
Bitmap Indices for Fast End-User Physics Analysis in ROOT

Kurt Stockingera, Kesheng Wua, Rene Brunb, Philippe Canalc

aLawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

bEuropean Organization for Nuclear Research, 1211 Geneva, Switzerland

cFermi National Accelerator Laboratory, Batavia, IL 60510, USA

Most physics analysis jobs involve multiple selection steps on the input data. These selection steps are called
cuts or queries. A common strategy to implement these queries is to read all input data from files and then
process the queries in memory. In many applications the number of variables used to define these queries is a
relative small portion of the overall data set therefore reading all variables into memory takes unnecessarily long
time.

In this paper we describe an integration effort that can significantly reduce this unnecessary reading by using
an efficient compressed bitmap index technology. The primary advantage of this index is that it can process
arbitrary combinations of queries very efficiently, while most other indexing technologies suffer from the “curse
of dimensionality” as the number of queries increases. By integrating this index technology with the ROOT
analysis framework, the end-users can benefit from the added efficiency without having to modify their analysis
programs. Our performance results show that for multi-dimensional queries, bitmap indices outperform the
traditional analysis method up to a factor of 10.

1. Introduction

Typical interactive, end-user physics analysis
is an iterative process where data is selected
based on specific cuts (queries). These queries
are often complex and involve several condi-
tions (dimensions) such as npT ight < 10 AND
muonLoose2cm > 5.7 AND nTracks > 20. A
common strategy for evaluating these queries is
to read all input data from files and then process
the queries in memory. However, reading all data
values into memory before performing the queries
is often very inefficient because most of the data
would not be used.

In this paper evaluate the use of bitmap in-
dices for efficient query processing in ROOT.
By integrating this index technology with the
ROOT analysis framework, the end-users can
benefit from the added efficiency without hav-
ing to modify their analysis programs. We will
discuss some implementation details and give a
simple use case for performing analysis in ROOT
with bitmap indices. Next we compare the per-

formance of bitmap indices with traditional meth-
ods. Our measurements show that for multi-
dimensional queries, bitmap indices outperform
the traditional analysis method up to a factor of
10.

2. Related Work

Bitmap indices are efficient index data struc-
tures for speeding up multi-dimensional range
queries for read-only data [3,5]. For an attribute
with c distinct values, the basic bitmap index [1]
generates c bitmaps with N bits each, where N is
the number of records in the data set. Each bit in
a bitmap is set to 1 if the attribute in the record
is of a specific value, otherwise the bit is set to
0. For example, the integer attribute I shown in
Figure 1 can be one of four distinct values, 0, 1,
2, and 3. The corresponding bitmap index has
four bitmaps. Since the value in record 5 is 3, the
fifth bit in b4 is set to 1 and the same bits in other
bitmaps are 0.

Bitmap indices are efficient for processing

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357338031?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 K. Stockinger

bitmap index
RID I =0 =1 =2 =3

1 0 1 0 0 0
2 1 0 1 0 0
3 3 0 0 0 1
4 2 0 0 1 0
5 3 0 0 0 1
6 3 0 0 0 1
7 1 0 1 0 0
8 3 0 0 0 1

b1 b2 b3 b4

Figure 1. A sample bitmap index where RID is
the record ID and I is the integer attribute with
values in the range of 0 to 3.

multi-dimensional range queries such as “I < 2
and J > 3”. The queries are evaluated with bit-
wise logical operations that are well-supported by
computer hardware.

Several bitmap compression methods were
studied in [2] to reduce the size of bitmap indices.
Note that an efficient bitmap compression scheme
not only has to reduce the size of bitmaps but also
has to perform bitwise Boolean operations effi-
ciently. More recently a new compression scheme
called Word-Aligned Hybrid (WAH) [5] was intro-
duced. It has been shown that even in the worst
case, the bitmap indices can be compressed to a
size that is comparable with a typical B-tree in-
dex. The time required to answer a range query
using a compressed bitmap index is in fact op-
timal. In the worst case, the response time is
proportional to the number of hits of the query
[5].

The bitmap indices discussed so far encode
each distinct attribute value as one bitmap vec-
tor. This technique is very efficient for integer
or floating point values with low attribute cardi-
nalities. However, scientific data is often based
on floating point values with high attribute car-
dinalities. The work presented in [4] demon-
strates that bitmap indices with binning can sig-
nificantly speed up multi-dimensional queries for
high-cardinality attributes.

3. Implementation and Example Usage

We integrated the bitmap indexing technol-
ogy (developed at Berkeley Lab) into the ROOT-
framework to speed up cuts with TTree::Draw
and TChain::Draw. One of the design goals was
to integrate the indices in such a way that the
end-user only has to make minimal modifications
to the analysis code.

3.1. Building Bitmap Indices
A typical example of building bitmap indices

within ROOT is as follows.

// open ROOT-file

TFile f("data/root/data.root");

TTree *tree = (TTree*) f.Get("tree");

TBitmapIndex bitmapIndex;

bitmapIndex.Init();

char indexLocation[1024] = ‘‘/data/index/’’;

bitmapIndex.ReadRootWriteIndexFile(tree,

indexLocation);

// build index for two attributes

bitmapIndex.BuildIndex(tree, "npTight",

indexLocation);

bitmapIndex.BuildIndex(tree, "muonLoose2cm",

indexLocation);

3.2. Simple Analysis with Bitmap Indices
Usually end-user physics analysis is done by

performing cuts with TTree::Draw. In this ex-
ample we show how to do efficient data analysis
with bitmap indices, which requires the new class
called TBitmapIndex.

// open ROOT-file

TFile f("data/root/data.root");

TTree *tree = (TTree*) f.Get("tree");

TBitmapIndex bitmapIndex;

bitmapIndex.Init();

bitmapIndex.Draw(tree, "npTight:muonLoose2cm",

"npTighta < 10 && muonLoose2cm > 5.7");

4. Experimental Results

In this section we evaluate the performance
of the bitmap indices in ROOT and compare
them with traditional techniques. In partic-
ular we measure the performance of multi-



Bitmap Indices for Fast End-User Physics Analysis in ROOT 3

dimensional queries both with bitmap indices and
TTreeFormula. The experiments are based on a
data set from the Babar High Energy Physics ex-
periment at Stanford Linear Accelerator Center
(SLAC). The original data sets consists of 7.6 mil-
lion records with some 100 attributes each. For
our experiments we randomly chose 10 attributes.

4.1. Size of the Compressed Bitmap In-
dices

We first measure the sizes of the compressed
bitmap indices and compare them with the origi-
nal, uncompressed data set. The compression fac-
tors of the equality-encoded and range-encoded
bitmap indices [1] per attribute are shown in Fig-
ures 2 and 3. For the two bitmap index strategies
we use 1000 and 100 equal-depth bins respectively
where each bins has roughly the same number of
entries. The compression factors vary between
1 and 13. The total sizes of all ten attributes
are shown in Figure 4. We can see that the to-
tal size of the equality-encoded bitmap indices is
about half of the original data size. The size of
the range-encoded bitmap indices, on the other
hand, is larger than the base data. Note that
typical indices such as the B-tree are often three
times larger than the base data. In this sense, the
size of the range-encoded bitmap index with 100
bins is still acceptable.

4.2. Query Performance
Next we measure the performance of multi-

dimensional queries. All our experiments are car-
ried out on an Intel Pentium 4 with 2 GB of main
memory and a SCSI RAID disk. In order to avoid
caching effects during the performance measure-
ments, we flushed the disk cache by unmounting
the file system before each query.

In Figures 5 to 8 we show the query response
time of 1, 2, 5 and 10-dimensional queries with
different query box sizes. The query box size is
defined as the fraction of the query range with
respect to the whole domain space. For instance,
for a 1-dimensional query a query box of 0.1
means that the query range covers 10% of the
attribute range.

The measurements show that in all case
the bitmap index is significantly faster than

Figure 2. Size of the equality-encoded, com-
pressed bitmap indices per attribute.

Figure 3. Size of the range-encoded, compressed
bitmap indices per attribute.

TTree::Formala with a performance improve-
ment up to a factor of 10. We can also see that the
range-encoded bitmap index (RE-BMI) performs
slightly better than the equality-encoded bitmap
index (EE-BMI).



4 K. Stockinger

Figure 4. Total size of all compressed bitmap
indices. Base data refers to the original, uncom-
pressed data in binary format, EE-BMI refers to
equality-encoded bitmap index, and RE-BMI ref-
eres to range-encoded bitmap index.

Figure 5. Response time of 1-dimensional queries
compared to TTree::Formula.

Bitmap indices with bins provide an additional
feature that could be interesting for physicists in

Figure 6. Response time of 2-dimensional queries
compared to TTree::Formula.

Figure 7. Response time of 5-dimensional queries
compared to TTree::Formula.

the initial phase of the interactive data analy-
sis. When using bitmap indices with bins, spe-
cific records need to be read from disk in order
to check whether they fulfill the query contraint.
This is called Candidate Check [4]. By omitting



Bitmap Indices for Fast End-User Physics Analysis in ROOT 5

Figure 8. Response time of 10-dimensional
queries compared to TTree::Formula.

the Candidate Check the results are good approx-
imations with error ranges that depend on the
number of bins. For instance, for the equality-
encoded bitmap index, the error for 1000 bins is
0.1%. For the range-encoded bitmap index with
100 bins, the error is 1%.

Next we measure the performance of multi-
dimensional queries with approximate results.
Since the characteristics of the query performance
is similar for various dimensions, we only show the
performance of 10-dimensional queries. As we can
see in Figure 9, the performance improvement of
approximate queries over TTree::Formula is up
to a factor of 30.

5. Conclusions

In this paper we discussed the integration of
bitmap indices into the ROOT framework. We
presented a simple example use case for bitmap
indexed accelerated physics analysis and evalu-
ated the performance of the bitmap indices. The
results show that for multi-dimensional queries,
the bitmap indices outperform the traditional
analysis method up to a factor of 10 for exact
answers. For approximate queries, we measured
a performance gain up to a factor of 30.

Figure 9. Response time of 10-dimensional
queries compared to TTree::Formula. The an-
swers are approximations with 0.1 to 1% errors.

REFERENCES

1. C. Y. Chan and Y. E. Ioannidis. An Efficient
Bitmap Encoding Scheme for Selection Queries.
In SIGMOD, Philadelphia, Pennsylvania, USA,
June 1999. ACM Press.

2. T. Johnson. Performance Measurements of Com-
pressed Bitmap Indices. In International Confer-
ence on Very Large Data Bases, Edinburgh, Scot-
land, September 1999. Morgan Kaufmann.

3. P. O’Neil. Model 204 Architecture and Per-
formance. In 2nd International Workshop in
High Performance Transaction Systems, Asilo-
mar, California, USA, 1987. Springer-Verlag.

4. K. Stockinger, K. Wu, and A. Shoshani. Evalua-
tion Strategies for Bitmap Indices with Binning.
In International Conference on Database and Ex-
pert Systems Applications (DEXA), Zaragoza,
Spain, September 2004. Springer-Verlag.

5. K. Wu, E. J. Otoo, and A. Shoshani. On the Per-
formance of Bitmap Indices for High Cardinality
Attributes. In International Conference on Very
Large Data Bases, Toronto, Canada, September
2004. Morgan Kaufmann.


