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The new multi-frequency process, which consists of three coupled

nonlinear optical interactions: two parametric down-conversions and one

up-conversion, in aperiodically poled nonlinear crystal is investigated. The

spatial dynamics of wave intensities is studied in detail. The possibility of

secondary simplification of coupled equations for correct describing the dy-

namics of wave interactions is demonstrated. The optimal conditions for

parametrical instability of the initial stage of wave interactions are found.

PACS numbers: 42.25.–p, 42.15.Eq, 42.65.–k, 42.79.Nv

1. Introduction

Recently the quasi-phase matched (QPM) wave interactions are widely used
in nonlinear optics due to the development of the fabrication technique of period-
ically poled nonlinear crystals (PPNCs). It is possible to simultaneously realize
two coupled processes of wave interactions due to selection of modulation period of
nonlinear coefficient in PPNCs [1]. In this case the reciprocal vector of nonlinear
coefficient must compensate the phase mismatches of two processes at once. It
should be noted that the compensation may be achieved only for limited numbers
of optical frequencies [2]. The same difficulties occur at simultaneous implemen-
tation of more than two wave interactions.

The simultaneous realization of many nonlinear processes can be achieved
in aperiodically poled nonlinear crystals (APNCs), in which nonlinear coupling
coefficient changes according to aperiodic law (see, for example, [3–8]). It al-
lows compensating phase mismatches of several nonlinear processes. However, the
present-day APNCs in the same way as PPNCs also allow to simpler realize only
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one three-frequency process of wave interactions and have difficulties in implemen-
tation of several nonlinear processes due to dispersion of crystals.

In this paper we study a new type of multi-frequency process in APNC,
which is designed by using new simple aperiodic law.

2. The method of APNCs design for multi-frequency processes

The idea of fabrication of APNCs is based on the generalization of modula-
tion rule, which is used for fabrication of PPNC with modulation period Λ:

g(z) = sign[sin(2πz/Λ)], (1)
where g(z) is the modulation function of nonlinear coefficient of PPNC; Λ =
2πm/∆k; ∆k is the phase mismatch of wave vectors for three-frequency nonlinear
process, which can be effectively realized in PPNC.

The generalization of Eq. (1) for the case of N nonlinear process has the
following form:

g(z) = sign




N∑

j=1

aj sin(2πz/Λj)


 , (2)

where Λj = 2πm/kj ; ∆kj is the phase mismatch of wave vectors for the j-th
three-frequency process; N is the number of simultaneous implemented nonlin-
ear processes; aj is the numerical coefficient. Modulation function in Eq. (2) is

Fig. 1. Module of Fourier spectrum of function g(z) of PPNC and APNC. 1 — g(z) =

sign
[∑3

j=1
sin(2πz/Λj)

]
, 2 — g(z) = sign[sin(2πz/Λ1)], 3 — g(z) = sign[sin(2πz/Λ2)],

4 — g(z) = sign[sin(2πz/Λ3)].

aperiodic in general case, and its Fourier spectrum has spectral components for
compensating phase mismatches for several processes. For example, Fig. 1 illus-
trates the Fourier spectrum

F (K) =
1
L

∫ L

0

g(z) exp(−iKz)dz (3)

of function g(z) in APNC for implementation of three nonlinear processes (N = 3)
in comparison with spectrum of function g(z) in PPNC (see Eq. (1)). Here
Λ1 = 21.2 µm, Λ2 = 14.3 µm, Λ3 = 8 µm, which are necessary for each of multi-
-frequency process (see below). One can see that spectral components in APNC,
which are referring to different periods, are approximately equal to 0.3, and the
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maximal absolute value of the Fourier spectral component for PPNCs is 0.63.
Comparison of spectra of modulation functions in APNC and PPNC also shows
that its spectral widths are approximately equal. This comparison is promising
from the viewpoint of good efficiency of several simultaneous nonlinear processes
in APNCs, which are created using the method under consideration.

3. The dynamics of three coupled wave process with five waves

We study the five-frequency process, which consists of simultaneous three
nonlinear processes: (1) parametric down-conversion ω1 → ω2+ω3, (2) parametric
up-conversion (sum-frequency generation) ω1 +ω2 → ω4 and (3) parametric down-
-conversion ω5 = 2ω1 → ω3 +ω4. The five waves take part in this process, and two
of their frequencies are divisible. It is well known that correlated photons with
different frequencies are generating in non-degenerated parametric processes [9].
Thus the process under consideration is of interest for obtaining multipartite en-
tanglement photon states [10].

For waves with wavelengths λ1 = 1.064 µm, λ2 = 2.129 µm, λ3 = 2.127 µm,
λ4 = 0.709 µm, and λ5 = 0.532 µm the five-frequency process can be implemented
in APNC, in which g(z) is defined by Eq. (2) at Λ1 = 21.2 µm, Λ2 = 14.3 µm,
Λ3 = 8 µm. The process is described by the system of equations for amplitudes of
interacting waves

dA1/dz = ig(z)
(
β11A2A3ei∆k1z + β21A

∗
2A4e−i∆k2z

)
, (4)

dA2/dz = ig(z)
(
β12A1A

∗
3e
−i∆k1z + β22A4A

∗
1e
−i∆k2z

)
, (5)

dA3/dz = ig(z)
(
β13A1A

∗
2e
−i∆k1z + β33A5A

∗
4e
−i∆k3z

)
, (6)

dA4/dz = ig(z)
(
β24A1A2ei∆k2z + β34A5A

∗
3e
−i∆k3z

)
, (7)

dA5/dz = ig(z)β35A3A4ei∆k3z, (8)
where Aj is the amplitude of wave with frequency ωj = 2π/λj ; ∆k1 = k1−k2−k3,
∆k2 = k4−k1−k2, ∆k3 = k5−k3−k4 are the phase mismatches for processes (1),
(2), and (3), respectively; Λj = 2πm/∆kj ; βlj = 4πωjd

(l)
j /(cnj) is the nonlinear

coupling coefficient; nj is the refractive index of crystal for wave at frequency ωj ;

d
(l)
j is the effective nonlinear coefficient for wave at frequency ωj in the process

l (l = 1, 2, 3, see above); c is the velocity of light in vacuum. The following
conditions are fulfilled for nonlinear coupling coefficients

β11 = β12 + β13, β24 = β21 + β22, β35 = β33 + β34. (9)
The system of Eqs. (4)–(8) is satisfying the condition
5∑

j=1

Ij(z) = const, (10)

where Ij(z) = |Aj(z)|2.
Figure 2 presents the results of numerical solutions of system (4)–(8) at

β11 = β24 = β35, β12 = β13, β21 = 2β22, β34 = 3β33, a1 = a2 = a3. The calcula-
tions have shown that the presence of intensity waves (pump) with frequencies ω1
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Fig. 2. Intensities Ij (normalized on I1(0)) of wave with frequency ωj as functions

of crystal length: (a) ReA1(0) = ReA5(0), ReA2,3,4(0) = 10−2ReA1(0), ImAj(0) = 0;

(b) ReA1(0) = ImA5(0), ReA2,3,4(0) = 10−2ReA1(0), ImA1,2,3,4(0) = ReA5(0) = 0;

(c) ImA1(0) = ReA5(0), ReA2,3,4(0) = 10−2ImA1(0), ReA1(0) = ImA2,3,4,5(0) = 0;

(d) ImA1(0) = ImA5(0), ReA2,3,4(0) = 10−2ImA1(0), ReA1(0) = ImA2,3,4(0) = 0.

and ω5 is necessary for the process implementation. In calculations we supposed
I1(0) = I5(0), I2,3,4(0) ¿ I1,5(0). Coordinate z and intensities Ij are normalized
on Lnl = 1/[β11(I1(0))1/2] and I1(0), respectively.

Figure 2 shows that the effective energy exchange between interacting waves
takes place in the process under consideration. The dynamics of energy exchange
has the complex character, which can be changed in dependence on ratio between
real and image parts of amplitudes of pump waves at the crystal input. Our
analysis also shown that the effective energy exchange takes no place at a2 > a1,3.

As a rule the condition Lnl À max{Λ1, Λ2, Λ3} is fulfilled for PPNCs.
In this connection we have calculated the intensities of interacting waves us-
ing system (4)–(8), in which the fast changing multipliers g(z) exp(i∆kjz) and
g(z) exp(−i∆kjz) were changed by its average values qj and q∗j respectively, where

qj =
1
L

∫ L

0

g(z)ei∆kjzdz. (11)

Thus the system (4)–(8) has the form

dA1/dz = i(q1β11A2A3 + q∗2β21A
∗
2A4), (12)
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dA2/dz = i(q∗1β12A1A
∗
3 + q∗2β22A4A

∗
1), (13)

dA3/dz = i(q∗1β13A1A
∗
2 + q∗3β33A5A

∗
4), (14)

dA4/dz = i(q2β24A1A2 + q∗3β34A5A
∗
3), (15)

dA5/dz = iq3β35A3A4. (16)
Our calculations have demonstrated that the solution of system (4)–(8) and system
(12)–(16) are in a good agreement for z ≈ 50Lnl. We note that such simplifica-
tion of equations allows to essentially decrease the time of numerical solution of
equations and develops the quantum theory of the process under consideration
(see [10]).

The system (12)–(16) has the simple solution in the case of Re{q2q3A
2
1A

∗
5} =

0. For example, the solution for A2(z) is the following:

A2(z) = C1ch(Γz) + C2sh(Γz) + C3, (17)
where

Γ 2 =
(
q2
1β12β13 − |q2|2β22β24

) |A1(0)|2 + |q3|2β33β34|A5(0)|2;
Cj is defined by initial condition. The parametric instability of initial state takes
place at Γ 2 > 0. In this case the intensities of interacting waves are increased with
crystal length. The dependences of Fig. 2 at small z correspond to parametric
instability regime.

4. Conclusion

The dynamics of new multi-frequency process, which can be realized in
APNCs, was investigated. The multi-frequency processes in the considered
APNCs are very promising for compact frequency converter and applications of
quantum optics.
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