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ABSTRACT

Several previous studies have reported declines in pan evaporation rate throughout the Northern Hemisphere of about
2–4 mm a−2 for various periods since the 1950s. A recent analysis of Australian pan evaporation reported a similar
decline and raises the possibility that part of the phenomenon may be related to the greenhouse effect. To assess that
possibility, one needs to know whether the decline in evaporative demand is happening in other parts of the Southern
Hemisphere. As a first step to addressing the latter question, we examined the trend in pan evaporation at 19 New Zealand
sites. We found statistically significant declines in pan evaporation rate at 6 of the 19 sites. There were no sites with
statistically significant increases in pan evaporation. When averaged across all 19 sites, the decline in pan evaporation
rate was roughly 2 mm a−2 (i.e. mm per annum per annum) since the 1970s. Over a 30-year period, this is equivalent
to a decline of about 60 mm a−1 in annual pan evaporation. These results are generally consistent with those reported
throughout the Northern Hemisphere and in Australia. We conclude that the trend for decreasing evaporative demand
previously reported throughout the Northern Hemisphere terrestrial surface may also be widespread in the Southern
Hemisphere. This may be, in part, a greenhouse-related phenomenon. Copyright  2005 Royal Meteorological Society.
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1. INTRODUCTION

In a seminal paper, Peterson et al. (1995) reported that pan evaporation had, on average, declined in the United
States, former Soviet Union and parts of Asia from the 1950s to early 1990s. Several subsequent studies
have largely confirmed these trends. At individual sites, both increases and decreases in pan evaporation
are commonly found (e.g. Chattopadhyay and Hulme, 1997; Cohen et al., 2002; Roderick and Farquhar,
2004). However, when averaged over a number of sites in a region, clear downward trends have emerged
and the reported decline in pan evaporation rate is typically between 2 and 4 mm a−2 (i.e. mm per annum
per annum) for the United States and Russia for the 1950s to 1990s (Peterson et al., 1995; Golubev et al.,
2001). Measurements from China for 1955–2000 show an averaged rate of decline of about 3 mm a−2 (Liu
et al., 2004). In India, the reported decrease appears to be much larger at about 12 mm a−2 for 1961–1992
(Chattopadhyay and Hulme, 1997). Recently, the data have been extended to tropical regions with the report
of a declining trend in pan evaporation throughout Thailand over the period 1982–2000 (Tebakari et al.,
2005). Unfortunately, that study did not report the average trend across all sites. Thus, with the exception of
India, the decline in pan evaporation rate over large areas of the terrestrial surface in the Northern Hemisphere,
stretching from the tropics to tundra regions is typically about 2 to 4 mm a−2.

The finding that pan evaporation, and hence potential evaporation, has declined despite the well-known
increase in near-surface air temperature, seems contradictory at first glance. However, temperature is only one
factor that determines the evaporative demand of the atmosphere – the others are vapour-pressure deficit, wind
speed and the net irradiance. The change in evaporative demand depends on how those factors change as well
as on the change in temperature (Rosenberg et al., 1989). This has been most clearly demonstrated in China,
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where a simple temperature-based index, like the Thornthwaite approach, estimates increasing evaporative
demand over the last 50 years because of increasing annual average air temperature, but physically based
estimates that also use measurements of vapour-pressure deficit, wind speed and net irradiance give a declining
trend in evaporative demand in agreement with the observed decline in pan evaporation (Chen et al., 2005).

The widespread trend in declining pan evaporation has prompted research into the reasons for the decline.
For example, declines in wind speed, like those observed locally in Turkey (Ozdogan and Salvucci, 2004),
might be playing a role if widespread. Similarly, declines in vapour-pressure deficit were implicated in the pan
evaporation decline in India (Chattopadhyay and Hulme, 1997). There has been a lot of interest in reported
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declines in global solar irradiance (Abakumova et al., 1996; Gilgen et al., 1998; Stanhill and Cohen, 2001;
Liepert, 2002) because the expected changes in pan evaporation are similar to observed the changes (Roderick
and Farquhar, 2002; Linacre, 2004). The question of aerosol versus cloud effects (Ramanathan et al., 2001;
Farquhar and Roderick, 2003) is likely to be difficult to resolve because of the interaction between clouds
and aerosols although progress is being made (Rotstayn, 1999; Liepert et al., 2004; Kaufman et al., 2005;
Ramanathan et al., 2005).

Of even more general scientific interest is the speculation that declining evaporative demand might be
an intrinsic feature of the greenhouse effect (Farquhar and Roderick, 2003). If that were the case, then the
evaporative demand should also be decreasing over terrestrial surfaces in the Southern Hemisphere. However,
virtually all of the research to date has been conducted in the Northern Hemisphere, so it has been difficult
to assess that possibility. Recently, the first publication on Southern Hemisphere trends reported a decline in
pan evaporation rate of about 3 mm a−2 from the 1970s to 2002 in Australia (Roderick and Farquhar, 2004).
This is quantitatively consistent with reports from the Northern Hemisphere and raises the possibility that a
decline in evaporative demand over the terrestrial surface might also be widespread throughout the Southern
Hemisphere. To test whether that was likely, we examined pan evaporation (and rainfall) data from a second
Southern Hemisphere country, New Zealand.

2. DATA AND METHODS

With the assistance of staff from the National Institute of Water and Atmospheric Research (NIWA), we
identified 19 sites (see Table I for a site listing) from the NZ national network that had longer-term
measurements of pan evaporation (unscreened Class A pan) and rainfall. Unfortunately, pan evaporation
measurements ceased at many of the sites during the mid-1990s (Table I). Consequently, the database contains
sites that have different temporal periods. This was not ideal, but the aim was to establish whether there was
any evidence for a decline in pan evaporation that was similar to the changes reported in the Northern
Hemisphere and in Australia, and for those purposes the data were sufficient.

To construct the time series at each site, we defined a valid month as one having at least 25 daily
observations, and the daily average was calculated with the available observations. A valid year was defined
as having at least 11 valid months, and the estimate for any missing month was filled in with the long-term
average for that month. The linear trend in pan evaporation and rainfall at each site was calculated and the
statistical significance of trends was assessed (t-test) at the 95% level (Zar, 1984) (Table II).

3. RESULTS

The calculated trends in pan evaporation and rainfall (Figure 2 for the data at each site) varied from site
to site (Table I) with no immediately obvious spatial pattern (Figure 1). Very few of the trends in rainfall
were statistically significant (Tables I and II). In contrast, 6 of the 19 sites showed statistically significant
declines in pan evaporation (Tables I and II). There was no simple way to calculate aggregate trends in pan
evaporation or rainfall across all the sites because the time periods used in the trend estimation varied from
site to site (Table I). To give a rough indication, we averaged the trends across all 19 sites and the change in
the pan evaporation rate was −2.1 mm a−2 while that for the rainfall rate was −0.8 mm a−2.

Table II. Number of sites showing statistically significant changes
(p > 0.95) in annual pan evaporation and rainfall

Sites

Decrease No change Increase

Pan evaporation 6 13 0
Rainfall 3 15 1

Copyright  2005 Royal Meteorological Society Int. J. Climatol. 25: 2031–2039 (2005)
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Figure 2. Pan evaporation observations (Epan, thick full line), calculated Epan trend (dotted) and rainfall observations (bars) at 19 New
Zealand sites. The title in each panel denotes the NIWA site number (Table I), along with the Epan trend (mm a−2) and the standard error
of the trend in brackets. For example, A54735: 6.1 (±5.0) denotes site A54735, and the calculated Epan trend is +6.1 (±5.0) mm a−2

4. DISCUSSION

Observed changes in the near-surface air temperature over New Zealand are very similar to the global pattern
of increasing minimum, mean and maximum temperatures with the minimum increasing approximately three
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Figure 2. (Continued)

times faster than the maximum over the 1951–1998 period (Salinger and Griffiths, 2001). A similar trend
also holds for the period since the mid-1970s (Salinger and Mullan, 1999). The gross trends in rainfall and
pan evaporation that are reported here for New Zealand are also very similar to those previously reported for
several Northern Hemisphere countries, and for Australia (see references listed in Section 1.). In particular,
there was variation in the trends from pan to pan, but overall, there were very few sites showing statistically
significant changes in rainfall, while several sites showed statistically significant declines in pan evaporation.
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Figure 2. (Continued)

There were no sites showing statistically significant increases in pan evaporation. A rough indicative average
for the decline in the pan evaporation rate across all 19 sites was about 2 mm a−2 and was generally consistent
with the previously reported declines of 2–4 mm a−2 from the Northern Hemisphere and from Australia.

In the United States, the decline in pan evaporation has been accompanied by increases in rainfall (Hobbins
et al., 2004; Walter et al., 2004). In contrast, the New Zealand data show declines in pan evaporation at sites
with both increases and decreases in rainfall (Table I), and this was similar to previous results from Australia

Copyright  2005 Royal Meteorological Society Int. J. Climatol. 25: 2031–2039 (2005)
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Figure 2. (Continued)

(Roderick and Farquhar, 2004), China (Liu et al., 2004) and Thailand (Tebakari et al., 2005). The underlying
reasons (i.e. trends over time in temperature, net irradiance, vapour-pressure deficit, wind speed) for declining
pan evaporation in New Zealand need to be addressed in a future study.

The results show that the general decrease in evaporative demand that has previously been reported from
many parts of the Northern Hemisphere may also be widespread throughout the Southern Hemisphere. Hence,
some of the decrease in pan evaporation that has been observed both here and elsewhere may be an effect of
greenhouse warming, arising from, for example, an increase in cloud cover (Dai et al., 1997).
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