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Evaluating PRISM Precipitation Grid Data As Possible 
Surrogates For Station Data At Four Sites In Oklahoma

Dr. Jeanne M. Schneider and Donald L. Ford
USDA Agricultural Research Service Grazinglands Research Laboratory
7207 West Cheyenne St., El Reno, OK 73036 

The development of climate-sensitive decision support for agriculture or water resource 
management requires long time series of monthly precipitation for specific locations.  Ar-
chived station data for many locations is available, but time continuity, quality, and spatial 
coverage of station data remain significant issues.  One possible alternative for station 
data are continuous, gridded monthly data produced by the PRISM Climate Group, with 
each grid cell roughly 4 km per side.  The PRISM monthly precipitation data is evaluated 
against station data for four sites in Oklahoma, for possible use whenever station data 
is unavailable or insufficient.  The station and PRISM data are found to be very similar 
in two key respects (specifically 30-year monthly means and certain characteristics of 
probability density functions), but significantly different in variance.  The difference in 
variance is attributed to situations where precipitation varied by significant amounts over 
short distances, with the gridded PRISM data “smearing” the heavy rainfall over locations 
that received lower amounts.  As a result, PRISM precipitation data would be suitable for 
downscaling seasonal climate forecasts or other analyses that require knowledge of the 
mean and central shape of the local probability density function, but not for specifying 
variance as input for weather generators. © 2010 Oklahoma Academy of Science.

InTRODuCTIOn 
 
Given the significant impact of monthly, 
seasonal, and annual variations in precipita-
tion on Oklahoma’s agriculture and water 
resources, it would be prudent to develop 
climate-informed decision support that 
incorporates the best available information 
on those variations.  The availability of sea-
sonal climate forecasts from the National 
Atmospheric and Oceanic Administration 
(NOAA) presents that opportunity, but the 
climate forecasts are statements of prob-
ability for 3-month periods and large areas 
(see Figure 1 for an example), so the forecasts 
must to be downscaled to locations, and 
their potential practical impact interpreted 
through the use of crop or hydrologic mod-
els (1, 2, 3).  This area of developing research 
requires very long duration (covering at 
least 3 decades, preferably 5 to 10 decades), 
high quality station data in essentially every 
location needing decision support, espe-
cially for precipitation.

 Station data has been collected and 
archived by NOAA, in particular their 
Cooperative Summary of the Day data set 
(COOP hereafter), and continues to be used 
extensively.  Unfortunately, the COOP data 
sets are irregular in location, duration, and 
quality, and require significant evaluation 
and filling of missing data before they can 
be used with confidence.  For example, there 
have been a total of 364 COOP stations in 
Oklahoma measuring precipitation at some 
time since settlement, but only 137 of those 
stations have at least 50 years of mostly 
continuous data.  Given the high degree of 
variability in precipitation amounts, this 
situation leaves most locations in the state 
under-observed in the manner required 
for the development of climate-informed 
decision support for agriculture and water 
resource management.
 Recently, a suite of spatial climate prod-
ucts created by the PRISM Climate Group 
(PRISM is an acronym for “Parameter-ele-
vation Regressions on Independent Slopes 
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Model”) at Oregon State have become 
available via internet, and are described 
online as the USDA’s official climatological 
data (4).  The term “climatology” in this 
application refers to collections of weather 
data covering 30 or more continuous years; 
for example, the current NOAA standard 
climatology covers the years 1971-2000.  
The PRISM products were created specifi-
cally to address the issue of spatially sparse 
location climatologies (5, 6, 7, 8), by gener-
ating spatially and temporally continuous 
climate data covering the contiguous U.S.  
The PRISM climate data is defined on a 2.5 
minute grid, so the values represent esti-
mates over quadrants approximately 4 km 
(2.5 miles) on a side.  The quality control 
and grid-filling algorithms employed in the 
PRISM grid data generation are a rational 
approach to a difficult problem, using ex-
isting station (location) data available from 
many sources, and accounting for most of 
the terrain and coastal factors that impact 
climate on spatial scales of a few kilometers, 
including altitude.  Among the PRISM spa-
tial products, the long term (1895-present) 
monthly precipitation and maximum and 
minimum temperature products (9) are of 
particular interest as a possible surrogate for 
COOP data in the development of climate-
informed decision support tools.  
 The analysis reported in this article 
investigates whether the monthly gridded 
PRISM precipitation data (PRISM hereafter) 
might be useful surrogates for station pre-
cipitation data, for locations lacking station 
data, or in situations where the existing sta-
tion data is of questionable quality.  Such a 
use does not appear to have been intended 
by the PRISM group – their focus was on 
developing continuous gridded data suit-
able for use in spatially distributed models 
and analyses.  However, the small grid size 
suggests that such an application might 
be plausible, especially given the reported 
quality of the PRISM data (8).  Unfortu-
nately, the statistics reported in (8) were 
computed over large regions (basically 1/3 
of the contiguous U.S.), and do not include 

a number of details relative to our interest.  
In particular, there is no Oklahoma-specific 
report, and we found no published work on 
use of PRISM data to construct probability 
density functions (needed for the spatial 
downscaling of the seasonal forecasts). 
 Given the methods used to develop 
the PRISM data, we expect the monthly 30-
year PRISM precipitation means to be very 
similar to co-located station means.  We 
also expect that the processes employed to 
produce the PRISM precipitation data will 
necessarily result in some degree of spatial 
smoothing in the data (i.e., “smearing” the 
rainfall over a larger area), possibly reduc-
ing extreme values (both number of months 
with zero precipitation, and the largest 
monthly totals), variance, and skewness, 
effectively changing the shape of the station 
probability distributions.  If so, how large 
are the differences, and do they preclude 
the use of monthly PRISM time series to 
construct surrogate station probability dis-
tributions, or to derive statistics required by 
weather generators associated with crop or 
hydrologic models?
 In order to begin to answer these ques-
tions, analysis was conducted for four 
stations in Oklahoma, a region where the 
PRISM data can reasonably be expected 
to be highly similar to underlying station 
data, due to the relatively simple terrain in 
Oklahoma.  With such a small sample, this 
analysis is neither exhaustive nor defini-
tive, but may be sufficient to support initial 
conclusions concerning possible utility of 
PRISM data for use in the development of 
climate-informed decision support for loca-
tions.

METhODS

In the United States, most precipitation 
measurements are collected and archived 
in units of inches.  This is the case for all 
precipitation data used in this comparison, 
so all values reported here are also in inches.
 The longest duration station climate 
data available for most of the U.S. (includ-
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ing Oklahoma) are the NWS Cooperative 
Station Data (COOP).   As such, the COOP 
data are the backbone of the PRISM analysis 
products.  If our goal was to validate the 
PRISM data, use of COOP data would not 
be appropriate – independent data, prefer-
ably from several sites within each PRISM 
quadrangle, would be required.  However, 
our goal is different – determining if the 
PRISM data is sufficiently similar to col-
located COOP station data to be used as a 
surrogate.

COOP Station Data
 Daily station data were acquired from 
NOAA’s National Climatic Data Center on 
CD-ROMs (10) covering the period 1850s-
2006.  Preliminary surveys of COOP time 
series in Oklahoma were conducted to iden-
tify stations with a long period of record and 
minimal missing data.  To qualify, a COOP 
precipitation time series had to be at least 
75% complete and have data from at least 
1948 to 2006.  Four stations were chosen in 
central and eastern Oklahoma for this initial 
analysis:  Enid, Hobart, Madill, and Tulsa.  
COOP station data have a number of known 
quality problems, including the observer 
problems recently reported by Daly (11), 
which included examples from COOP sta-
tions in Oklahoma.  To check for the prob-
lems reported in (11), the daily time series 
for each station were examined for two 
particular types of error:  underreporting 
of daily amounts less than 0.05”; and Daly’s 
“5/10 bias”, which is over-reporting of daily 
precipitation amounts easily divided by 
5 or 10 (amounts more easily read on the 
rain gauges, i.e., 1.05”, 0.2”).   Of the four 
stations, only the Madill data showed any 
sign of possible under-reporting of amounts 
less than 0.05”.  With respect to the over-
reporting error, the Tulsa and Hobart data 
showed no apparent problem, while the Ma-
dill and Enid data exhibited possible small 
problems.  As noted in (11), if significant, 
these problems would impact statistics for 
the average number of wet days per month, 
and the average amount of precipitation that 

fell on wet days (both statistics are needed 
for weather generators used with crop or hy-
drologic models), and possibly on decade-
total amounts.  None of these statistics are 
part of this analysis, and it appears that the 
reporting problems for these four stations 
are small enough that any related impact on 
monthly totals can be expected to be small.  
Calculation of the mean average error (the 
mean of the unsigned difference) between 
the COOP and PRISM monthly time series 
for 1971-2000 are similar to published results 
for validation of PRISM data in the central 
U.S. (0.187” for PRISM data, 0.166” average 
for the 4 COOP stations).  This suggests that 
any such reporting problems for these four 
stations are no worse than those for other 
station data used to validate PRISM data 
in (8).
 Whenever daily values were missing, 
nearby station data were used to fill the 
gaps by calculating relationships over time 
between station time series.  This is a rela-
tively common (although labor intensive) 
approach that suffers from the potential 
problem of assigning precipitation on days 
when there was rain in the area, but not at 
that location.  All station-based filling tech-
niques (including those used to produce 
the PRISM products) have this problem.  In 
order to isolate possible impacts from the 
differences between our technique and that 
used for PRISM data, a second set of data 
for each location was generated, omitting 
months in which three or more days (ap-
proximately 10%) were filled, or months in 
which the filled data comprised more than 
10% of the monthly total.  This is a relatively 
severe restriction, as many quality control 
methods use a 15%-missing criterion.  The 
months identified in this way were elimi-
nated from both the COOP data and the 
corresponding PRISM data in the second 
data set, so as to maintain a direct one-to-one 
comparison.  
 Daily precipitation data were summed 
into monthly values, and time series were 
developed for January 1901 through De-
cember 2006 for Enid, and for January 1948 
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through December 2006 for Hobart, Madill, 
and Tulsa. 

PRISM Grid Data
 Monthly PRISM precipitation data were 
acquired over the internet from the PRISM 
web page (9), and time series were extracted 
for grid locations in Oklahoma in the vicin-
ity of the four chosen stations.  Station loca-
tions did change over the decades (a com-
mon and continuing problem), necessitating 
the creation of location-matched COOP and 
PRISM time series.  (The movement of sta-
tion locations was automatically accounted 
for during the generation of the PRISM 
data grids.)  For each individual month, 
the latitude and longitude of each COOP 
station was matched to a particular PRISM 
quadrangle.  If a COOP station moved mid-
month, the COOP station was matched to 
the PRISM quadrangle with the majority of 
days; this impacted only one month each for 
Hobart and Tulsa. 

Analysis Approach
 Several complementary approaches 
were used to answer the questions:
1) How similar are the COOP and PRISM 

time series and their probability density 
functions, on a monthly basis, over the 
entire available record and the current 
30-year climatology?

2) When they are different, how (direction, 
magnitude), and under what circum-
stances?

 The first approach is a classical “dif-
ference of means” test and a “ratio of vari-
ances” test (12).  These tests are evaluating 
the assumption that the two data sets could 
be two different sets of samples from a long, 
common series of events, with equivalent 
statistics.  Both tests require independent se-
quential observations in both data sets, and 
Gaussian distributions.  If the distributions 
are not quite Gaussian in shape (the case 
for monthly precipitation in Oklahoma), 
then a sample size of at least 30 is required.  
A probability value (hereafter p-value) was 
generated for each monthly pair of COOP 

and PRISM data values, representing the 
probability of the COOP and PRISM data 
values being the same, scaled so that a value 
of 1.0 indicates a perfect match.  The level 
of significance for tests was arbitrarily cho-
sen to be 0.10, so p-values surpassing 90% 
indicate equivalence of means or variances 
within the constraints of the tests.  Given the 
range of the resulting p-values for variance, 
a second “tier” was added at 50% in order 
to separate months with some degree of 
correspondence from months with little to 
none.  
 The p-value results are supported and 
interpreted using histograms of the dif-
ferences between the PRISM and COOP 
monthly precipitation over the common 
period of record (1948-2006).  The largest 
differences between the COOP and PRISM 
monthly values are investigated to deter-
mine the associated circumstances.
 The second approach examines plots 
of probability of exceedance (PoE) distri-
butions for individual months over the 30 
years 1971-2000, the probability distribution 
format used for NOAA/ CPC seasonal cli-
mate forecasts (see Figure 1) and of primary 
interest here (13).  A probability of exceed-
ance function is a variation on a cumulative 
probability density function, designed to 
make it easy to associate odds of occurrence 
with different ranges of precipitation.  This 
format facilitates a risk-based interpretation 
of climate forecasts and their associated 
impacts. 
 

RESuLTS 
 
The means of the COOP and PRISM data are 
almost a perfect match post-1951, with few 
p-values below 0.9, and only one below 0.5 
(January for 1977-2006 at Hobart).  The p-
value results for the 30 years 1971 – 2000 are 
presented in Table 1 (all data included) and 
Table 2 (“filled” data removed).  Comparing 
Table 1 and 2, removal of the filled data has 
very limited impact on the p-values for the 
means, with the exception of the Hobart 
data, which was missing almost 3 years 
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of data in the late 1990s.  For the Hobart 
climatology in Table 2, the sample size may 
be too small to support any fi rm conclusions 
with these tests.
 Contrary to the results for the means, 
the variances of the COOP and PRISM data 
were signifi cantly different.  As shown in 
the tables, variance p-values greater than 
0.9 are rare, and the number of p-values less 
than 0.5 is discouraging.  When the fi lled 
data were removed, the p-values change 
more than they did for the means, but the 
conclusions remains the same: the means 
are essentially indistinguishable, but the 
variances of the COOP and PRISM data can 

not be construed as possibly belonging to a 
common distribution.  Given the similar-
ity in results between the two data sets, all 
further discussion will refer to the fi lled data 
(Table 1).
 For most months in the 4-station 1971-
2000 comparison, the PRISM variances are 
smaller than the COOP variances, with 
half of the months showing differences of 
less than 10% of the COOP variance.  This 
result is consistent with our expectation 
before performing the analysis.  However, 
the number of months with very large dif-
ferences in variance prompted examina-
tion of the differences between the COOP 

Figure 1. Example of a nOAA/CPC seasonal climate forecast in the format of a probability 
of exceedance (PoE) distribution.  The underlying 30-year climatology for total precipita-
tion in March-June-July (MJJ in the fi gure title) for this large region of Oklahoma is the 
stepped grey line (indicated with an arrow) roughly coincident with the smooth black 
curve identifi ed as “Normal”, while the “Final Forecast” is the heavy line just to the left.  
Other examples of these forecasts and supporting information is available via the internet 
at http://www.cpc.ncep.noaa.gov/pacdir/NFORdir/HOME3.shtml.

EvALuATInG PRISM PRECIPITATIOn GRID DATA 97



Proc. Okla. Acad. Sci. 90: pp 93-104 (2010)

En
id

 1
97

1-
20

00
H

ob
ar

t 1
97

1-
20

00
M

ad
ill

 1
97

1-
20

00
Tu

ls
a 

19
71

-2
00

0

J.M. SChnEIDER and D.L. FORD98

Table 1.  Statistics for the 30 years 1971-2000 for the four sites in Oklahoma; p-values 
indicating equivalence are in bold; p-values less than that are shaded, with darker shad-
ing indicating lower values.

 Month  Mean   Variance                 Skewness 
  COOP PRISM p-value COOP PRISM p-value COOP PRISM

 Jan 1.17 1.13 0.88 0.91 0.88 0.86 0.70 0.74
 Feb 1.58 1.57 0.97 1.68 1.59 0.76 0.62 0.60
 Mar 2.65 2.73 0.93 3.60 3.59 0.99 1.03 0.93
 Apr 3.25 3.25 1.00 3.62 3.41 0.74 0.55 0.54
 May 4.87 4.90 0.99 6.98 6.92 0.96 0.70 0.67
 Jun 4.41 4.39 0.99 5.64 5.35 0.78 0.52 0.42
 Jul 2.66 2.84 0.75 2.35 2.02 0.41 -0.15 -0.26
 Aug 3.37 3.42 0.97 6.23 5.91 0.78 0.72 0.85
 Sep 3.18 3.18 1.00 3.80 3.67 0.85 0.33 0.39
 Oct 3.37 3.19 0.95 12.84 8.43 0.03 2.09 1.54
 Nov 2.40 2.38 0.97 2.35 2.19 0.71 0.45 0.31
 Dec 1.40 1.40 0.99 1.41 1.33 0.75 0.88 0.87
 ALL 2.86 2.86 0.99 5.46 4.96 0.07 1.49 1.17

 Jan 0.96 0.95 1.00 0.70 0.68 0.88 0.61 0.61
 Feb 1.08 1.07 0.99 1.11 0.92 0.33 1.24 0.81
 Mar 2.00 2.03 0.94 1.89 2.05 0.67 0.51 0.55
 Apr 2.55 2.53 0.98 3.53 3.31 0.74 0.86 1.07
 May 4.55 4.70 0.95 9.37 9.53 0.92 0.59 0.69
 Jun 3.29 3.61 0.75 3.83 4.04 0.78 0.53 0.24
 Jul 2.40 2.31 0.94 4.53 3.83 0.37 1.98 1.96
 Aug 2.82 2.67 0.90 4.81 3.61 0.13 0.84 0.69
 Sep 3.33 3.36 0.99 9.06 7.95 0.48 0.81 0.67
 Oct 2.83 2.78 0.97 5.16 4.92 0.80 1.41 1.51
 Nov 1.55 1.64 0.83 1.72 1.85 0.69 2.03 1.60
 Dec 1.26 1.26 1.00 1.76 1.67 0.80 1.23 1.21
 ALL 2.38 2.41 0.94 5.01 4.85 0.53 1.49 1.47

 Jan 2.16 2.09 0.90 2.19 1.91 0.46 0.93 0.75
 Feb 2.46 2.42 0.93 2.30 2.01 0.48 0.37 0.25
 Mar 3.69 3.62 0.94 3.84 3.38 0.50 0.45 0.30
 Apr 3.49 3.59 0.93 4.33 4.41 0.92 0.99 0.87
 May 5.32 5.24 0.96 7.40 6.83 0.67 0.01 0.01
 Jun 5.06 4.98 0.98 11.06 9.25 0.34 1.69 1.98
 Jul 2.20 2.39 0.82 2.91 3.26 0.55 0.55 0.45
 Aug 2.72 2.67 0.97 5.47 4.96 0.60 1.01 1.13
 Sep 4.49 4.51 1.00 9.88 8.95 0.60 0.86 0.82
 Oct 4.50 4.82 0.94 11.45 20.52 0.00 1.63 3.08
 Nov 3.17 3.12 0.96 4.18 3.37 0.25 0.71 0.44
 Dec 2.72 2.67 0.96 4.00 3.52 0.49 0.96 0.82
 ALL 3.50 3.51 0.98 6.89 7.19 0.42 1.42 2.33
 
 Jan 1.59 1.61 0.95 1.19 1.13 0.76 0.38 0.39
 Feb 1.97 1.96 0.97 2.09 1.94 0.70 0.85 0.92
 Mar 3.60 3.58 0.99 6.03 5.79 0.82 1.32 1.28
 Apr 3.95 3.93 0.99 4.34 3.88 0.55 0.21 0.04
 May 6.11 5.91 0.91 7.02 6.07 0.44 -0.03 0.02
 Jun 4.72 4.70 0.99 6.04 5.57 0.66 0.27 0.20
 Jul 2.96 2.94 0.99 6.15 5.53 0.57 1.33 1.25
 Aug 2.85 2.82 0.97 3.52 3.11 0.50 0.82 0.77
 Sep 4.76 4.86 0.98 13.11 12.39 0.76 2.10 2.04
 Oct 4.06 4.02 0.99 7.00 6.82 0.89 0.47 0.45
 Nov 3.47 3.50 0.98 4.55 4.41 0.87 0.26 0.22
 Dec 2.48 2.44 0.97 4.48 4.03 0.57 1.12 0.94
 ALL 3.54 3.52 0.97 6.97 6.51 0.19 1.23 1.20
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Table 2. As in Table 1, except after removing all “filled” data; “#” indicates the number 
of months remaining in the nominally 30-year analysis period.

 Month  Mean  Variance   Skewness 
  # COOP PRISM p-value COOP PRISM p-value COOP PRISM

 Jan 28 1.17 1.16 0.97 0.97 0.93 0.82 0.67 0.66
 Feb 28 1.66 1.63 0.95 1.72 1.64 0.81 0.52 0.50
 Mar 27 2.56 2.55 0.99 3.65 3.59 0.93 1.18 1.17
 Apr 30 3.25 3.25 1.00 3.62 3.41 0.74 0.55 0.54
 May 30 4.87 4.90 0.99 6.98 6.92 0.96 0.70 0.67
 Jun 29 4.54 4.54 1.00 5.32 4.89 0.66 0.57 0.54
 Jul 29 2.75 2.93 0.73 2.20 1.84 0.36 -0.17 -0.27
 Aug 30 3.37 3.42 0.97 6.23 5.91 0.78 0.72 0.85
 Sep 29 3.13 3.14 0.99 3.88 3.76 0.88 0.39 0.43
 Oct 28 3.54 3.31 0.94 13.30 8.79 0.04 2.01 1.45
 Nov 29 2.26 2.25 0.99 1.82 1.79 0.92 0.01 0.01
 Dec 27 1.41 1.41 1.00 1.28 1.28 0.99 0.93 0.92
 ALL 344 2.90 2.90 1.00 5.49 4.98 0.07 1.51 1.19

 Jan 27 0.91 0.92 0.83 0.71 0.70 0.80 0.74 0.72
 Feb 26 1.03 1.03 0.84 0.78 0.78 0.18 0.68 0.71
 Mar 28 1.97 2.00 0.90 1.64 1.74 0.25 0.55 0.56
 Apr 28 2.44 2.38 0.92 2.77 2.26 0.36 0.64 0.40
 May 28 4.67 4.83 0.99 9.76 9.90 0.90 0.51 0.60
 Jun 28 3.39 3.74 0.83 3.79 3.89 0.75 0.52 0.26
 Jul 28 2.44 2.36 0.91 4.71 4.03 0.28 1.97 1.89
 Aug 27 2.53 2.50 0.89 3.70 3.02 0.89 0.86 0.66
 Sep 27 3.47 3.38 0.96 9.54 8.45 0.34 0.74 0.69
 Oct 27 2.74 2.74 0.97 5.20 5.29 0.77 1.52 1.55
 Nov 27 1.56 1.58 0.87 1.89 1.90 0.90 1.92 1.80
 Dec 27 1.25 1.24 0.98 1.75 1.68 0.80 1.31 1.28
 ALL 328 2.38 2.41 0.94 5.02 4.91 0.52 1.54 1.51

 Jan 28 2.22 2.17 0.93 2.28 1.94 0.41 0.84 0.67
 Feb 27 2.44 2.39 0.91 1.71 1.58 0.70 -0.19 -0.17
 Mar 28 3.57 3.55 0.98 3.69 3.40 0.68 0.50 0.35
 Apr 28 3.51 3.65 0.91 4.52 4.60 0.92 0.98 0.81
 May 27 5.39 5.36 0.99 6.92 6.67 0.85 0.06 0.05
 Jun 27 5.09 5.02 0.98 11.04 10.13 0.66 1.81 1.90
 Jul 29 2.28 2.44 0.84 2.85 3.29 0.45 0.52 0.39
 Aug 29 2.78 2.70 0.96 5.56 5.11 0.66 0.96 1.08
 Sep 29 4.60 4.64 0.99 9.86 8.74 0.53 0.83 0.82
 Oct 28 4.45 4.85 0.93 12.22 21.97 0.00 1.63 2.96
 Nov 28 3.02 3.03 0.99 3.36 3.26 0.88 0.41 0.47
 Dec 27 2.51 2.54 0.97 3.00 3.05 0.94 1.07 1.07
 ALL 335 3.48 3.52 0.94 6.76 7.37 0.11 1.51 2.41

 Jan 29 1.56 1.58 0.95 1.22 1.15 0.77 0.44 0.44
 Feb 29 1.92 1.93 0.99 2.07 1.97 0.81 0.96 0.98
 Mar 30 3.60 3.58 0.99 6.03 5.79 0.82 1.32 1.28
 Apr 30 3.95 3.93 0.99 4.34 3.88 0.55 0.21 0.04
 May 30 6.11 5.91 0.91 7.02 6.07 0.44 -0.03 0.02
 Jun 30 4.72 4.70 0.99 6.04 5.57 0.66 0.27 0.20
 Jul 30 2.96 2.94 0.99 6.15 5.53 0.57 1.33 1.25
 Aug 30 2.85 2.82 0.97 3.52 3.11 0.50 0.82 0.77
 Sep 30 4.76 4.86 0.98 13.11 12.39 0.76 2.10 2.04
 Oct 29 4.13 4.11 0.99 7.07 6.83 0.86 0.41 0.40
 Nov 30 3.47 3.50 0.98 4.55 4.41 0.87 0.26 0.22
 Dec 29 2.38 2.32 0.96 4.33 3.75 0.45 1.26 1.07
 ALL 356 3.55 3.53 0.97 7.03 6.55 0.18 1.23 1.20
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and PRISM time series to determine the 
causes; those differences are summarized 
as histograms over the common period 
of record (1948-2006, see Figure 2).  These 
histograms indicate that the majority of the 
pairs of compared monthly totals are highly 
similar: the overwhelming majority of the 
differences for all four stations are within the 
measurement uncertainty of total monthly 
precipitation (± 0.3”).  Further, there are a 
limited number of signifi cant mis-matches 
in monthly total precipitation, but those 
few produce the signifi cant difference in 
variance.  Examination of the months with 
large differences in mean reveal one of two 
situations: either a heavy multi-day event 
(typically the remnants of a tropical storm), 

or a series of summer days with sporadic, 
locally heavy rainstorms, with signifi cant 
variations in precipitation totals over very 
short distances.  The spatial smoothing in-
herent in the PRISM data appears to have 
“smeared” heavy precipitation events onto 
locations that actually received signifi cantly 
different amounts, resulting in differences 
in variance in both directions (larger and 
smaller).
 Surprisingly, the statistically signifi cant 
differences in variance between the PRISM 
and COOP data appear to have limited im-
pact on the associated probability of exceed-
ance functions (PoEs).  The p-value tables 
were used to select two months for each 
location during the 1971-2000 climatology 

Figure 2.  Histograms of the difference between the COOP and PRISM monthly totals 
over the period of record; if the values were identical, the difference would be zero.  The 
bin size of 0.3” corresponds to the measurement uncertainty of a monthly precipitation 
total, so all differences ≤ 0.3” are essentially negligible.  Unusually large differences are 
highlighted with arrows.
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Figure 3.  Example PoE distributions for months with relatively good agreement in vari-
ance, as indicated by the variance p-values reported in Table 1 (left panels) and with rela-
tively poor agreement (right panels).  The result illustrated here is that variance p-values 
are not a good indicator of the degree of similarity in the associated PoE distributions.
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with relatively good versus relatively poor 
agreement in variance; the corresponding 
PoEs are presented in Figure 3, with the as-
sociated p-values.  This collection of PoEs is 
a good representation of the range of vari-
ability between the PoEs for these stations.
 For the purpose of downscaling sea-
sonal climate forecasts, the slope of the 
center half of the distribution (events with 
probability of 25-75%) is of most interest, be-
cause this is where the forecast is expected to 
be most “confident” (14).  Because PoEs are 
constructed from ordered data (smallest to 
largest values), large differences at the high 
end of the distribution have a significant 
impact on variance, but not on the shape 
of the distribution’s center.  Interestingly, it 
is the events where the COOP and PRISM 
values differ by just a few inches of rain 
(the shoulders of the difference histograms 
around the central peak) that distort the 
central slope of the distribution, but these 
do not have as large an impact on the vari-
ance.  Given that estimating the central 
slope is an approximate process for “noisy” 
PoEs constructed from only 30 values (PoEs 
constructed from longer climatologies are 
much smoother), the impact of the appar-
ent differences between COOP and PRISM 
data will be relatively small on downscaled 
seasonal climate forecasts.
 In summary, the results are both good 
news and bad news relative to the possible 
use of PRISM data as a surrogate for COOP 
data in the development of climate-informed 
decision support for agriculture and water 
resource management.  The good news is 
the essential identity of the means of the 
COOP and PRISM data, calculated over 30-
year or longer periods, for the four stations 
examined here.  This is significant for the 
potential use of PRISM data to downscale 
seasonal climate forecasts, ensuring that the 
location PoEs would be properly “centered” 
along the precipitation axis.  The further 
surprisingly good agreement in slope across 
the center of the PoE distributions suggests 
that the PRISM data would be a useful sur-
rogate for COOP data for downscaling and 

similar analyses that depend on the shape 
of the center of the probability distribution.  
This is the result of the relative insensitivity 
of the center portion of a PoE to differences 
in extreme values in the largest and smallest 
25% of the distribution.
 The bad news is the significant differ-
ence between the COOP and PRISM vari-
ances.  Further, given the results here, it does 
not appear to be possible to derive a simple 
predictive relationship between the two that 
would support a “correction” to the PRISM 
variance.  The range in variance runs from 
-79% (Madill, October) to 34% (Enid, Octo-
ber), and appears to depend on the number 
and magnitude of localized heavy rain 
events during the analysis period “picked 
up and smeared” by the PRISM algorithms.  
This factor precludes the immediate use of 
the PRISM variance data (and by extension, 
higher order statistics such as skewness, or 
mean wet-day incidence) to drive a weather 
generator, which is a common technique to 
generate daily data from monthly statistics 
to use as input for crop and hydrologic 
models.  
 These results further suggest that a for-
mal validation of the PRISM variance values 
may be in order, using an independent data 
source composed of multiple gauges within 
PRISM quadrangles, assuming such can be 
identified.
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