus, z would be
included in I in this case. We conclude that if and only if z ∈ [low ′, high ′] we can find a
configuration of the elevations of the neighbors of p, in which q′ is at elevation z′ and at
the same time q′ is the steepest descent neighbor of p.

We can compute the slope diagrams of all nodes with the neighbors set to their
highest positions in a preprocessing phase. During the main algorithm the tangents can
be computed via a binary search on the boundary of the convex hull in the slope diagram.
In the proof of the following lemma we describe the technical details of this procedure
more specifically. We also discuss the special cases where U(p) does not have two tangents
through q̂′.

Lemma 6. Given the slope diagrams of the neighbors of q′, we can compute the function
Expand(q′, z′) in time O(d log d′), where d is the node degree of q′, and d′ is the maximum
node degree of a neighbor of q′.

Proof. For each neighbor p of q′ we proceed as follows.

First, determine by binary search on the boundary of U(p), if the vertical line
through q̂′ intersects the boundary of U(p), and if it does, whether the intersection point
lies below q̂′. If it does, q̂′ lies in the interior of U(p). Then q′ can never be a steepest-descent
neighbor of p, and therefore p is not included in the result of Expand(q′, z′).

http://jocg.org/

JoCG 4(1), 38–78, 2013 55

Journal of Computational Geometry jocg.org

Otherwise q̂′ lies outside the interior of U(p) and we continue as follows. If q̂′ lies
on the vertical line that contains the left edge of U(p), we define high ′ =∞. Otherwise we
find, by binary search on the boundary of U(p), the corner q̂i that lies to left of the vertical
line through q̂′, such that the line through q̂′ and q̂i is tangent on U(p); let high ′ be the
vertical coordinate of the intersection of this tangent with the vertical axis. If q̂′ lies on or
below the horizontal line that contains the bottom edge of U(p), then we define low ′ = z′.
Otherwise we find, by binary search on the boundary of U(p), the corner q̂j that lies below

the horizontal line through q̂′, such that the line through q̂′ and q̂j is tangent on U(p); let
low ′ be the vertical coordinate of the intersection of this tangent with the vertical axis.

If low ′ > high(p) or high ′ < low(p), then the set of elevations that p could have while
having q′ as a steepest-descent neighbor is empty, and we do not include p in the result of
Expand(q′, z′). Otherwise we include p with elevation max(low(p), low ′).

All computations for a single neighbor p of q′ can be done in time logarithmic in the
degree of p, and thus, the function Expand(q′, z′) can be computed in time O(d log d′) in
total.

4.1.4 Correctness and running time of the complete algorithm

Theorem 2. After precomputations in O(n log n) time and O(n) space, the algorithm
PotentialWS(Q) computes the potential watershed W∪(Q) of a set of nodes Q and its
canonical realization R∪(Q) in time O(n log n), where n is the number of edges in the terrain.

Proof. The algorithm searches the graph starting from the nodes of Q. At each point in
time we have three types of nodes. Nodes that have been extracted from the priority queue
have a finalized elevation, a node that is currently in the priority queue but was never
extracted (yet) has a tentative elevation, other nodes have not been reached.

We will show that when (p, z) is first extracted from the priority queue in Algo-
rithm 1, p is indeed contained in the potential watershed of Q, and the elevation z is the
lowest possible elevation of p such that water flows from p to any node in Q in any realiza-
tion. To this end we use an induction on the points extracted, in the order in which they
are extracted for the first time. The induction hypothesis consists of two parts:

(i) There exists a realization R and q ∈ Q such that elevR(p) = z, and R induces a flow
path π from p to q which only visits nodes that have been extracted from the priority
queue.

(ii) There exists no realization R and q ∈ Q such that elevR(p) < z and p→
R
q.

If a node p ∈ Q is extracted with z = low(p), then the claims hold trivially. Note
that the first extraction from the priority queue must be of this type.

If p is extracted from the priority queue for the first time and p /∈ Q, then there
must be at least one node p′ that was extracted earlier, such that Expand(p′, z′), for some
elevation z′, resulted in p having the tentative elevation z. By induction, there exists a
realization R′ and q ∈ Q, such that elevR′(p

′) = z′, there is a flow path π from p′ to q in R′,
and π does not include p.

http://jocg.org/

JoCG 4(1), 38–78, 2013 56

Journal of Computational Geometry jocg.org

To see that part (i) of the induction hypothesis holds for p, we construct a realiza-
tion R by modifying R′ as follows: we set elevR(p) = z, and we set elevR(r) = high(r) for
each neighbor r of p that does not lie on π. In comparison to R′, only p and its neighbors
may have a different elevation in R. Since elevR(p) = z ≥ z′ is still at least as high as
the elevation of any node on π, water will still flow along the path π from p′ to q. By the
definition of Expand, none of the neighbors of p that are set at their highest elevation can
out-compete p′ as a steepest-descent neighbor of p. Therefore, in R, the node p must have
p′ or another node of π as a steepest-descent neighbor. Thus, water from p will flow onto
π, and thus, to q.

Next we show (ii). Suppose, for the sake of contradiction, there is a realization R
such that elevR(p) < z and there is a flow path from p to a node q ∈ Q. Consider two
consecutive nodes r and s on this path, such that r has not been extracted before but s has
been previously extracted (it may be that r = p and/or s ∈ Q). Note that flow paths
have to be monotone in the elevation. We argue that this path cannot stay below z in any
realization. Since r is a neighbor of s, it has been added to the priority queue during the
expansion of s. Let the tentative elevation of r that resulted from this expansion be zr. By
induction, since the elevation of s is finalized, zr is a lower bound on the elevation of r for any
flow path that follows the edge (r, s) and then continues to a node in Q in any realization.
However, zr ≥ z, since r was not extracted from the priority queue before p. Therefore, a
path from p to q that contains r with elevR(p) < z cannot exist. This proves (ii).

It follows that the algorithm outputs all nodes of W∪(Q) together with their eleva-
tions in R∪(Q).

As for the running time, computing and storing U(p) for a node p of degree d takes
O(d log d) time and O(d) space. Since the sum of all node degrees is 2n, computing and
storing U(p) for all nodes p thus takesO(n log dmax) time andO(n) space in total, where dmax

is the maximum node degree in the terrain. While running algorithm PotentialWS(Q),
each node is expanded at most once. By Lemma 6, Expand(q′, z′) on a node q′ of degree
d takes time O(d log dmax). Thus, again using that all nodes together have total degree 2n,
the total time spent on expanding is O(n log dmax) = O(n log n). Each extraction from the
priority queue takes time O(log n) and there are at most O(n) nodes to extract. Therefore
PotentialWS takes time O(n log n) overall.

For grid terrains, dmax = O(1), and thus, the slope diagram computations take only
O(1) time per expansion. In fact, since we only need to expand nodes that are in W∪(Q),
we could actually compute W∪(Q) in O(k log k) time, where k = |W∪(Q)|. Alternatively,
we can use the techniques from Henzinger et al. [16] for shortest paths to overcome the
priority queue bottleneck, and obtain the following result (details in Appendix A):

Theorem 3. The canonical realization of the potential watershed of a set of cells Q in an
imprecise grid terrain of n cells can be computed in O(n) time.

http://jocg.org/

JoCG 4(1), 38–78, 2013 57

Journal of Computational Geometry jocg.org

4.2 Potential downstream areas

Similar to the potential watershed of a set Q, we can define the set of points that potentially
receive water from a node in Q. Let the potential downstream area of Q be defined as:

D∪(Q) =
⋃

R∈RT

⋃

q∈Q
{p : q→

R
p}.

Naturally, a canonical realization for this set does not necessarily exist. Nevertheless, the
potential downstream area can be computed in a similar way as described in Section 4.1.
The difference is that we will now process nodes in decreasing order of their maximal
elevation such that they could still receive water from a node in Q. The algorithm is the
same as Algorithm 1, except that in the first line the nodes are enqueued with their highest
possible elevation, in line 3 we dequeue the current node with the largest key and we use
the following subroutine in line 6:

Definition 4. Let ExpandDown(q′, z′) denote a function that returns for a node q′ and
an elevation z′ ∈ [low(q′), high(q′)] a set of pairs of nodes and elevations, which includes
the pair (p, z) if and only if p ∈ N(q′), there is a realization R with elevR(q′) ∈ [low(q′), z′]
such that q′→

R
p, and z is the maximum elevation of p over all such realizations R.

Lemma 7. We can compute the function ExpandDown(q′, z′) in O(d log d) time, where
d is the node degree of q′.

Proof. Consider the slope diagram of q′ as defined in Section 4.1.3. Let z0 be min high(p)
over all neighbors p of q′; note that this is the vertical coordinate of the lowermost point
of U(q′). Let q̂′ = (0, z′) and consider its lower tangent to U(q′). Let p̂i be the corner of U(q′)
that intersects the tangent. Similarly, let p̂j be the corner of U(q′) that intersects the tangent
through (0,max(low(q′), z0)). Let W (q′) be the intersection of the halfplanes above these
two tangents and the halfplanes Hi, . . . ,Hj as defined in Section 4.1.3. Clearly, a neighbor
of q′ can have a steepest-descent edge from q′, for some elevation of q′ in [low(q′), z′], if
and only if its representative in the slope diagram lies below W (q′) or on the boundary
of W (q′). To compute the neighbors of q′ and their elevations as they should be returned
by ExpandDown(q′, z′), we test each neighbor p of q′ as follows. We find the point p̂′ =
(|pq′|, z) that is the projection from p̂ down onto the boundary of W (q′). If z ≥ low(p), we
return (p, z), otherwise we do not include p in the result.

The slope diagram with W (q′) can be computed O(d log d) time. The neighbors p
of q′ can be sorted by increasing distance from q′ in the xy-projection in O(d log d) time;
after that, the projections of all points p̂ can be computed in O(d) time in total by handling
them in order of increasing distance from q′ and walking along the boundary of W (q′)
simultaneously.

Theorem 4. Given a set of nodes Q of an imprecise terrain, we can compute the set D∪(Q)
in time O(n log n), where n is the number of edges in the terrain.

http://jocg.org/

JoCG 4(1), 38–78, 2013 58

Journal of Computational Geometry jocg.org

di

low(q′)

U(q′)

high(q′)

p̂i

p̂j

W (q′)
z′

Figure 8: Computations in the slope diagram

Proof. The algorithm searches the graph starting from the nodes of Q. As in the algorithm
for potential watersheds, nodes that have been extracted from the priority queue have a
finalized elevation; nodes that are currently in the priority queue but were never extracted
(yet) have tentative elevations. However, this time these elevations are not to be understood
as elevations of the nodes in a single realization, but simply as the highest known elevations
so that the nodes may be reached from Q.

The induction hypothesis is symmetric to the hypothesis used for potential water-
sheds: we show that when (p, z) is first extracted from the priority queue, p is indeed
contained in the potential downstream area of Q, and the elevation z is the highest possible
elevation of p such that water flows from any node in Q to p in any realization. Again, the
induction is on the points extracted, in the order in which they are extracted for the first
time. The induction hypothesis consists of two parts:

(i) There exists a realization R and q ∈ Q such that elevR(p) = z, there is a flow path π
from q to p in R, and π only visits nodes that have been extracted from the priority
queue.

(ii) There exists no realization R and q ∈ Q such that elevR(p) > z and q→
R
p.

If a node p ∈ Q is extracted with z = high(p), then the claims hold trivially. Note
that the first extraction from the priority queue must be of this type.

If p is extracted from the priority queue for the first time and p /∈ Q, then there
must be at least one node p′ that was extracted earlier, such that ExpandDown(p′, z′), for
some elevation z′, resulted in p having the tentative elevation z. By induction, there exists
a realization R′ and q ∈ Q, such that elevR′(p

′) = z′, there is a flow path π from q to p′

in R′, and π does not include p.

So far the proof is basically symmetric to that of Theorem 2. However, to see (i), we
need a different construction. Let z′′ ≤ z′ be an elevation such that water flows from p′ to p
in the realization R′′ with elevR′′(p

′) = z′′, elevR′′(p) = z, and elevR′′(p
′′) = high(p′′) for

all other nodes p′′. Note that z′′ exists by definition of ExpandDown. We now construct
a realization R by modifying R′ as follows: we set elevR(p′) = z′′, we set elevR(p) = z,
and we set elevR(r) = high(r) for each neighbor r of p′ such that r 6= p and r does not

http://jocg.org/

JoCG 4(1), 38–78, 2013 59

Journal of Computational Geometry jocg.org

lie on π. In comparison to R′, only two nodes in R may have lower elevation, namely p
and p′. Therefore, water will still flow along the path π from q until it either reaches p′,
or a node that now has p or p′ as a new steepest-descent neighbor. Thus, in any case,
there is a flow path from q to either p or p′. If the flow path reaches p′, then, by definition
of ExpandDown, none of the neighbors of p′ that are set at their highest elevation can
out-compete p as a steepest-descent neighbor of p′. Of course, the neighbors of p′ that lie
on π cannot out-compete p either, since these neighbors have elevation at least as high as p′.
Therefore, p must be a steepest-descent neighbor of p′ in R′, and water from p′ will flow
to p. Thus, in any case, water from q will reach p in R′ along a path that is a prefix of π,
followed by an edge to p. This proves part (i) of the induction hypothesis.

The proof of part (ii) is completely analogous to the proof of Theorem 2.

It follows that the algorithm outputs all nodes of D∪(Q). The running time analysis
is analogous to Theorem 2.

4.3 Persistent watersheds

In this section we will give a definition of minimal watersheds, and explain how to compute
them. Recall that the potential (maximal) watershed of a node set Q is defined as the set
of nodes that have some flow path to a node in Q. We can write this as follows:

W∪(Q) =
{
p : ∃ π ∈ Π(RT), π 3 p ∃ q ∈ Q : p π→ q

}
.

An analogous definition that would be consistent with the intuitive idea of a minimal wa-
tershed would be:

W∩(Q) =
{
p : ∀ π ∈ Π(RT), π 3 p ∃ q ∈ Q : p π→ q

}
.

This is the set of nodes p from which water flows to Q via any induced maximal flow path
that contains p. We call this the core watershed of Q.

However, this definition seems a bit too restrictive. Consider the case of a measuring
device with a constant elevation error, used to sample points in a gently descending valley.
It is possible that, by increasing the density of measurement points, we can create a region in
which imprecision intervals of neighboring nodes overlap in the vertical dimension, and thus
each node could become a local minimum in some realization. Thus, water flowing down
the valley could, theoretically, “get stuck” at any point, and thus, the minimal watershed
of any point q in the valley would contain nothing but q itself, see Box 4.1. 1

Nevertheless, it seems clear that any water flowing in the valley must eventually
reach q (possibly after flooding some local minima in the valley), since the water has nowhere
else to go. This leads to an alternative definition of a minimal watershed, after we rewrite
the definition of the core watershed slightly. Observe that the following holds for the

1Interestingly, there are some parallels to observations made in the gis literature. Firstly, Hebeler et
al. [15] observe that the watershed is more sensitive to elevation error in “flatlands”. Secondly, simula-
tions have shown that also potential local minima or “small sub-basins” can severely affect the outcome of
hydrological computations [19].

http://jocg.org/

JoCG 4(1), 38–78, 2013 60

Journal of Computational Geometry jocg.org

Box 4.1 The persistent and potential watersheds of a node q.

p

“potential local minimum”

upper terrain

lower terrain

realization

q

persistent watershed of q

potential watershed of q

s1

s2
s3

s4

s5

s6
s7

t1

t5 t6

t3

t4

An example of a 1.5 dimensional imprecise terrain, where the minimal watershed of q
can be arbitrarily reduced by oversampling. In fact, the minimal watershed of q only
contains q. Flow from any other node can get stuck in a potential local minimum. An
example is the node p. Note that p cannot be in the minimal watershed of any other
node. The complement of W∪(q) is the set S = {s1, ..., s7}. The q-avoiding potential

watershed W
\q
∪ (S) contains t1 (because water from t1 may flow directly to s5) and t5

and t6 (because water from t5 and t6 may flow to s6). The points q, t3, p, t4, t5 are not

in W
\q
∪ (S), as water from there can only reach S by first flowing to q before reaching s5.

Thus, {q, t3, p, t4, t5} constitutes the persistent watershed W ·∩(q).

complement of the core watershed.

(W∩(Q))c =
{
p : ∃ π ∈ Π(RT), π 3 p ¬∃ q ∈ Q : p π→ q

}

Thus, the core watershed of Q is the complement of the set of nodes p, for which
it is possible that water follows a flow path from p that does not lead to Q. Recall that
Π∗(RT) is the set of all, not necessarily maximal, flow paths over all realizations in RT .
Assume there exists a suitable set of alternative destinations S, such that we can rewrite
the above equation as follows:

(W∩(Q))c =
{
p : ∃ π ∈ Π∗(RT), π 3 p ∃ s ∈ S : (p π→ s) ∧ (π ∩Q = ∅)

}
.

Note that the right hand side is equivalent to the set:

W
\Q
∪ (S) :=

⋃

π∈Π∗(RT)

⋃

s∈S
{p : (p π→ s) ∧ (π ∩Q = ∅)} (1)

We call the set in Equation 1 the Q-avoiding potential watershed of a set of nodes S

and we denote it with W
\Q
∪ (S). This is the set of nodes that have a potential flow path to

a node s ∈ S that does not pass through a node of Q before reaching s.

http://jocg.org/

JoCG 4(1), 38–78, 2013 61

Journal of Computational Geometry jocg.org

It remains to identify the set of alternative destinations S. Since each flow path
can be extended until it reaches a local minimum, the set of potential local minima clearly

serves as such a set of destinations. Let V
\Q

min be the union of all sets P ⊆ V such that there
exists a realization in which all nodes of P have the same elevation, P is a local minimum,
and P ∩Q = ∅. However, it is also safe to include the nodes that do not have any flow path
to Q, which is the complement of the set W∪(Q). It follows for the core watershed:

W∩(Q) =
(
W
\Q
∪ (V

\Q
min ∪ (W∪(Q))c)

)c

Note that we can rewrite this as follows:

W∩(Q) =
(
W
\Q
∪ ((W∪(Q))c)

)c
\ W

\Q
∪ (V

\Q
min ∩W∪(Q))

Based on the above considerations we suggest the following alternative definition of
a minimal watershed.

Definition 5. The persistent watershed of a set of nodes Q is defined as

W ·∩(Q) :=
(
W
\Q
∪ ((W∪(Q))c)

)c
.

This is the complement of the set of nodes that have a potential flow path to a node
outside the potential watershed of Q without first passing through Q. An example can be
seen in Box 4.1: the persistent watershed of q consists of the nodes that can never be high
enough so that water from those nodes could escape from the potential watershed of q on
the right; water from these nodes can only escape from the potential watershed of q by first
flowing down to q.

To compute the persistent watershed efficiently, all we need are efficient algorithms
to compute potential watersheds and Q-avoiding potential watersheds. We have already
seen how to compute W∪(Q) efficiently in Section 4.1. Note that the Q-avoiding potential
watershed of S is different from the potential watershed of S in the terrain T ′ that is
obtained by removing the nodes Q and their incident edges from T . The next lemma states
that we can also compute Q-avoiding potential watersheds efficiently.

Lemma 8. There is an algorithm which outputs the Q-avoiding potential watershed of S
and takes time O(n log n), where n is the number of edges of the terrain.

Proof. We modify the algorithm to compute the potential watershed of S as shown in
Algorithm 1, such that, each time the algorithm extracts a node from the priority queue,
this node is discarded if it is contained in Q. Instead, the algorithm continues with the next
node from the priority queue. Clearly, this algorithm does not follow any potential flow paths
that flow through Q. However, the nodes of Q are still being considered by the neighbors
of its neighbors as a node they have to compete against for being the steepest-descent
neighbor. It is easy to verify that the proof of Theorem 2 also holds for the computation of
Q-avoiding potential watersheds.

By applying Theorem 2 and Lemma 8, we obtain:

http://jocg.org/

JoCG 4(1), 38–78, 2013 62

Journal of Computational Geometry jocg.org

Theorem 5. We can compute the persistent watershed W ·∩(Q) of Q in time O(n log n),
where n is the number of edges of the terrain.

5 Regular terrains

We extend the results on imprecise watersheds in the network model for a certain class of
imprecise terrains, which we call “regular”. We will first define this class and characterize it.
To this end we will introduce the notion of imprecise minima (see Definition 6), which are
the “stable” minima of an imprecise terrain, regular or non-regular. In Section 5.2 we will
describe how to compute these minima and how to turn a non-regular terrain into a regular
terrain. In the remaining sections, we discuss nesting properties and fuzzy boundaries of
imprecise watersheds. Furthermore, we observe that regular terrains have a well-behaved
ridge structure, which delineates the main watersheds.

The main focus of this section is on the extension of the results in Section 4. Some
of the concepts introduced here could also be applied to the surface model, however, we
confine our discussion to the network model.

5.1 Characterization of regular terrains

We first give a definition of a proper minimum in an imprecise terrain.

Definition 6. A set of nodes S in an imprecise terrain T is an imprecise minimum if
and only if in every realization of T , the set S contains a local minimum, and no proper
subset of S has this property.

Note that the local minima contained in S can vary from one realization to another.
Now a regular imprecise terrain is defined as follows:

Definition 7. An imprecise terrain T is a regular imprecise terrain if and only if every
local minimum of the lowermost realization R− of T is an imprecise minimum of T .

Any imprecise minimum S on a regular terrain is a minimum in R−. Indeed, assume
S would not be a minimum on R−. Then, by Definition 6, it would still contain a proper
subset S′ that is a minimum on R−. By Definition 7, S′ must be an imprecise minimum
of T , but this contradicts Definition 6. Now, we observe:

Lemma 9. Let S be an imprecise minimum on a regular terrain. Then each node s ∈ S
has the same elevation lower bound low(s). Furthermore, for each non-empty subset S′ ⊂ S
we have W∪(S′) = W∪(S) and WR−(S′) = WR−(S).

Proof. For the sake of contradiction, suppose not all nodes of S have the same elevation
lower bound. Then there would be a proper subset S′ of S that is a local minimum of R−,
and thus, by definition of a regular terrain, S′ would be an imprecise minimum which is at
the same time a proper subset of S. But this would, by Definition 6, contradict that S is
an imprecise minimum. Therefore, each node s ∈ S has the same elevation lower bound.

http://jocg.org/

JoCG 4(1), 38–78, 2013 63

Journal of Computational Geometry jocg.org

upper terrain

lower terrain

realization

proxy

bar

imprecise minimum

p

Figure 9: Example of an imprecise minimum with a proxy p in a non-regular terrain.

Now, in R∪(S), all nodes s ∈ S are at their lowermost elevation and thus S is a local
minimum in R∪(S). Thus, all nodes p that have a flow path to any node s ∈ S, have a flow
path to each node s ∈ S, and thus each non-empty subset S′ ⊂ S has W∪(S′) = W∪(S).
By the same argument, we have WR−(S′) = WR−(S).

We will now derive a characterization of imprecise minima in general. For this, we
introduce proxies.

Definition 8. A proxy of an imprecise minimum S is a node p ∈ S, such that there are
no realizations R and nodes q /∈ S such that p→

R
q.

Thus, water that arrives in a proxy of an imprecise minimum S, can never leave S
anymore. This implies that the proxy is not in the potential watershed of any set of nodes
that lies entirely outside S. The following lemma states that every imprecise minimum
contains a proxy.

Lemma 10. Let the bar of a set S be bar(S) = mins∈S high(s). A set S is an imprecise
minimum if and only if (i) bar(S) < mint∈N(S) low(t) and (ii) no proper subset S′ of S has
this property. Every imprecise minimum has a proxy.

Proof. We first argue that if S is an imprecise minimum, then this implies (i) and (ii) for S.

To prove (i), consider the following realization R: For all nodes r ∈ S we set
elevR(r) = max(bar(S), low(r)), and for all nodes t ∈ N(S) we set elevR(t) = low(t).
Assume for the sake of contradiction that (i) would not hold. Then there exists a node
t ∈ N(S) which lies at elevation at most bar(S) in R. Now, if all nodes of S would have
the same elevation in R, then S would either be part of a local minimum that includes t,
or S would have t as a lower neighbor: in either case, in the realization R the set S would
neither be nor include a local minimum by itself, contradicting the assumption that S is
an imprecise minimum. Therefore, since S is an imprecise minimum, it must be that not
all nodes of S have the same elevation, and there exists a proper subset S′ ⊂ S which is
a local minimum in R. Like all nodes of S, the local minimum S′ must have elevation

http://jocg.org/

JoCG 4(1), 38–78, 2013 64

Journal of Computational Geometry jocg.org

at least bar(S); each node t ∈ N(S′) must be set at a higher elevation low(t). If we
would remove the nodes of N(S′) from S, the imprecise minimum S would be separated
into several components, including at least one component S′′ that contains a node s with
high(s) = bar(S). This component S′′ is a proper subset of S. Its neighborhood N(S′′)
consists of nodes from N(S) and N(S′), all of which have an elevation lower bound strictly
above bar(S) = mins∈S′′ high(s). Thus S′′ ⊂ S must contain a local minimum in any
realization, contradicting the assumption that S is an imprecise minimum. Therefore the
assumption that (i) would not hold must be wrong, and (i) must hold.

To prove (ii), assume, for the sake of contradiction, that S contains a proper subset S′

such that bar(S′) < mint∈N(S′) low(t). Thus, S′ would contain a local minimum in any
realization, and S would not be an imprecise minimum; hence (ii) must hold for S.

Now we argue that, if (i) and (ii) are met, then S is an imprecise minimum. Observe
that condition (i) implies that S contains a local minimum in any realization. Now assume,
for the sake of contradiction, that there exists a proper subset S′ that always contains a
local minimum. Let S′ be a smallest such subset of S. We have that S′ is an imprecise
minimum, and therefore, as we proved above, it holds that bar(S′) < mint∈N(S′) low(t),
which contradicts that condition (ii) holds for S. Hence, there is no proper subset S′ of S
that always contains a local minimum; therefore S is an imprecise minimum.

As a proxy of an imprecise minimum S, we take any node s such that high(s) <
mint∈N(S) low(t). By condition (i) of the lemma, such a node s always exists. Since s lies
below any node of N(S) in any realization, there are no realizations R and nodes q /∈ S
such that s→

R
q; thus s is a proxy of S.

5.2 Computing proxies and regular terrains

Any imprecise terrain can be turned into a regular imprecise terrain by raising the lower
bounds on the elevations such that local minima that violate the regularity condition are
removed from R−. Indeed, in hydrological applications it is common practice to preprocess
terrains by removing local minima before doing flow computations [26]. To do so while still
respecting the given upper bounds on the elevations, we can make use of the algorithm from
Gray et al. [12]. The original goal of this algorithm is to compute a realization of a surface
model that minimizes the number of local minima in the realization, but the algorithm can
also be applied to a network model. It can easily be modified to output a proxy for each
imprecise minimum of a terrain. Moreover, the realization M computed by the algorithm
has the following convenient property: if we change the imprecise terrain by setting low(v)
to elevM (v) for each node, we obtain a regular imprecise terrain.

The algorithm The algorithm proceeds as follows. We will sweep a horizontal plane
upwards. During the sweep, any node is in one of three states. Initially, each node is
undiscovered. Once the sweep plane reaches low(v), the state of the node changes to pending.
Pending nodes are considered to be at the level of the sweep plane, but they may still be
raised further. During the sweep, we will always maintain the connected components of the
graph induced by the nodes that are currently pending; we call this graph GP . As soon as

http://jocg.org/

JoCG 4(1), 38–78, 2013 65

Journal of Computational Geometry jocg.org

it becomes clear that a node cannot be raised further or does not need to be raised further,
its final elevation on or below the sweep plane is decided and the node becomes final. More
precisely, the algorithm is driven by two types of events: we may reach low(v) for some
node v, or we may reach high(v) for some node v. These events are handled in order of
increasing elevation; low(v)-events are handled before high(v)-events at the same elevation.
The events are handled as follows:

• reaching low(v): we make v pending, and find the component S of GP that contains v.
If v has a neighbor that is final, we make all nodes of S final at elevation low(v).

• reaching high(v): if v is final, nothing happens; otherwise we report v as a proxy, we
find the connected component S of GP that contains v, and we make all nodes of S
final at elevation2 maxs∈S low(s).

Gray et al. explain how to implement the algorithm to run in O(n log n) time [12].

Lemma 11. Given an imprecise terrain T , (i) all nodes reported by the above algorithm
are proxies of imprecise minima, and (ii) the algorithm reports exactly one proxy of each
imprecise minimum of T .

Proof. We first prove the second part, and then the first part of the lemma.

(ii) Let S be an imprecise minimum. Let v be the node in S which was the first to
have its high(v)-event processed. By Lemma 10, v is a proxy of S and we have high(v) <
mint∈N(S) low(t). Hence, when high(v) is processed, the component of GP that contains v
does not contain any nodes outside S, and the high(v)-event is the first event to make
any nodes in this component final. Thus, v is reported as a proxy. Furthermore, no node
s ∈ S can have low(s) > high(v), otherwise bar(S \ {s}) = high(v) < mint∈{s,N(S)} low(t) ≤
mint∈N(S\{s}) low(t), and thus, by Lemma 10, S would not be an imprecise minimum.
Hence, when the high(v)-event is about to be processed, all nodes of S have been discovered
and are currently pending. The high(v)-event makes all nodes of S final; thus, any high(s)-
events for other nodes s ∈ S will remain without effect and no more proxies of S will be
reported.

(i) Let v be a node that is reported as a proxy in a high(v)-event. We claim that
the connected component S of GP that contains v at that time, is an imprecise minimum.
Indeed, by definition of GP , all nodes of S are pending, and thus high(v) = mins∈S high(s) =
bar(S). Furthermore, because S is a connected component of GP , all nodes t ∈ N(S) must
be either undiscovered or final. In fact, the algorithm maintains the invariant that no
neighbor of a finalized node is pending; since all nodes in S are pending, all nodes t ∈ N(S)
must be undiscovered. Therefore high(v) ≤ mint∈N(S) low(t). Because all low(t)-events at
the same elevation as high(v) are processed before the high(v)-event is processed, we actually
have a strict inequality: high(v) < mint∈N(S) low(t). It follows that S satisfies condition (i)
of Lemma 10. Furthermore, no proper subset S′ of S has this property, otherwise, by the

2This is a small variation: the algorithm as described originally by Gray et al. would make the elevations
final at high(v) = mins∈S high(s). However, in the current context we prefer to make the elevations final at
maxs∈S low(s), to maintain as much of the imprecision in the original imprecise terrain as possible.

http://jocg.org/

JoCG 4(1), 38–78, 2013 66

Journal of Computational Geometry jocg.org

analysis given above, a proxy for S′ would have been reported already and the nodes from S′

would have been removed from GP at that time. Hence, S also satisfies condition (ii) of
Lemma 10, and S is an imprecise minimum, with v as a proxy.

Lemma 12. Let M be the realization of a terrain T as computed by the algorithm described
above. Let T ′ be the imprecise terrain that is obtained from T by setting low(v) = elevM (v)
for each node v. The terrain T ′ is a regular imprecise terrain.

Proof. Note that M is the lowermost realization of T ′. Consider any local minimum S
of M . Observe that the algorithm cannot have finalized the elevations of the last pending
nodes of S in a low(v)-event, because then we would have v ∈ S and v must have a neighbor
t /∈ S that was finalized before v; hence elevM (t) ≤ elevM (v) and S would not be a local
minimum. Therefore, the algorithm must have finalized the last elevations of the nodes of S
in a high(v)-event for a node v ∈ S. Furthermore, each node t ∈ N(S) must have been
undiscovered at that time; otherwise t would have become part of the same component as
the nodes of S before its elevations were finalized, or t would have been finalized before v:
in both cases S would not be a local minimum. Hence we have low(t) > high(v) for each
node t ∈ N(S), and thus, S is a local minimum in every realization of T or T ′. Furthermore,
no proper subset of S′ of S contains a local minimum in every realization of T ′, since in
particular, in M the set S is a local minimum and therefore no proper subset S′ of S is a
local minimum. Thus, by Definition 6 and Definition 7, T ′ is a regular terrain.

5.3 Nesting properties of imprecise watersheds

To be able to design data structures that store imprecise watersheds and answer queries
about the flow of water between nodes efficiently, it would be convenient if the watersheds
satisfy the following nesting condition : if p is contained in the watershed of q, then the
watershed of p is contained in the watershed of q. Clearly, potential watersheds do not
satisfy this nesting condition, while core watersheds do. However, in general, persistent
watersheds are not nested in this way. We give a counter-example that uses a non-regular
terrain in the next lemma, before proving the nesting condition for persistent watersheds
in regular terrains later in this section.

Lemma 13. There exists an imprecise terrain with two nodes p and q such that p ∈W ·∩(q)
and W ·∩(p) * W ·∩(q).

Proof. We give an example of a non-regular terrain that has this property. Refer to Fig-
ure 10. The persistent watershed of p as shown in red is not completely contained in the per-
sistent watershed of q as shown in blue. The left figure gives a top-view. All edges have unit
length, except for the edge between w and q. The right figure shows the fixed elevations of
s, t, t′, u, v and w, the elevation intervals of p, q and r, and the correct horizontal distances on
all edges except |pv| and |qv|. The red outline delimits W∪(p) = {p, q, r, s, t, v, w}. The red
dashed outline delimits W ·∩(p) = {p, s, v}. The blue outline delimits W∪(q) = {p, q, s, v, w}.
The blue dashed outline delimits W ·∩(q) = {p, q, v}.

http://jocg.org/

JoCG 4(1), 38–78, 2013 67

Journal of Computational Geometry jocg.org

rt

t′

t′
v

r

p

t

qs

v

q

p
w

u

wu

s

Figure 10: Counterexample of a non-regular terrain to the nesting condition of persistent
watersheds.

The following lemmas will prove that on regular imprecise terrains persistent water-
sheds do satisfy the nesting condition.

Lemma 14. Let Q be a set of nodes of a regular imprecise terrain, then W ·∩(Q) ⊆WR−(Q).

Proof. Consider a maximal flow path π from a node p ∈ W ·∩(Q) in R−. We claim that it
flows to a node of Q. In particular, we claim that π cannot flow to a local minimum S in
R− without reaching any node of Q. We prove this claim by contradiction. Thus, assume
π would be a Q-avoiding flow path to a local minimum S such that Q ∩ S = ∅. Because
the terrain is regular, S must be an imprecise minimum (by Definition 7), and therefore
S must have a proxy by Lemma 10. Thus, π flows to a proxy s ∈ S. As observed above,
s is not in the potential watershed of any set of nodes outside S; in particular, s is not
in W∪(Q), see Figure 11 (left). This implies that in R− there exists a flow path from p
which leaves W∪(Q) without going through any node of Q. This contradicts the fact that
p ∈W ·∩(Q), since by the definition of persistent watersheds, π cannot leave W∪(Q) without
going through Q.

Therefore, from any node p ∈ W ·∩(Q) there must be a flow path to a node q ∈ Q
in R−, and thus, W ·∩(Q) ⊆WR−(Q).

Lemma 15. Let Q be a set of nodes of an imprecise terrain, and let P ⊆ WR−(Q). Then
W∪(P) ⊆W∪(Q).

Proof. Recall that R∪(P) is the canonical realization of W∪(P) as defined in Section 4.1.1.
Let R be the watershed-overlay of WR∪(P)(P) and WR−(Q). Consider a node r ∈ W∪(P)
and a flow path π from r to a node p ∈ P in R∪(P), see Figure 11 (center). Let π′ be the
maximal prefix of π such that the nodes of π′ have the same elevation in R∪(P) and R, and
let π′′ be the maximal prefix of π′ such that π′′ is still a flow path in R. We distinguish
three cases:

• If both π′ and π′′ are empty, then r has higher elevation in R∪(P) than in R, so r
must be in WR−(Q).

http://jocg.org/

JoCG 4(1), 38–78, 2013 68

Journal of Computational Geometry jocg.org

Q S

p

s Q

P

rπ

Q

P

s

r

Figure 11: Illustrations to the proofs of Lemmas 14 (left), 15 (center) and 16 (right).

• If π′ = π′′ = π, then flow from r reaches a node p ∈ P ⊆WR−(Q) in R.

• Otherwise, let (u, v) be the edge of π such that u is the last node of π′′. Now v is
not on π′′, so in R, flow from u either still follows (u, v) but elevR(v) < elevR∪(P)(v),
or flow from u is diverted over an edge (u, v̂) to another node v̂ with elevR(v̂) <
elevR∪(P)(v̂). In either case, from u we follow an edge to a node of which the elevation

in R is lower than in R∪(P); therefore this must be a node of WR−(Q).

In any case, there is a flow path from r to a node of WR−(Q). From here, there must be
a path to a node q ∈ Q, since every flow path within WR−(Q) in R− is also a flow path
in R. Thus there is a flow path from r to q in R, and thus, r ∈ W∪(Q). This proves the
lemma.

Lemma 16. (Persistent watersheds are nested) Let Q be a set of nodes of a regular imprecise
terrain, and let P ⊆W ·∩(Q). Then W ·∩(P) ⊆W ·∩(Q).

Proof. Assume for the sake of contradiction that there exists a node s ∈W ·∩(P), such that
s /∈W ·∩(Q). Clearly, s ∈W∪(P) and by Lemma 15 and Lemma 14, it holds that s ∈W∪(Q).
Furthermore, s must have a flow path π to a point r /∈W∪(Q), which does not pass through
a node of Q, refer to Figure 11 (right). By Lemma 15 and Lemma 14, W∪(P) ⊆ W∪(Q),
and thus r /∈ W∪(P). Furthermore, since s ∈ W ·∩(P), π must include a node p ∈ P . This
contradicts the fact that p ∈W ·∩(Q), since π ∩Q = ∅.

5.4 Fuzzy watershed boundaries

Lemma 14 and Lemma 15 also allow us to compute the difference between the potential
and the persistent watershed of a set of nodes Q efficiently, given only the boundary of the
watershed of Q on the lowermost realization of the terrain. We first define these concepts
more precisely.

Definition 9. Given a realization R, and a set of nodes Q, let XR(Q) be the set of directed
edges (u, v) such that u ∈WR(Q) and v /∈WR(Q). We call XR(Q) the watershed bound-
ary of Q in R. Likewise, we define the fuzzy watershed boundary of Q as the directed
set of edges (u, v) such that u ∈W∪(Q) and v /∈W ·∩(Q) and we denote it with X∪(Q). We
call the set W∪(Q) \W ·∩(Q) the uncertainty area of this boundary.

http://jocg.org/

JoCG 4(1), 38–78, 2013 69

Journal of Computational Geometry jocg.org

We will now discuss how we can compute the uncertainty area of any fuzzy watershed
boundary efficiently.

Algorithm to compute the uncertainty area of a watershed. Assume we are given
XR−(Q). We will compute the set W∪(Q) \ W ·∩(Q) with Algorithm 1, modified as fol-
lows. Instead of initializing the priority queue with the nodes of Q, we initialize in the
following way. For each edge (u, v) ∈ XR−(Q), we use the slope diagram of u to determine
the minimum elevation zu of u, such that there is a realization in which water flows on the
edge from u to v. If there exists such an elevation zu, we enqueue u with elevation (and
key) zu. Similarly, we use the slope diagram of v to determine the minimum elevation zv
of v, such that water may flow on the edge from v to u. If zv exists, we enqueue v with
elevation (and key) zv. After initializing the priority queue in this way, we run Algorithm 1
as written.

Lemma 17. If the terrain is regular, the algorithm described above computes W∪(Q) \
W ·∩(Q). This is the uncertainty area of the fuzzy watershed boundary of Q.

Proof. Observe, following the proof of Theorem 2, that for any node p output by the above
algorithm there are a realization Rs and a node s which was in the initial queue with
elevation zs, such that elevRs(s) = zs and Rs induces a flow path π from p to s. Let (u, v)
be the edge of XR−(Q) which led to the insertion of s ∈ {u, v} into Q with elevation zs. Let
t be the other node of (u, v), that is, t ∈ {u, v}\{s}. Let Rt be the realization obtained from
Rs by setting elevRt(t) = low(t). Observe that, by our choice of zs, the realization Rt now
induces a flow path from p to t. We will now argue that (i) p ∈W∪(Q), and (ii) p /∈W ·∩(Q).

(i) The existence of Ru implies that p ∈W∪(u); since u ∈WR−(Q) (by definition of
XR−(Q)) this implies p ∈W∪(Q) (by Lemma 15).

(ii) By definition of XR−(Q), there is no flow path from v to Q on R−. Hence, any
maximal flow path from v on R− must lead to a local minimum S that does not contain any
node of Q, and by Definition 7, each such local minimum S is an imprecise minimum. Now,
by Lemma 10, each such local minimum S contains a proxy s, which is, by Definition 8, not
contained in W∪(Q). Thus there is a flow path from v that does not go through any nodes
of Q and leads to a proxy s /∈W∪(Q). Hence, by Definition 5, p /∈W ·∩(Q).

Next, we will argue that if p ∈W∪(Q) and p /∈W ·∩(Q), the algorithm will output p.
We distinguish two cases.

If p ∈WR−(Q), then, because p /∈W ·∩(Q), there must be a flow path on R− from p
to a minimum S that does not contain any node of Q. By Definition 7, Lemma 10 and
Definition 8, there will then be a flow path from p to a proxy s ∈ S that lies outside W∪(Q),
and thus, outside WR−(Q).

If p /∈ WR−(Q), then, because p ∈ W∪(Q), there must be a realization in which
there is a flow path from p to Q, and thus, from p to WR−(Q).

In both cases, there is a realization in which there is a flow path from p that traverses
an edge (u, v) ∈ XR−(Q), either from u to v or from v to u. The algorithm reports at least
all such points p.

http://jocg.org/

JoCG 4(1), 38–78, 2013 70

Journal of Computational Geometry jocg.org

This completes the proof of the lemma.

Note that if k is the size of the input (XR−(Q)) and the output (W∪(Q) \W ·∩(Q))
and d′ is the maximum node degree, then the above algorithm runs in O(k log k + k log d′)
time. When a data structure is given that stores the boundaries of watersheds on R− so
that they can be retrieved efficiently, and the imprecision is not too high, this would enable
us to compute the boundaries and sizes of potential and persistent watersheds much faster
than by computing them (or their complements) node by node with Algorithm 1.

We can use the same idea as above to compute an uncertain area of the watershed
boundaries between a set of nodes Q. More precisely, given a collection of nodes Q such
that no node q ∈ Q is contained in the potential watershed of another node q′ ∈ Q, we can
compute the nodes that are in the potential watersheds of multiple nodes from Q.

Algorithm to compute the uncertainty area between watersheds. Let Q be {q1, ..., qk}
and let G′ be the graph induced by the potential watershed of Q. The algorithm is essen-
tially the same as the algorithm that computes the uncertainty area of a single watershed’s
boundary—the main difference is that now we have to start it with a suitable set of edges X
on the fuzzy boundaries between the watersheds of the nodes of Q. More precisely, X should
be an edge separator set of G′, which separates the nodes of G′ into k components G′1, ..., G

′
k

such that nodes of each component G′i are completely contained in W∪(qi).

We obtain X with the following modification of Algorithm 1. For each node p we will
maintain, in addition to a tentative elevation z, a tentative tag that identifies a node q ∈ Q
such that there is a realization R with elevR(p) = z and p→

R
q. We initialize the priority

queue of Algorithm 1 with all nodes q ∈ Q, each with tentative elevation low(q) and each
tagged with itself. The first time any particular node q′ is extracted from the priority queue,
we obtain not only its final elevation but also its final tag q from the queue, and each pair
(p, z) ∈ Expand(q′, z′) is enqueued with that same tag q. At the end of Algorithm 1, we
obtain the set of nodes in W∪(Q) together with their elevations in the canonical realization
R∪(Q) and with tags, such that any set of nodes tagged with the same tag q ∈ Q forms a
connected subset of W∪(q). We now extract the separator set X by identifying the edges
between nodes of different tags.

Having obtained X , we compute the union of the pairwise intersections of the po-
tential watersheds of q1, ..., qk as follows. Again, we use Algorithm 1. This time the pri-
ority queue is initialized as follows. For each edge (u, v) ∈ X , we use the slope diagram
of u to determine the minimum elevation zu of u, such that there is a realization R with
elevR(v) = elevR∪(Q)(v) in which water flows on the edge from u to v. If there exists such
an elevation zu, we enqueue u with elevation (and key) zu. Similarly, we use the slope
diagram of v to determine the minimum elevation zv of v, such that water may flow on the
edge from v to u at elevation elevR∪(Q)(u). If zv exists, we enqueue v with elevation (and
key) zv. After initializing the priority queue in this way, we run Algorithm 1 as written,
and output the result.

Lemma 18. Given a set of nodes q1, . . . , qk of an imprecise terrain, such that qi /∈W∪(qj)
for any i 6= j and 1 ≤ i, j ≤ k, we can compute the set

⋃
i

⋃
j 6=i(W∪(qi) ∩ W∪(qj)) in

http://jocg.org/

JoCG 4(1), 38–78, 2013 71

Journal of Computational Geometry jocg.org

O(n log n) time, where n is the number of edges of the imprecise terrain.

Proof. The separator set X is obtained in O(n log n) time by running the modified version
of Algorithm 1 and one scan over the graph to identify edges between nodes with different
tags. Computing the union of the pairwise intersections of the potential watersheds of
q1, ..., qk with the modified Algorithm 1 takes O(n log n) time again.

By the same arguments as in the proof of Lemma 17, we can observe the fol-
lowing: for any node p output by the above algorithm, there are an edge (u, v) ∈ X ,
a realization Ru with elevRu(u) = elevR∪(Q)(u) and p→

Ru
u, and a realization Rv with

elevRv(v) = elevR∪(Q)(v) and p→
Rv
v. Let qu, qv ∈ Q be the nodes of Q with which u

and v were tagged, respectively. It follows that there is a flow path from p to qu in the
watershed overlay of WRu(u) and WR∪(Q)(qu), so p ∈ W∪(qu). Analogously, p ∈ W∪(qv).
Since (u, v) ∈ X , we have qu 6= qv, so any point p that is output by the algorithm lies in the
intersection of the potential watersheds of two different nodes from Q.

Next, we will argue that if p lies in the intersection of the potential watersheds of
two different nodes from Q, then the algorithm will output p. Let q ∈ Q be the node with
which p is tagged (hence, p ∈ W∪(q)), and let q′ ∈ Q, q′ 6= q be another node from Q such
that p ∈ W∪(q′). Consider a flow path π from p to q′ in R∪(q′), and let (r, r′) be the edge
on π such that r is tagged with a node other than q′ while r′ and all nodes following the last
occurrence of (r, r′) in π are tagged with q′. Note that (r, r′) must exist because all nodes
of π lie in W∪(Q) and have received a tag, p is tagged with another node than q′, and,
since none of the nodes of Q lie in each other’s potential watersheds, q′ is tagged with itself.
Therefore (r, r′) exists, and (r, r′) ∈ X . Moreover, we have elevR∪(Q)(r

′) = elevR∪(q′)(r
′).

Therefore r was put in the priority queue with the minimum elevation such that there is
a realization R with elevR(r′) = elevR∪(q′)(r

′) in which water flows on the edge from r to
r′. By induction on the nodes of π from r back to p, it follows that p must eventually be
extracted from the priority queue and output.

This completes the proof of the lemma.

5.5 The fuzzy watershed decomposition

In this section we further characterize the structure of imprecise terrains by considering the
ridge lines that delineate the “main” watersheds. In fact, the fuzzy watershed boundaries
(Definition 9) of the imprecise minima (Definition 6) possess a well-behaved ridge structure
if the terrain is regular. Consider the following definition of an “imprecise” ridge.

Definition 10. Let S1, . . . , Sk be the imprecise minima of an imprecise terrain. We call
the union of the pairwise intersection of the potential watersheds of imprecise minima the
fuzzy ridge of the terrain.

Let S be an imprecise minimum of a regular imprecise terrain. The next lemma
testifies that the persistent watershed of any proxy q of S is equal to the intersection of the
persistent watersheds of all possible non-empty subsets of S. Therefore, we think of W ·∩(q)
as the actual minimal watershed of S, or the minimum associated with S. By Lemma 9,

http://jocg.org/

JoCG 4(1), 38–78, 2013 72

Journal of Computational Geometry jocg.org

the potential watersheds of all non-empty subsets of S are equal. Consequently, we think
of the fuzzy watershed boundary of q as the fuzzy watershed boundary of S.

Lemma 19. Let S be an imprecise minimum on a regular terrain, and let x be any proxy
of S. Then

⋂
∅⊂S′⊆S W ·∩(S′) = W ·∩(x).

Proof. Let C denote
⋂
∅⊂S′⊆S W ·∩(S′), the intersection of the persistent watersheds of all

non-empty subsets of S. Consider the complement of this set:

(C)c :=


 ⋂

∅⊂S′⊆S

W ·∩(S′)



c

=
⋃

∅⊂S′⊆S

(
W ·∩(S′)

)c
=

⋃

∅⊂S′⊆S

W
\S′
∪ (
(
W∪(S′)

)c
).

By Lemma 9 we have W∪(S′) = W∪(x) = W∪(S) for any non-empty set S′ ⊆ S, so we
have:

(C)c =
⋃

∅⊂S′⊆S

W
\S′
∪ ((W∪(S))c).

Now, by Definition 8, it is impossible for water that reaches x to continue to flow to a
node outside of W∪(S). Therefore, any flow path to a node outside W∪(S) that avoids a
non-empty set S′ ⊆ S, also avoids x, and we have:

W
\S′
∪ ((W∪(S))c) ⊆W

\x
∪ ((W∪(S))c) = W

\x
∪ ((W∪(x))c).

Thus we get:

(C)c =
⋃

∅⊂S′⊆S

W
\S′
∪ ((W∪(S))c) = W

\x
∪ ((W∪(x))c).

By the definition of persistent watersheds, we now have C = W ·∩(x), which completes the
proof.

We can now further characterize the fuzzy ridge for regular terrains. The following
lemma implies that on a regular terrain, the fuzzy ridge is equal to the union of the uncer-
tainty areas of the fuzzy watershed boundaries of any representative set of proxies of the
imprecise minima, see Corollary 1.

Lemma 20. Let S1, . . . , Sk be the imprecise minima of a regular imprecise terrain and let

q1, . . . , qk be associated proxies. For any 1 ≤ i ≤ k, we have that W ·∩(qi) =
(⋃

j 6=iW∪(qj)
)c

.

Proof. Since qi is a proxy, we have that,

(W ·∩(qi))
c = W

\qi
∪ ((W∪(qi))

c) = W∪((W∪(qi))
c) =

⋃

p∈(W∪(qi))
c

W∪(p).

Now, for a node p ∈ (W∪(qi))
c, consider a minimum S that is reached by a flow

path from p in R−. By Definition 7, we have that S is an imprecise minimum, and since

http://jocg.org/

JoCG 4(1), 38–78, 2013 73

Journal of Computational Geometry jocg.org

Potential Watersheds

Fuzzy ridge

Persistent
Watershed Proxy

Figure 12: Illustration to the fuzzy ridge on a regular terrain.

p ∈ (W∪(qi))
c = (W∪(Si))

c, we have S 6= Si. As such, S must be equal to some Sj for
j 6= i. Furthermore, by Lemma 9 we have WR−(Sj) = WR−(qj), therefore p ∈ WR−(qj).
Now, Lemma 15 implies that W∪(p) ⊆W∪(qj). It follows that (W ·∩(qi))

c ⊆ ⋃i 6=j W∪(qj).

Since we also have that qj ∈ (W∪(qi))
c for any j 6= i, we also get (W ·∩(qi))

c ⊇⋃
i 6=j W∪(qj), which implies the equality.

Corollary 1. Lemma 20 implies that, given q1, . . . , qk, a representative set of proxies for
the imprecise minima of a regular imprecise terrain, it holds that

⋃

i

(W∪(qi) \W ·∩(qi)) =
⋃

i


W∪(qi) \


⋃

j 6=i
W∪(qj)



c


=
⋃

i


W∪(qi) ∩

⋃

j 6=i
W∪(qj)




=
⋃

i

⋃

j 6=i
(W∪(qi) ∩W∪(qj)) .

By Lemma 9, this is equal to the fuzzy ridge of this terrain as defined in Definition 10. This
relationship is illustrated in Figure 12.

Combining this with Lemma 11 and Lemma 18 we obtain:

Theorem 6. We can compute the fuzzy ridge of a regular imprecise terrain in O(n log n)
time, where n is the number of edges of the imprecise terrain.

Note that Definition 10 can also be applied to non-regular terrains, since it is solely
based on the potential watersheds of the imprecise minima. We can use the algorithm of
Section 5.2 to compute proxies for these minima, and then use the algorithm of Lemma 18

http://jocg.org/

JoCG 4(1), 38–78, 2013 74

Journal of Computational Geometry jocg.org

to compute a fuzzy ridge between the watersheds of these proxies efficiently for non-regular
terrains. However, note that the result may not be exactly the same as the fuzzy ridge
according to Definition 10, because on a non-regular terrain, the potential watersheds of
the proxies may be smaller than the potential watersheds of the imprecise minima.

6 Conclusions

In this paper we studied flow computations on imprecise terrains under two general models
of water flow. For the surface model, where flow paths are traced across the surface of
an imprecise polyhedral terrain, we showed NP-hardness for deciding whether water can
flow between two points. For the network model, where flow paths are traced along the
edges of an imprecise graph, we gave efficient algorithms to compute potential (maximal)
and persistent (minimal) watersheds and potential downstream areas. Our algorithms also
work for sets of nodes and can therefore be applied to reason about watersheds of areas,
such as lakes and river beds.

In order to enable several extensions to these results in the network model, we
introduced a certain class of imprecise terrains, which we call regular. We first defined when
a set of nodes in an imprecise terrain can be considered a ‘stable’ imprecise minimum. We
then described how to turn a non-regular terrain into a regular terrain using an algorithm
by Gray et al. [12] and showed that this regularization algorithm preserves these imprecise
minima. Interestingly, this algorithm also minimizes the number of minima of the terrain,
while respecting the elevation bounds, as shown in [12].

We showed that persistent watersheds are nested on regular terrains and that these
terrains have a fuzzy ridge structure which delineates the persistent watersheds of these
stable minima. We gave an algorithm to compute this structure in O(n log n) time, where
n is the number of edges of the terrain. The correspondence between the imprecise minima
of the regular and the non-regular terrain suggests that this fuzzy watershed decomposition
on the regular terrain also allows us to reason about the structure of the watersheds on
the original non-regular terrain. We think that, even though our work is motivated by geo-
graphical applications, the results will be useful in other application areas where watersheds
are being computed, for instance in image segmentation [24].

There are many open problems for further research.

Clearly, the contrast between the results in the surface model vs. the results in the
network model leaves room for further questions, e.g., can we develop a model to measure
the quality of approximations of water flow in the surface model, and how does it relate to
the network model?

Surprisingly, a persistent watershed according to our current definition may consist
of multiple connected components: the persistent watershed of a node q may contain a node
p such that one cannot walk from p to q without leaving the watershed (see Appendix B).
It can be debated whether this is an acceptable and possibly rare consequence of a sensible
definition, or if this indicates that our definition needs to be refined or corrected.

Other flow models have been proposed in the gis literature, e.g. D-∞, in which the

http://jocg.org/

JoCG 4(1), 38–78, 2013 75

Journal of Computational Geometry jocg.org

incoming water at a node is distributed among the outgoing descent edges according to
steepness. These models can be seen as modified network models which approximate the
steepest-descent direction more truthfully. In order to apply the techniques we developed
for watersheds, we first need to formalize to which extent a node is part of a watershed in
these models.

Acknowledgments. We thank Chris Gray for many interesting and useful discussions on the

topic of this paper.

References

[1] K. Beven. Environmental modelling: An uncertain future? Routledge, 2009.

[2] M. Borga, E. Gaume, J. Creutin, and L. Marchi. Surveying flash floods: gauging the
ungauged extremes. Hydrol. Process., 22:3883–3885, 2008.

[3] W. Buytaert, D. Reusser, S. Krause, and J. Renaud. Why can’t we do better than
Topmodel? Hydrol. Process., 22:4175–4179, 2008.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
The MIT Press and McGraw-Hill Book Company, third edition, 2009.

[5] W. Craddock, E. Kirby, N. Harkins, H. Zhang, X. Shi, and J. Liu. Rapid fluvial incision
along the Yellow River during headward basin integration. Nat. Geosci., 3:209–213,
2010.

[6] A. Danner, T. Mølhave, K. Yi, P. K. Agarwal, L. Arge, and H. Mitásová. TerraStream:
from elevation data to watershed hierarchies. In Proc. 15th ACM Int. Symp. on Geo-
graphic Information Systems (ACM-GIS 2007), pages 212–219, 2007.

[7] M. de Berg, P. Bose, K. Dobrint, M. J. van Kreveld, M. H. Overmars, M. de Groot,
T. Roos, J. Snoeyink, and S. Yu. The complexity of rivers in triangulated terrains. In
Proc. 8th Canad. Conf. Comput. Geom., pages 325–330, 1996.

[8] M. de Berg, O. Cheong, H. Haverkort, J.-G. Lim, and L. Toma. The complexity of
flow on fat terrains and its I/O-efficient computation. Comput. Geom. Theory Appl.,
43(4):331–356, 2010.

[9] M. de Berg, H. Haverkort, and C. Tsirogiannis. Implicit flow routing on terrains with
applications to surface networks and drainage structures. In Proc. 22nd ACM-SIAM
Symp. on Discrete Algorithms (SODA), pages 285–296, 2011.

[10] M. de Berg and C. P. Tsirogiannis. Exact and approximate computations of watersheds
on triangulated terrains. In Proc. 19th ACM SIGSPATIAL Int. Conf. Adv. GIS, pages
74–83, 2011.

[11] P. F. Fisher and N. J. Tate. Causes and consequences of error in digital elevation
models. Prog. Phys. Geog., 30(4):467–489, 2006.

http://jocg.org/

JoCG 4(1), 38–78, 2013 76

Journal of Computational Geometry jocg.org

[12] C. Gray, F. Kammer, M. Löffler, and R. I. Silveira. Removing local extrema from
imprecise terrains. Comput. Geom. Theory Appl., 45(7):334–349, 2012.

[13] C. Gray, M. Löffler, and R. I. Silveira. Smoothing imprecise 1.5D terrains. Int. J.
Comput. Geometry Appl., 20(4):381–414, 2010.

[14] H. Haverkort and C. Tsirogiannis. Flow on noisy terrains: An experimental evaluation.
In Proc. 19th ACM SIGSPATIAL Int. Conf. Adv. GIS, pages 84–91, 2011.

[15] F. Hebeler and R. Purves. The influence of elevation uncertainty on derivation of
topographic indices. Geomorphology, 111(1-2):4–16, 2009.

[16] M. Henzinger, P. Klein, S. Rao, and S. Subramanian. Faster shortest-path algorithms
for planar graphs. J. Comput. Syst. Sci., 55(1):3–23, 1997.

[17] Y. Kholondyrev and W. Evans. Optimistic and pessimistic shortest paths on uncertain
terrains. In Proc. 19th Canad. Conf. Comput. Geom., pages 197–200, 2007.

[18] R. D. Koster, S. P. P. Mahanama, B. Livneh, D. P. Lettenmaier, and R. H. Reichle.
Skill in streamflow forecasts derived from large-scale estimates of soil moisture and
snow. Nat. Geosci., 3(9):613–616, 2010.

[19] J. Lindsay and M. Evans. The influence of elevation error on the morphometrics of
channel networks extracted from DEMs and the implications for hydrological mod-
elling. Hydrol. Process., 22(11):1588–1603, 2008.

[20] Y. Liu and J. Snoeyink. Flooding triangulated terrain. In Proc. 11th Int. Symp. Spatial
Data Handling, pages 137–148, Berlin, 2005.

[21] M. Mcallister and J. Snoeyink. Extracting consistent watersheds from digital river and
elevation data. In Proc. ASPRS/ACSM Annu. Conf, 1999.

[22] A. Montanari. What do we mean by ‘uncertainty’? The need for a consistent wording
about uncertainty assessment in hydrology. Hydrol. Process., 21:841–845, 2006.

[23] J. O’Callaghan and D. Mark. The extraction of drainage networks from digital elevation
data. Comput. Vision Graphics Image Process., 28(3):323–344, 1984.

[24] D. L. Pham, C. Xu, and J. L. Prince. Current methods in medical image segmentation.
Biomed. Eng., 2:315–337, 2000.

[25] B. Sivakumar. The more things change, the more they stay the same: the state of
hydrologic modelling. Hydrol. Process., 22:4333–4337, 2008.

[26] D. Tarboton. A new method for the determination of flow directions and upslope areas
in grid dig. elev. models. Water Resour. Res., 33(2):309–319, 1997.

[27] D. Tetzlaff, J. McDonnell, S. Uhlenbrook, K. McGuire, P. Bogaart, F. Naef, A. Baird,
S. Dunn, and C. Soulsby. Conceptualizing catchment processes: simply too complex?
Hydrol. Process., 22:1727–1730, 2008.

http://jocg.org/

JoCG 4(1), 38–78, 2013 77

Journal of Computational Geometry jocg.org

[28] J. A. Vrugt, C. G. H. Diks, H. V. Gupta, W. Bouten, and J. M. Verstraten. Improved
treatment of uncertainty in hydrologic modeling: Combining the strengths of global
optimization and data assimilation. Water Resour. Res., 41, 2005.

[29] S. P. Wechsler. Uncertainties associated with digital elevation models for hydrologic
applications: a review. Hydrol. Earth Syst. Sc., 11(4):1481–1500, 2007.

A Computing potential watersheds in linear time

Theorem 3. The canonical realization of the potential watershed of a set of cells Q in an
imprecise grid terrain of n cells can be computed in O(n) time.

Proof. The computation of potential watersheds in Section 4.1 has much in common with
computing single-source shortest paths. In both cases, the goal is to compute a label δ(v)
for each node v: in the case of potential watersheds it is the lowest elevation such that a
flow path to a given destination q exists; in the case of shortest paths it is the distance
from the given source q. During the computation, we maintain tentative labels d[v] for each
node v which are upper bounds on the labels to be computed. (The tentative label of a node
that has not been discovered yet would be ∞.) The computations consist of a sequence of
edge relaxations: when relaxing a directed edge (u, v), we try to improve (that is, lower)
d[v] based on the current value of d[u], which is an upper bound on δ(u). Both problems
share some crucial properties: for every node v that can be reached, there is a “shortest”
path π(v) = u0, u1, ..., uk where u0 = q and uk = v, the correct labels δ(u0), δ(u1), ..., δ(uk)
form a non-decreasing sequence, and when the edges on this path are relaxed in order from
(u0, u1) to (uk−1, uk), the relaxation of (ui−1, ui) will correctly set d[ui] equal to δ(ui). All
that is necessary to compute all labels is that the sequence ρ of relaxations performed by
the algorithm contains π(v) as a subsequence, for each v. Note that the edges of π(v) do
not need to be consecutive in ρ: the labels along π(v) are computed correctly even if the
relaxations of π(v) are interleaved with relaxations of other edges, or even with out-of-order
relaxations of edges of π(v).

There are several algorithms to find a sequence of relaxations ρ in the above setting,
such that for every node v, the sequence ρ contains the relaxations of a shortest path π(v)
as a subsequence. These algorithms are usually known as algorithms to compute (single-
source) shortest paths, but they can also be applied directly to the more general setting
described above. Dijkstra’s algorithm finds a sequence of relaxations that is optimal in the
sense that it relaxes each edge only once. However, to achieve this, the algorithm needs
Θ(n) operations on a priority queue of size Θ(n) in the worst case, where n is the number
of nodes and edges in the graph [4].

An alternative is the algorithm of Henzinger et al. [16]. This algorithm uses a
hierarchy of priority queues. Most priority queue operations in this algorithm are on small
priority queues. The algorithm needs more relaxations than Dijkstra’s algorithm, but still
not more than O(n). Provided the relaxations take constant time each, the whole algorithm
runs in O(n) time. However, the algorithm by Henzinger et al. only works if a recursive
decomposition of the graph is provided that satisfies certain properties. Fortunately such

http://jocg.org/

JoCG 4(1), 38–78, 2013 78

Journal of Computational Geometry jocg.org

decompositions can be found in O(n) time for planar graphs, and also for certain other
types of graphs. In particular, it is easy to construct such a decomposition for a graph
that represents a grid terrain model, even in the model where each cell can drain to one or
more of its eight neighbors, for which the adjacency graph is non-planar. Let r1 < r2 < ...
be a sequence of powers of four. Now we can easily make a decomposition of the graph
into square regions of

√
r1 ×

√
r1 nodes; we group these together into regions of

√
r2 ×

√
r2

regions, etc., generally grouping regions of
√
ri ×

√
ri nodes into regions of

√
ri+1 ×√ri+1

nodes (some regions at the boundary of the whole input grid may be slightly smaller). On
each level i, the regions have size Θ(ri) and each region has Θ(

√
ri) nodes on its boundary,

thus each level forms a so-called ri-division. We choose the region sizes such that they
satisfy Equation (19) from Henzinger et al.

With this decomposition, the structure of the single-source shortest paths algorithm
from Henzinger et al. can also be applied to the computation of potential watersheds on
grid terrains. For grid terrains, dmax = O(1), and thus, the computation of the slope
diagrams and the O(n) relaxation steps from the “shortest-paths” algorithm take only
O(n) time. Together with O(n) time for priority queue operations, we get a total running
time of O(n).

B Persistent watersheds with multiple connected components

Lemma 21. There exists a regular terrain that contains a persistent watershed that consists
of more than one connected component.

Proof. Refer to Figure 13. The figure shows five nodes with their elevation intervals. The
edges (a, b), (b, d) and (c, d) have length 1. The edge (d, e) has length 1.6. From a and e,
very steep edges lead downwards to nodes not shown in the figure. The potential watershed
W∪(e) of e is {c, d, e}. The node d is not in the persistent watershed of e: if d has elevation
more than 61

3 , the flow path from d will lead to b, outside W∪(e). In that case c is a local
minimum inside W∪(e). Whenever c is not a local minimum, the elevation of d must be
less than 4, and the flow path from c will lead to d and on to e. Thus c is in the persistent
watershed W ·∩(e) of e, but d is not, so we have W ·∩(e) = {c, e}.

[0,0] [3,3]

[4,4]

[1,7]

[1,2]

a b

c

d

e

Figure 13: Example of disconnected persistent watershed on a regular terrain.

http://jocg.org/

	Introduction
	Preliminaries
	Basic definitions and notation
	A model of discrete water flow
	Flow paths are stable

	A model of continuous water flow

	NP-hardness in the surface model
	Overview of the construction
	Details of the construction
	Analysis of flow through a gadget
	Correctness of the NP-hardness reduction

	Watersheds in the network model
	Potential watersheds
	Canonical realizations
	Outline of the potential watershed algorithm
	Expansion of a node using the slope diagram
	Correctness and running time of the complete algorithm

	Potential downstream areas
	Persistent watersheds

	Regular terrains
	Characterization of regular terrains
	Computing proxies and regular terrains
	Nesting properties of imprecise watersheds
	Fuzzy watershed boundaries
	The fuzzy watershed decomposition

	Conclusions
	Computing potential watersheds in linear time
	Persistent watersheds with multiple connected components

