
Multi-faceted Support for MOOC in Programming

Arto Vihavainen, Matti Luukkainen and Jaakko Kurhila
University of Helsinki

Department of Computer Science
P.O. Box 68 (Gustaf Hällströmin katu 2b)

Fi-00014 University of Helsinki
{ avihavai, mluukkai, kurhila }@cs.helsinki.fi

ABSTRACT

Many massive open online courses (MOOC) have been tre-
mendously popular, causing a stir in academic institutions.
The most successful courses have reached tens of thousands
of participants. In our MOOC on introductory program-
ming, we aimed to improve distinctive challenges that con-
cern most of the open online courses: allowing and requiring
the participants to be more active in their online learning
(“flipped-classroom”), demanding them to go deeper than
typical CS1 course, and added incentives for participant re-
tention by treating the course as a formal entrance exam to
CS/IT degree. Our Extreme Apprenticeship (XA) method
for programming education appeared to be successful in an
online environment as well.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education Computer Science Education

General Terms

Experimentation, Management

Keywords

mooc, programming, extreme apprenticeship, automatic as-
sessment service, formal acknowledgement

1. INTRODUCTION
In IT education, use of technology to support learning

has evolved naturally. Most of the university level program-
ming courses are hybrid courses offering both online mate-
rials and local lectures. Purely online courses in science and
engineering are more rare, even though it has been said that
they have “tremendous potential”, yet “limited success to
date” [14].

Reasons for limited success might lie in the fact that pro-
gramming is a complex skill that requires rigorous prac-
tice [13]. Therefore, it has been stated that it is hard work

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGITE’12, October 11–13, 2012, Calgary, Alberta, Canada.
Copyright 2012 ACM 978-1-4503-1464-0/12/10 ...$10.00.

to create purely online courses in the domain [7]. How-
ever, it has become apparent that the times are changing:
“tremendous potential” has recently started to become more
and more evident as freely available online courses, so-called
MOOCs (massive open online courses) have gained momen-
tum.

MOOCs are originally defined to “integrate the connec-
tivity of social networking, the facilitation of an acknowl-
edged expert in a field of study, and a collection of freely
accessible online resources” [10]. As the word massive im-
plies, MOOCs need to be inherently scalable. Moreover,
they may share“conventions of an ordinary course, such as a
predefined timeline and weekly topics for consideration”, but
typically should carry “no fees, no prerequisites other than
Internet access and interest, no predefined expectations for
participation, and no formal accreditation” [10].

Some prominent MOOCs, such as various classes from
Stanford University, edX, Coursera and Udacity, have at-
tracted tens of thousands of participants. Even though the
retention rates may be very low [15], huge popularity in
starting students shows that the time is ripe for MOOCs [6].
Courses in computer science and engineering can help to
attract students into the field. In addition, easy-to-start
web-based programming environments such as Codecademy
allow people to get a taste of power of programming with a
minimal initial threshold.

This paper presents yet another MOOC in introductory
programming, and describes how we purposefully employed
sophisticated pedagogical, technical and structural support
to benefit our MOOC.

2. NOT YET ANOTHER MOOC
We claim that our MOOC is worth the effort in three im-

portant and distinctive areas: (1) the pedagogical method
called Extreme Apprenticeship (XA) behind it has been par-
ticularly suitable for programming education [16, 9]. (2)
Scaffolding of students’ tasks using a purpose-built assess-
ment solution and material combined with XA is especially
suitable for self-study. (3) By coupling formal educational
structures to support engagement to the course, we have
been able to make the course more lucrative, yet more de-
manding and rewarding than many typical CS1 courses re-
ported in current literary.

Contrary to the definition of a MOOC above, we delib-
erately wanted to reverse “no predefined expectations for
participation, and no formal accreditation” to “clear reasons
for participation, and clear formal accreditation”.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357338179?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2.1 Pedagogical approach: XA
The Extreme Apprenticeship (XA) method is based on

Cognitive Apprenticeship [4, 5] and emphasizes guiding the
students’ working process and actual activity over “being
taught”. Core values in XA are [16]:

• The craft can only be mastered by actually practicing
it, as long as it is necessary. In order to be able to prac-
tise the craft, the students need meaningful activities,
i.e. exercises.

• Continuous feedback between the learner and the advi-
sor. The learner needs confirmation that tells her that
she is progressing and to a desired direction. There-
fore, the advisor must be aware of the successes and
challenges of the learner throughout the course.

We have completely left out lectures and focused on pro-
viding high-quality learning material, exercises, and enough
XA lab guidance in our recent CS1 courses. In XA labs the
students are scaffolded by course advisors as they work on
the exercises. Scaffolding refers to supporting students in
a way that they are not given direct answers, rather, just
pushed into a direction to discover the answers themselves.

An important factor is that XA is as “genuine” as pos-
sible. Therefore, learning to program starts with installing
industry-strength programming tools; we use NetBeans as
our IDE of choice as it is freely available and provides good
debugging and testing capabilities. Using recognized tools
emphasizes that the learners are on a path to become true
professionals.

The results of applying XA have been impressive in the
context of our university, as the drop-out rate, pass rate
and grade distribution are all improving [16]. Every student
practices with dozens of simple exercises already during the
first week, and continues working on more demanding ex-
ercises throughout the course. Scaffolding is built into the
exercises and material, which makes it easier for the student
to proceed to a favorable direction. An important factor is
that learning achievements are made visible to the student,
thus boosting the motivation to continue.

2.2 Test My Code (TMC)
XA is by definition direct one-on-one interaction between

the student and the advisor. Although XA can be scaled
to hundreds of students with the use of efficient resource
and personnel allocation [9], it is evident that XA can ben-
efit from automated tools. In order to allow advisors to fo-
cus their time to actual scaffolding tasks, we have crafted a
scalable automatic assessment solution that allows building
scaffolding into programming exercises, provides full book-
keeping within several simultaneous courses, and has course
management functionality.

Test My Code (TMC) is a bundle that contains several
parts: a NetBeans programming environment plugin that
integrates seamlessly to the normal programming workflow,
a scalable assessment server that can be deployed to cloud
environments, and a purpose-built domain-specific language
(DSL) that is used by the course staff for building exercises
with built-in scaffolding messages. More specific tests are
crafted using unit tests, which means that there are practi-
cally no limits on what can be tested.

As new exercises are released, the TMC NetBeans plu-
gin downloads them as programming projects into the IDE.
Each project contains exercise-specific tests and, in some
cases, code that is given as a starting point for the exercise.

Contrary to most of the automatic assessment systems [8],
students can test their solutions locally using the program-
ming environment and receive direct scaffolding inside the
IDE. Tests are quick to run and can be executed as often as
the student wishes. Students are also able to see the source
code of the tests. However, if we do not want to expose the
tests to students, TMC also supports creating hidden tests

that are only available on the assessment server.
We use TMC in our on-campus CS1 courses. However,

as TMC offers bookkeeping and scaffolding, it was only nat-
ural to open our course in a completely online form as a
MOOC. When comparing our MOOC with our on-campus
CS1 course, MOOC participants do not have live one-to-
one advisors guiding them. Other than that, our MOOC is
exactly the same as the on-campus course.

2.3 Extending incentives for participation
We wanted to give the option for formal acknowledgement

for participants working through our CS1 course as our uni-
versity students do. This was done in two parts; (1) we
provided five partial exams for students in K-12 institutions
that were graded at our university, and (2) we offered a full
admission to CS/IT degree program for a top-tier university
to every high-performing student of the course.

The track for applying to the computer science depart-
ment required the ability and motivation to complete most
of the exercises, to pass a monitored programming exam
and an interview conducted by the faculty of our depart-
ment, and to be eligible for university-level education (e.g.
finishing or finished secondary education).

From our perspective, admitting the top-performers can
be seen as a “win-win-win-situation”. As they have partici-
pated in the course, exam and the interview, we know that
(1) they are able to perform in a university level course, (2)
they have tried programming and noticed that they want to
study computer science, and (3) they have a “flying start”
to their studies as they have already finished CS1 with very
high marks.

3. COURSE ORGANIZATION
With the introduction of XA our CS1 “staff” has become

relatively large. We have around 20 persons associated with
the course, almost all of them students, so it has been only
natural to have a set of well-defined roles, responsibilities,
and practises.

3.1 Course Personnel
As XA is a form of apprenticeship education, the “pyra-

mid”of the stakeholders is essential in organizing the course:
there are masters (tenured teachers working also as advi-
sors) that are on the top of the pyramid, crafting material
and exercises, coordinating and controlling the operation;
journeymen (paid advisors that contribute to exercises and
help the students with explicit responsibilities); apprentices
(unpaid advisors among fellow students with limited respon-
sibilities); and finally, students of the course (potential ap-
prentices of future courses)

Working as an apprentice is a part of our non-mandatory
CS studies, that focuses on the importance of “soft skills”
and coaching. Apprentices receive credit that is relative to
the amount of advising done, typically between 1 and 3 cred-

its1. Using the apprenticeship system allows us to provide
teaching and coaching experience for many of the students,
as well as give them responsibility. Giving formal credits
for the apprentice work is an important incentive, and it en-
ables us to establish an understanding of what is required
from the otherwise unpaid advisors.

The journeymen are selected for each course instance us-
ing an open call. Usually, they have previous teaching ex-
perience or have been working as apprentices in the past
CS1 courses. In addition to the extra responsibility and in-
come, it is important that the journeymen proceed in their
own studies as they serve as role models for students and
apprentices.

3.2 Working Process
Because of the rapid feedback cycle in XA labs, our course

content and working process is elastic; whenever we notice
something that can be improved, we act as soon as possible.
Typically, we improve the material weekly, and the material
is at least partially rewritten during each course.

The material and exercises are developed by masters with
help from journeymen. As developing new exercises includes
creating tests that scaffold students, it is important that
new exercises are tested thoroughly before publishing them
to the course population. To verify the thoroughness of the
tests, we have created a “Alpha-Beta-Open” release cycle for
verifying that the content is ready for MOOC release.
“Alpha-Beta-Open”means that prior to releasing the ma-

terial to MOOC participants, the material is tested in re-
quired lengths by the journeymen and masters, and gradu-
ally released to the apprentices. Each member of the teach-
ing staff, be it an apprentice, journeyman or a master, works
as an alpha-tester before the release to our CS1 course.
Alpha-testers work out the material and exercises and seek
out possible issues. The issues are gathered in a helpdesk-
like ticketing system that is processed by the journeymen
and masters.

Once alpha-testing is finished and the found issues are
resolved, the material is released to our CS1 course. The
course is set up using XA so that the students work on the
exercises in XA labs under guidance from advisors. This
provides us another feedback point for improvement. Es-
sentially the students in the university course are the beta-

testers. Once enough students (over 10) in our CS1 have
done the exercises without noticeable problems, the exer-
cises and material are published to MOOC participants.

If problems are noticed after the exercises are published to
the public, fixing them is still relatively easy. Updated ma-
terial is easily republished, and TMC has built-in function-
ality that can automatically update the students’ exercises
to contain the latest fixes.

4. EXERCISE MATERIAL
As most of the introductory programming books and lec-

ture materials are centered around language constructs and
fail to present actual working process [12], we have created
our own material. Our material is built around the exercises
and emphasizes the actual working process using worked ex-
amples [3] and process recordings [2]. Both worked examples
and process recordings emphasize how a program is crafted

1In our system one credit generally corresponds to 20-30
hours of work

using stepwise subtask division: one must always start small
to grow big.

Our semester-length Java CS1 course covers topics typi-
cal to most programming courses: assignment, expressions,
terminal input and output, basic control structures, classes,
objects, arrays and strings as well as object-oriented pro-
gramming features such as interfaces, inheritance and poly-
morphism. File I/O, exceptions and GUIs are also covered,
and essential features of Java API, such as lists, maps, and
sets, receive tons of practise.

Best programming practises are emphasized as well; use of
meaningful variable and method names, refactoring existing
code into smaller methods, using the single responsibility
principle, and using automated tests. Basic algorithmics,
such as sorting and searching, are also covered.

It is expected that students in XA-based courses use most
of the time they devote to the course in active solving of pro-
gramming exercises; individual effort plays the key role. In
order to provide support for the students’ working process,
scaffolding the exercises is required.

4.1 Scaffolding in Exercises
Exercises form the core of our course: there are a total of

170 exercises that are split into a total of 373 tasks. Learning
objectives are embedded into the exercises, and the mate-
rial is built around the exercises to maximize scaffolding.
The learning material is constructed so that new topics are
immediately applicable to following exercises.

Most of the exercises are composed of small incremental
tasks that together form bigger programs. Incremental tasks
imitate a typical problem solving process. Students explic-
itly practise programming, but are constantly influenced by
the written out thought process behind the pre-performed
subtask division. Exercises are intentionally written out to
be as informative as possible, and often contain sample in-
put/output descriptions or code snippets with expected out-
puts that provide further support for verifying correctness
of the program. This allows the student to confirm that she
is proceeding to the correct direction.

In addition to the structural support from the material,
students receive scaffolding from TMC. Exercise-specific tests
are built in a way that gives direct support to the incremen-
tal nature of the exercises. Tests are structured so that the
students can focus on progressing in small steps even within
a single task.

Typical tasks may require implementing a class, writing
method bodies that correspond to given signatures, and ver-
ifying that method outputs are correct for a set of inputs.
Typically, the working process continues with an increment,
e.g. by forming another class that perhaps uses the previ-
ously implemented class. In a way the students’ workflow
reminds the workflow in Test Driven Development [1] except
that the tests are often readily given to student2. A clear
metalevel motivation to the incremental style is to guide
students to a similar working process that good professional
programmers use: progress in small steps and after each step
ensure that what you did works correctly.

Our experiments indicate that the incremental“scaffolded”
process backed with tests works reasonably well. However,
there is one challenge we still need to solve: with the intro-
duction of TMC, some students have started to rely too

2We also have exercises where the students must create unit
tests.

much on the tests, and do not write spontaneous main-
programs of their own for testing. Creating small test pro-
grams for trials and debugging is extremely important since
if a test fails, the corrective actions are not always trivial de-
spite the fact that TMC tests provide rather good diagnostic
messages.

After the students have been honing their skills with the
scaffolded exercises, scaffolding is faded and students work
on more open assignments. Open assignments let the stu-
dents to design the internal program structure freely, but
still provide support e.g. by defining the UI in a relatively
strict manner. Depending on the learning objective of the
exercise, it may be split into required functionalities provid-
ing additional scaffolding.

Open assignments are intentionally complex enough so
that programming a solution to a single class will cause
chaos, but simple enough so that using an “implement a
single requirement, refactor if needed” -approach will end
up with a nice object design. They usually describe a well-
known domain (e.g. airport, airplanes), that helps students
to grasp and design initial domain objects.

Although the majority of the exercises are scaffolded, each
week contains open exercises as well. Having non-scaffolded
open exercises in the course is of importance since our goal is
that every student should be capable of performing elemen-
tary program design and problem solving independently.

5. SAMPLE EXERCISE
When students are learning to program, it is important

that they are shown the process of creating a program step
by step. The following Movie recommender -exercise is an
example of a scaffolded exercise that supports the student
in crafting a working movie recommender. The exercise has
been inspired by the personalized book recommendation sys-
tem presented as one of the nifty assignments in SIGCSE
2011 [11].

In addition to the following description, the description
contained small program snippets that could be used for
verifying the program functionality at specific stages, as well
as reflective narratives. We have omitted them and other
details such as packages due to article size constraints.

Movie Recommender

In October 2006, a corporation called Netflix promised 1 mil-
lion dollars to the person or the group that would be able to create
a program, that is 10% better at making personalized movie rec-
ommendations than their existing program. The competition was
finished in Sept. 2009 (http://www.netflixprize.com) – unfortu-
nately we did not win.

In this exercise, we build a program for recommending movies.
The application can recommend movies based on overall and per-
sonal ratings. First we will create necessary domain objects, and
then start crafting a database for storing ratings. Once we can
store and retrieve ratings, we will build the actual recommender.

Task 1: Person and Movie Create classes Person and Movie.
Both classes must have a public constructor that takes a name
as a parameter, and a public method getName() that returns the
name. In addition, create a toString()-method for both classes
that returns the name that was received in the constructor, and
override the existing equals- and hashCode-methods.

Task 2: Rating Create an enum-type class Rating that has the
following values: terrible (-5), bad (-3), not seen (0), neutral (1),
good (3), awesome (5).The class must have a public method called
getValue() that returns a specific int-value.

Task 3: RatingDatabase (1) Create a RatingDatabase class.
It should provide the following public methods: addRating(Movie
movie, Rating rating) that adds a rating to the given movie,
movieRatings() that returns movie specific ratings as Map<Movie,
List<Rating>>, and getRatings(Movie movie) that returns the
ratings for the given movie as a list.

Task 4: RatingDatabase (2) Add the following public meth-
ods to the class RatingDatabase. Method addRating(Person per-
son, Movie movie, Rating rating) adds a new rating to the given
movie done by the person, getPersonRatings(Person person) re-
turns all ratings made by the given person as Map<Movie, Rat-
ing>, getRating(Person person, Movie movie) returns the rating
for the movie by a given person. If no such rating exists, return
rating not seen. Method getRaters() returns a list of persons that
have added ratings. Each person may rate a specific movie only
once; existing ratings are overwritten.

The functionality implemented in the previous task must not
break.

Task 5: MovieComparator Create a MovieComparator class
that implements interface Comparator<Movie>. The class should
receive a Map<Movie, List<Rating>> as a constructor parame-
ter, and should allow sorting movies based on their rating averages
in descending order.

Task 6: Recommender (1) Create a MovieRecommender class
that takes RatingDatabase as a constructor parameter. Add a
public method recommendMovie(Person person) that recommends
a movie to a person. At this point, recommend only the movie
that has the highest average rating, and has not yet been seen by
the given person. If no such movie exists, return null.

Task 7: PersonComparator Create a class PersonComparator
that implements the interface Comparator<Person>. The com-
parator takes Map<Person, Integer> as a constructor parameter,
and must allow sorting persons based on the map value in de-
scending order.

Task 8: Recommender (2) When the system contains movie
ratings from persons, we have knowledge on their movie taste.
Extend the method recommendMovie(Person person) so that it
gives a personalized recommendation if a person has rated movies.
If the person has not given any ratings, the recommender should
recommend a movie based on rating average.

Personalized ratings should be based on the similarity of ratings
by a person when compared to other raters. Let us consider an
example with 3 persons; Tom, Dick and Harry. Tom has rated
movie A good (3), movie B terrible (-5). Dick has rated movie
B terrible (-5), and movie C good (3). Harry has rated movie B
good (3) and movie C good (3). The person-wise similarities are
calculated based on the similarities of given movie ratings.

If Tom wants to have a movie recommended to him, we calculate
the similarity of each person in relation to Tom. Similarity of
Tom and Dick is 25 (-5 * -5), as they both have seen movie B
and given it the rating terrible. The similarity of Tom and Harry
is -15 (-5 * 3) as they also have both seen the movie B – Harry
rated it good. As the similarity between Tom and Dick is higher,
movies rated as good or excellent by Dick should be recommended
to Tom.

Implement the described functionality.

The movie recommender exercise above is done towards
the end of the course, as it contains object design, use of
maps and lists, and requires basic algorithmic thinking. The
exercise was one of five larger exercises in the week where it
was released.

6. CRAFTING TESTS
Creating pedagogically sound tests for the exercises re-

quires both expertise and experience. As none of the re-
quired classes or packages usually exist in the exercise base
that is downloaded by TMC, scaffolding needs to be built

starting from nothing. We start scaffolding by helping with
the very basic properties, e.g. does a required package ex-
ist, does a required class exist, is the class public and so on.
Once a class is known to exist, the next step is to start verify-
ing the existence of required methods with sensible visibility
settings followed by working on the basic functionality of the
methods, one by one.

TMC provides a DSL for creating scaffolding for basic
properties very easily. In addition to the basic verification
and scaffolding, we have created lots of tests for exercise-
specific scaffolding; roughly over 1300 tests with over 4000
messages were crafted during the MOOC experiment.

Additional scaffolding is done via rigorous use of reflec-
tion. In the movie recommender exercise students are cor-
raled into the right direction with questions like “what hap-
pens if the person has not rated a movie?” and “are you
sure that the movie comparator produces results in correct
order?”. Each task has usually several tests that guide the
students’ working process as well as the student towards a
more proper solution.

The testing of open exercises is usually done with a mix-
ture of reflection and input-output testing. Reflection is used
to verify consistent object design, for example in specific
domain-related problems one may verify that the student
has crafted classes that resemble assumed domain objects.
Actual functionality testing is done using black-box input-
output -testing where most of the possible execution paths
as well as error cases are tested.

Testing is not always easy. For example one of our GUI-
related exercises requires that the student draws a smiley
that looks similar to an example image using only 5 rectan-
gles. Actual testing requires mocking the Java’s Graphics-
object to verify the number of used rectangles, and approxi-
mating distance from the drawn image to an existing image
using a %-match ratio needed for acceptance. We also had
interactive GUI exercises; one of the more demanding ones
scaffolded the students in building the classic snake game
from scratch.

Crafting scaffolding into the exercises was considered re-
warding by the course personnel. Even though some of them
had experience from the industry, there was still lots to
learn. It was essential that the staff was good at playing
the “what could the student do next that would make the
provided scaffolding break up?” -game. We feel that this
was only possible due to the presence in local XA labs.

7. DATA FROM THEMOOC
We had a total of 417 registered participants in our MOOC

using basic word-of-mouth advertising and contacting K-12
institutions. The low number of participants when com-
pared to more established MOOC providers such as Udacity
and Coursera can be partially explained by our relatively
small language area; we offered the course in our native lan-
guage with K-12 institutions specifically in mind.

When registering to the course, one did not need to fill
in any personal details; we only required desired nickname
and a contact email-address. Out of the 417 registered, 405
started working on the exercises and made at least a hello-
world application. During our initial survey three weeks
into the course, 67 students had indicated that they were
applying for full admission – majority of the participants
were on to “check out this new MOOC thing”.

MOOC drop-out rates are typically very high, and hard

Figure 1: Participant feedback on exercise difficulty

plotted against educational value.

figures that could be used for comparison are hard to come
by. During our semester-length MOOC where 405 partic-
ipants programmed at least one program, 329 participants
did over programming 20 tasks, 256 continued to program
over 50 tasks, and 187 over 100 tasks. After 6 weeks one
third of the participants were still actively programming. A
bit under 100 participants did over 80% of the tasks, and 70
participants finished over 90% of the tasks.

During the course we gathered voluntary feedback. The
participants could provide numeric feedback on the difficulty
(1 = easy, 5 = hard) and educational value (1 = low, 5 =
high) for each exercise directly from TMC. The students also
had an option for adding direct verbal feedback. Only 3 of
the exercises had an average difficulty over 4; all of them
were at least partially in the wrong place.

We observe a clear correlation between the difficulty and
educational value of our exercises, see Figure 1. Our goal
was to have each week start easy and early, to addict the
students, and build the exercises so that the students could
work in their zone of proximal development [16, 17].

In addition to the built-in feedback mechanism, we had
setup a IRC channel that served as the main peer-support
forum. Because of the clear timeline in the course, it proved
to be a solid support channel throughout our MOOC. Our
course page provided a web-interface for IRC access, and
during the MOOC, we estimated roughly 250 individual par-
ticipants. Several faculty members were also present – this
is only natural given that they wanted to receive feedback
and see how the course unfolds.

Most active hours were during the evenings. The IRC
activity was relatively low on Saturday, even though Satur-
days and Sundays are not typically schooldays/workdays in
Finland. High activity on Sundays can be explained by the
fact that the submission deadlines for participants were set
for Sundays nights. We observed small peaks in the early
Wednesdays of the early course. At a further inspection,
this was due to our visible, live scoreboard for every nick-
name for the completed exercises: some participants started
to compete on who finishes the exercise set the fastest. This
effect was very prominent in the IRC channel in the early
stages of the course, as the tasks were relatively straightfor-
ward for more experienced participants, but faded away as
the course progressed.

8. CONCLUSIONS AND FUTUREWORK
We described how we offered our CS1 free for everybody

as a MOOC using sophisticated pedagogical, technical and
structural support. The initial feedback from the course par-
ticipants has been fruitful, and we have been able to witness
and gather several completely unsolicited, truly spontaneous
testimonials among the flow of the IRC discussions (trans-
lated by the authors):

I must praise a bit before I continue. It’s been a really good
idea to organize this course! I’ve never programmed before, but
have always been interested in programming. Starting to learn
programming was made really easy

I’ve learned more about programming on mooc than ever before

After mooc one starts to understand why object-oriented pro-
gramming was invented

Right now I just want to quit my work and get back to studying

This is the most in-depth programming course that I’ve ever
had .. absolutely merciless

The first comment was given early in the course and is
in line with the “start early, start small” -view. The second
and third comments were given mid-way through the course
when the participants had been doing object-oriented pro-
gramming for a few weeks. Scaffolded exercises where the
problem had been divided into smaller tasks provided sup-
port, conveyed the working process, and described how prob-
lems should be solved using object-oriented programming.
The second and fifth comment displays that people with ex-
isting programming background were also able to learn new
things.

Fourth comment indicates the motivation boost that one
receives from solving the exercises, and the last comment
puts the demand-level of our approach into words: “abso-
lutely merciless”.

Our initial experiments have been successful: we have
been able to create a model and tools for crafting a MOOC
from our CS1 course, and have been able to provide the
course for free for everyone. Our MOOC has not been a wa-
tered down version of our internal course, which may have
increased the observed drop-out rates.

To our understanding, the drop-out rates have been simi-
lar to other offered MOOCs. In the fall of 2012, we have 41
starting “MOOC students”, which provides an interesting
chance of monitoring how they relate to the students ad-
mitted in a normal way. We are also investigating reasons
on why participants have dropped out midway through the
course, and are performing data-analysis on the solutions
crafted by the MOOC participants.

As our national K-12 curriculum does not include IT re-
lated studies, many of the students miss the opportunity to
learn programming. We provide support for basic program-
ming education to any K-12 -school free of charge. The
formally acknowledged MOOC approach with partial ex-
ams does not demand actual programming knowledge from
teachers or the school faculty, and due to the nationwide
technology programme any school has computers required
for the course. Additionally, majority of the students have
computers at home.

9. REFERENCES
[1] K. Beck. Test Driven Development: By Example.

Addison-Wesley, 2002.

[2] J. Bennedsen and M. E. Caspersen. Reflections on the
teaching of programming. chapter Exposing the

Programming Process, pages 6–16. Springer-Verlag,
Berlin, Heidelberg, 2008.

[3] M. E. Caspersen and J. Bennedsen. Instructional
design of a programming course: a learning theoretic
approach. In ICER ’07: Proceedings of the third

international workshop on Computing education

research, pages 111–122. ACM, 2007.

[4] A. Collins, J. Brown, and S. Newman. Cognitive
apprenticeship: Teaching the craft of reading, writing
and mathematics. In Knowing, Learning and

Instruction: Essays in honor of Robert Glaser.
Hillside, 1989.

[5] A. Collins, J. S. Brown, and A. Holum. Cognitive
apprenticeship: making thinking visible. American

Educator, 6:38–46, 1991.

[6] A. Fox and D. Patterson. Crossing the software
education chasm. Commn. ACM, 55(5):44–49, May
2012.

[7] J. Gal-Ezer, T. Vilner, and E. Zur. The professor on
your pc: a virtual cs1 course. In Proceedings of the

14th annual ACM SIGCSE conference on Innovation

and technology in computer science education, ITiCSE
’09, pages 191–195, New York, NY, USA, 2009. ACM.

[8] P. Ihantola, T. Ahoniemi, V. Karavirta, and
O. Seppälä. Review of recent systems for automatic
assessment of programming assignments. In Proc. of

the 10th Koli Calling Int. Conf. on Computing

Education Research, Koli Calling ’10, pages 86–93,
New York, NY, USA, 2010. ACM.

[9] J. Kurhila and A. Vihavainen. Management,
structures and tools to scale up personal advising in
large programming courses. In Proceedings of the

SIGITE ’11. ACM, 2011.

[10] A. McAuley, B. Stewart, G. Siemens, and D. Cormier.
The mooc model for digital practice. 2012.

[11] N. Parlante, J. Zelenski, K. Schwarz, D. Feinberg,
M. Craig, S. Hansen, M. Scott, and D. J. Malan. Nifty
assignments. In Proceedings of the 42nd ACM technical

symposium on Computer science education, SIGCSE
’11, pages 491–492, New York, NY, USA, 2011. ACM.

[12] A. Robins, J. Rountree, and N. Rountree. Learning
and teaching programming: A review and discussion.
Computer Science Education, 13:137–172, 2003.

[13] H. Roumani. Design guidelines for the lab component
of objects-first cs1. In SIGCSE ’02: Proceedings of the

33rd SIGCSE technical symposium on Computer

science education, pages 222–226. ACM, 2002.

[14] J. Subhlok, O. Johnson, V. Subramaniam, R. Vilalta,
and C. Yun. Tablet pc video based hybrid coursework
in computer science: report from a pilot project.
SIGCSE Bull., 39(1):74–78, Mar. 2007.

[15] S. Thrun and D. Evans. Georgia tech talk quoted in
computing education blog, 2012.

[16] A. Vihavainen, M. Paksula, and M. Luukkainen.
Extreme apprenticeship method in teaching
programming for beginners. In SIGCSE ’11:

Proceedings of the 42nd SIGCSE technical symposium

on Computer science education, 2011.

[17] L. S. Vygotsky. Mind in Society: The Development of

Higher Psychological Processes. Harvard University
Press, Cambridge, MA, 1978.

