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Abstract. New technologies afford convenient modalities for skin temperature (TSKIN) 
measurement, notably involving wireless telemetry and non-contact infrared thermometry. 
The purpose of this study was to investigate the validity and reliability of skin temperature 
measurements using a telemetry thermistor system (TT) and thermal camera (TC) during 
exercise in a hot environment. Each system was compared against a certified thermocouple, 
measuring the surface temperature of a metal block in a thermostatically controlled 
waterbath. Fourteen recreational athletes completed two incremental running tests, separated 
by one week. Skin temperatures were measured simultaneously with TT and TC compared 
against a hard-wired thermistor system (HW) throughout rest and exercise. Post hoc 
calibration based on waterbath results displayed good validity for TT (mean bias [MB] = -
0.18°C, typical error [TE] = 0.18°C) and reliability (MB = -0.05°C, TE = 0.31°C) throughout 
rest and exercise. Poor validity (MB = -1.4°C, TE = 0.35°C) and reliability (MB = -0.65°C, 
TE = 0.52°C) was observed for TC, suggesting it may be best suited to controlled, static 
situations. These findings indicate TT systems provide a convenient, valid and reliable 
alternative to HW, useful for measurements in the field where traditional methods may be 
impractical. 
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1. Introduction 

Skin temperature (TSKIN) measurement has application for research (Harper-Smith et al. 

2010), occupational health (Kim et al. 2013) and clinical monitoring (Sherman et al. 1996). It 

is through the skin that the body loses or gains heat and as such, TSKIN plays an important role 

in human thermoregulation. TSKIN is a consequence of dermis microcirculation, which is 

mediated through activity of the sympathetic nervous system and regulated by the 

hypothalamus. Typically TSKIN may initially reduce during exercise as a consequence of 

sweat on the skin surface and blood shifting towards working skeletal muscles (Torii et al. 

1992). However, a steady rise is observed during endurance exercise as core temperature 

(TCORE) increases, with elevated ambient temperatures increasing the rate of TSKIN increase 

(Roberts & Wenger 1979). Whilst TSKIN may be interpreted in isolation, it also forms a 

component of derivative calculations of heat strain, such as body heat content (Jay & Kenny 

2007) and mean body temperature (Jay et al. 2007). Such calculations assist in understanding 

the mechanisms underpinning practical thermal interventions such as precooling and heat 

acclimation, by providing an objective measure of whole-body thermal dynamics. 

Typically, TSKIN has been measured using thermocouples or wired thermistors with recent 

literature adopting wired thermistors as the criterion measure when validating new tools 

(Kelechi et al. 2011, Buono et al. 2007, Burnham et al. 2006). A thermocouple is a 

temperature-measuring device consisting of two dissimilar conductors that contact each other 

at one or more joint locations. It produces a measureable electrical potential difference 

proportional to the temperature difference against another joint which is set at a reference 

temperature in another part of the circuit. Thermistors are resistors in which resistance varies 

with temperature, allowing stored calibration data within the circuit to convert this to a 

temperature. Such devices have been shown to be robust and accurate to 0.045°C across a 

range (10-40°C) of waterbath temperatures (Harper-Smith et al. 2010). Thermistors and 

thermocouples are non-invasive, but the associated wiring requires familiarisation and a hard-

wired connection to a datalogger, making field testing problematic. This in turn, limits the 

external validity of thermal interventions which are untested in the field. 

Recent developments in wireless thermometry provides an alternative to hard-wired systems, 

particularly as some telemetry devices appear more accurate than wired thermistors (Harper-

Smith et al. 2010), require little familiarisation and provide freedom of movement for the 
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person being measured. Harper-Smith et al. (2010) examined wireless iButtons (Maxim 

Integrated Products Inc. California, USA) in a waterbath as well as on human skin during 

exercise in hot conditions. Typical error was <0.3°C, Pearson and Intra-class correlation 

(ICC) coefficients >0.9 and coefficient of variation (CV) <1% when compared against wired 

thermistors which were the criterion measure during exercise. The size and convenience of 

iButtons undoubtedly affords opportunities for measurements in novel environments, 

however the lack of real-time data may preclude their use in safety monitoring and research 

environments. Dermal temperature patches for physiological monitoring systems are wireless 

and offer live data, but being single-use only, carry significant purchase and consumable 

costs, which may prohibit use for large sample sizes. Consequently, a newly-developed 

telemetry system, whereby thermistors are connected to a transmitter worn on the person, 

may offer the benefits of live data without long, trailing connecting wires or being restricted 

to the laboratory. 

Infrared thermometry is another technique that is used in research (Costello et al. 2012) and 

clinical environments (Ring & Ammer 2012) where TSKIN is an important variable to 

measure. Thermal cameras receive and process infrared radiation emitted from a surface, 

using this information to display the production and dissipation of heat. The ability of a 

surface to emit energy by radiation is termed ‘emissivity’ and allows the temperature of the 

emitting surface to be calculated. Thermopiles or microbolometers within the cameras absorb 

this infrared radiation, eliciting a change in electrical resistance that a colour palette can use 

to display temperatures of an object. Handheld infrared thermometers provide temperature at 

specific points based on the same principle and are widely used for measuring core 

temperature via the tympanic membrane and increasingly for TSKIN (Ring & Ammer 2012). 

Measurements from such devices demonstrate strong association with wired thermistors, 

providing valid measures of mean TSKIN at rest (r=0.95) and whilst walking in the heat 

(r=0.98, Buono et al. 2007). This technology appears reliable, with mean inter-examiner 

intraclass correlation of r = 0.88 (range 0.73–0.99) between TSKIN measurements on 

consecutive days (Zaproudina et al. 2008). The majority of literature utilising thermal 

cameras as a measure of TSKIN has involved thermogram images taken at rest being 

retrospectively analysed using software to identify area average temperatures for specified 

regions of anatomical interest. Measuring temperature across a region of interest enhances 

construct validity by helping to avoid inter-individual variation of veins and vascularisation 
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and the consequential non-uniform heat production, a potential confounding error when 

taking readings from a single spot on an image or from attached thermistors (Chudecka & 

Lubkowska 2012). Broadly, this technique has been shown to be valid (correlation range 

r=0.71-0.77, Roy et al. 2006) and reliable (correlation range r=0.82-0.97, Selfe et al. 2006), 

such that it has been recommended for clinical use (Ng et al. 2004; Ring & Ammer 2012). 

However, large errors versus a thermocouple during rest and exercise have also been reported 

(-0.75°C, Fernandes et al. 2014), making it unclear within which situations it may have 

application. Recent developments in thermal camera technology permit high speed imaging, 

offering a real-time thermal image, such that cameras can produce whole images for post hoc 

analysis as well as instantaneous spot analysis. These improvements allow simultaneous 

comparison against other TSKIN measures, facilitating an objective assessment of the potential 

of thermal cameras as a multi-purpose tool for environmental exercise physiology research. 

To our knowledge, wired thermistors, telemetry thermistors and a thermal camera have not 

been compared simultaneously for live TSKIN measurement during exercise in hot 

environments. Therefore, the aim of this study was to compare the reliability and validity of 

these measurement tools for live TSKIN measurement in athletes exercising in a hot and humid 

environment. We hypothesized that telemetry thermistors and a thermal camera would 

provide acceptable levels of error for both reliability and validity when compared against 

hard wired thermistors during exercise in the heat     
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2. Methods 

2.1 Experimental design  

The study was organised into two parts; a waterbath comparison and human skin temperature 

measurement during exercise. Both parts of the study assessed validity and reliability of 

tools. During the waterbath analysis, data was collected for 20 minutes across seven stable 

temperatures within the range 25-40°C. Stability was defined as a deviation of no more than 

0.1°C measured by the criterion thermocouple over 5 min consecutively. Retest reliability 

was examined on the following day. In order to assess the measurement tools in a relevant 

context for endurance exercise in the heat, an incremental exercise test was completed on 

each athlete volunteer. Re-tests of TSKIN measurements were separated by one week to 

prevent an acclimation effect  (Barnett & Maughan 1993) and taken at the same time of day 

(Winget 1985), with the second trial data used for validity analysis. 

2.2 Participants 

Fourteen male recreational club runners volunteered as participants (mean [SD]): age 38 (11) 

years, stature 179 (8) cm, mass 77.3 (7.1) kg, sum of skinfolds 33.6 (7.7) mm, 02max 57.3 

(4) mL.kg-1.min-1. Each participant provided written informed consent and stated their recent 

medical history. Ethical approval was provided by the institutional ethics committee 

following the principles outlined by the Declaration of Helsinki of 1975, as revised in 2008. 

Participants were asked to replicate their diet in the 12 hours prior to each session and refrain 

from alcohol, caffeine and strenuous activity for 24 hours prior to the measurements as has 

been previously controlled in similar studies in the field (Harper-Smith et al. 2010). 

2.2 Measurement tools 

During the waterbath tests, measurements from all thermistors and the thermal camera (TC) 

were referenced against a multi-point calibrated and certified thermocouple (Type K probe 

attached to Fluke 51 ll instrument, range -200°C-1000°C, divisions 0.1°C, Washington, US). 

This thermocouple had been calibrated in a certified laboratory in the last 6 months. 

During exercise the criterion measure comprised of four hard-wired (HW) skin thermistors 

(Eltek U-Type EUS-U-VS5-0, Eltek Ltd, Cambridge, UK) connected to a datalogger (Grant 

Squirrel 1000 series, Grant Instruments, Cambridge, UK). The manufacturer stated accuracy 
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was ±0.2°C. This type of device has been adopted as a criterion during similar validity 

comparisons  (Kelechi et al. 2011; Buono et al. 2007, Burnham et al. 2006). The telemetry 

system (TT) comprised four skin thermistors (ELEU-U-VS-02-, Eltek U-Type, Eltek Ltd, 

Cambridge, UK) connected to a transmitter (Gen II GD38, Eltek, Cambridge, UK, 

dimensions 6x8x5cm). Data is transmitted wirelessly to a datalogger (Eltek RX250AL 1000 

series Wireless Squirrel Logger, Eltek, Cambridge, UK), up to a distance of 2 km. The 

datalogger was placed outside of the environment chamber approximately 3 m away. The 

manufacturer stated accuracy was ±0.1°C. Both dataloggers were synchronised and sampled 

every 30 s with minute average logged. Data was downloaded using Squirrelwire and Darca 

Plus for the HW and TT systems, respectively. The TC was a FLIR e40BX (Flir tools, 

Oregon, US) with 160x120 focal plane array, uncooled microbolometer with thermal 

sensitivity of <0.045°C at 30°C, 7.5 to 13μm spectral range, 60 Hz frame rate and a ‘live-

view’ colour palette offering multiple spot analysis and area average functions. The 

manufacturer stated accuracy was ±2°C or ±2%. Emissivity was set at e=0.98 in accordance 

with the data of Steketee (1973).  

2.3 Procedures 

2.3.1 Waterbath 

All thermistors and the criterion thermocouple (CT) were affixed within a 3cm2 area, each 

was separated by 1cm, in the centre of the top surface of a cast iron block (dimensions: 15 x 

12 x 12 cm) placed in a waterbath (Fischer Scientific DMU19). Whilst a waterbath allows 

comparison of tools throughout a range of temperatures, water is not an appropriate body to 

measure using infrared thermometry. Thus, the waterbath provided controlled plateau 

temperatures, with the metal block providing the thermal surface for measurements. The 

thermal conductivity of iron results in a uniform temperature which helps avoid erroneous 

readings from convection currents within a large waterbath. The metal block was submerged 

to within 1mm of the surface, which remained dry at all times. Breathable film patches 

(Tegaderm 1632W, 3M, UK) fastened all sensors and ensured thermistors remained in 

contact and perpendicular to the surface. The same patches were used during exercise trials to 

maintain consistency of any micro-climate effect. Black electrical tape with a known 

emissivity of 0.95 marked the TC measurement site. 
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The camera was mounted one metre above the block, at an angle of 90° to the plane of the 

block, with reflected environmental temperature and environmental conditions adjusted 

accordingly. The incorporated laser pointer ensured readings were consistently taken from the 

centre of the designated area. Both dataloggers were set to sample and log temperature values 

every minute, with TC and CT temperatures recorded each minute. 

2.3.2 Exercise test 

Upon arrival, participants self-inserted a single-use rectal probe (Henleys Medical, UK, 

Meter logger Model 401, Yellow Springs Instruments, Missouri, USA) 10cm beyond the anal 

sphincter. Thermistors were then attached to the mid-belly of the pectoralis major, biceps 

brachii, rectus femoris and gastrocnemius on the right of the body. After shaving surface hair 

and cleaning with a sterilizing wipe, thermistors from both HW and TT were attached to each 

site using a film patch as in the waterbath procedures. Participants completed all trials in 

running trainers, sports shorts and without a t-shirt. 

Participants then entered the environmental chamber (TISS, Hampshire, UK) with conditions 

(mean [sd]) 31.9 (1)°C, 61 (8.9)% relative humidity. Such conditions provide a valid extreme 

environment within which to assess environmental physiology measurement tools as they 

represent the average conditions in Rio de Janeiro in the summer months when large sporting 

competitions are held. Environmental conditions were noted at the beginning, middle and end 

of the trial using a heat stress meter (HT30, Extech Instruments, USA). The trial began with 

participants sitting for 40 minutes with measurements taken every five minutes. All thermal 

camera measurements were taken handheld, at a distance of 1 m, with the camera at 90° to 

the relevant site as per the manufacturer’s instructions. Temperatures were taken from the 

spot analysis function which displays the live temperature of an area within the viewfinder. 

The measurement site for the thermal camera was 1cm adjacent to the edge of the film patch 

fixing the thermistors. This equated to a distance of 3cm between the furthest thermistor and 

TC measurement site at each anatomical location. After 40 minutes a five minute warm-up at 

8 km.h-1 was completed on a motorized treadmill (Woodway ELG2, Weil am Rhein, 

Germany) before participants began an incremental exercise test with starting speed between 

8 – 10 km.h-1. Each participant completed five stages of three minutes, with speed increasing 

by 1 km.h-1. At the end of each stage the participant would straddle the treadmill belt and the 

thermal camera would be used to measure TSKIN at each site; the procedure took 
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approximately 30 s. At the end of the test nude body mass was recorded before participants 

were actively cooled using a large fan and cold drinks. 

2.3 Statistical Analysis 

2.3.1 Waterbath 

Linear regression analysis was used to derive correction formulae for each measurement tool, 

relative to the criterion thermocouple. In order to develop robust formulae, all data from both 

day one and day two of the waterbath, was included, which equated to fourteen temperature 

measures (seven each day) within the range 25-40°C and two hundred and eighty data points 

for each equation. However, statistical analyses were conducted on the measures of 

temperatures taken over a typical range of values that would be expected during exercise. 

These temperatures were 33°C, 35°C and 38°C. Validity and reliability comparisons were 

made on the grouped data for each tool, rather than at each temperature (33, 35, 38°C). Data 

was corrected to one decimal place before analysis as CT and TC are precise to 0.1°C 

whereas HW and TT read to 0.01°C. Mean values of the four thermistors in each system are 

reported, although data from individual thermistors was adjusted based on CT and the 

corrected values used in subsequent analysis. Differences between tools (validity) for raw and 

corrected data were investigated using a two way repeated measures ANOVA 

(correction*tool) with Bonferroni adjustments. 

Additionally, the following battery of relative and absolute reliability statistics was calculated 

for each tool; mean bias, typical error of the measure (TEM), calculated from the standard 

deviation of the mean difference for each pair of trials using the formula TE = SD(diff)/√2 and 

expressed as a mean coefficient of variation (CV), intra-class correlation (ICC) and limits of 

agreement (LOA). Reliability comparisons compared waterbath day 1 data against day 2 data. 

To eliminate variation from the waterbath itself, all of day 2 data was corrected based on a 

linear regression equation formed from the two criterion datasets. This prevented a systematic 

difference between trials, such as the failure to achieve precisely the same plateau 

temperature on day 2 which would invalidate reliability analyses of individual tools. 

Validity comparisons were completed on waterbath day 1 data. Similar statistics were 

calculated for HW, TT and TC relative to the criterion to assess validity; mean bias, ICC, 

typical error of the estimate (TEE), providing standard or typical error of the predicted y-
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value for each x, and LOA. Differences between trials for each tool were investigated using 

two way repeated measures ANOVA (tool*trial) with Bonferroni post hoc adjustments. 

Statistical tests were completed using SPSS 20 (SPSS Inc, Chicago, USA) with significance 

set at p <0.05 throughout. Data are presented as mean ± SD. 

2.3.2 Exercise test 

Analysis of TSKIN measurements was completed using the derivative calculation mean TSKIN 

using the formula of Ramanathan (1964): 

Mean TSKIN = 0.3(TCHEST+TARM) + 0.2(TTHIGH+TCALF) 

Two way ANOVA (trial*time) with Bonferroni correction were used to identify differences 

between exercise trials for each tool (reliability). This included a comparison of the entire 

dataset from trial 1 against trial 2 data (main effect trial) to assess whether a systematic 

change had occurred between trials which may affect the interpretation of other statistics. A 

two way ANOVA (tool*time) was used to identify differences between tools (validity). 

Sweat rate (L.hr-1) was calculated from the difference in pre and post nude body mass divided 

by the individual exercise duration. 

2.3.3 Analytical limits 

Analytical limits may assist in completing an objective and robust assessment of a measure 

(Atkinson & Nevill 1998). Such limits can be predefined on what constitutes a meaningful 

physiological change, limits adopted by similar research and the precision of the criterion 

thermometer. The a priori analytical limits are shown in Table 1. 

Table 1 here.  
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3. Results 

3.1.1 Waterbath reliability comparison 

A difference was observed between all day 1 and all day 2 data (p=0.01), however this did 

not remain after day 2 data were corrected based on the differences measured by the criterion 

thermocouple (p=0.658) using the correction formula �  =(1.009 ) + -0.365. The raw data 

also displayed differences between days for every tool. After correction, this difference was 

eliminated for CT (p=0.124), but remained for all other tools (Table 2). 

A summary of reliability comparisons are shown in Table 2, with uncorrected data plotted in 

Figure 1. Prior to correction, all tools displayed a mean bias below 0.2°C. Correction reduced 

the mean bias for both HW and TT, but a small bias remained for TC. Absolute typical error 

(TEM), relative typical error (CV) and ICC calculated from the raw data (Table 2) were 

acceptable against the a priori analytical limits for all tools (Table 1). As a linear correction 

factor was applied to the data, the variation in differences between trials did not change, so 

TEM and the associated coefficients of variation remained the same after correction. 

Acceptable LOA were observed for TT, with HW marginally exceeding the limits of 0.3°C 

and TC displaying the largest range. 

Figure 1 here 

Table 2 here 

3.1.2 Waterbath validity comparison 

Variation in block temperature was low throughout each temperature plateau period with 

mean standard deviation across all temperatures below 0.07°C. Indicated water temperature 

was greater than displayed by CT for each temperature (block: water, 32.8:34°C, 34.9:37°C, 

38.1:40°C). Individual corrections were made to the data of each thermistor. Mean values 

from the four thermistors of both HW and TT systems produced the following equations; HW 

=  � =(0.978 ) + 0.484 and TT =  � =(1.019 ) + -0.518. The formula used to correct all TC 

data was � =(1.146 ) + -3.121. Formulae were derived from the fourteen plateau 

temperatures and provided TEE across this range of 0.13°C, 0.13°C and 0.1°C for HW, TT 

x

x x

x
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and TC, respectively. The largest error for an individual thermistor was 0.18°C, with mean 

TEE of 0.16°C for HW and 0.14°C for TT. 

Prior to correction, the accuracy of each tool was very close to the manufacturer stated 

accuracy and all improved following correction (Table 2). Only TT displayed a mean bias 

below 0.2°C, although HW nearly achieved this, only 0.02°C greater. The largest error was 

observed for TC, with raw mean bias ten times greater than the limit. Correction brought all 

tools within an acceptable level of bias. Significant differences from CT were observed for all 

tools in the raw data, but only for HW after correction (p<0.001), with the corrected data 

significantly different to the raw data (p<0.001). After correction, all devices displayed 

acceptable levels of absolute and relative TEE, whilst correlations were just below the a 

priori acceptable limit. Limits of agreement were acceptable for HW and TT pre and post 

correction, with a difference of just 0.01°C preventing TC meeting this limit. 

Table 3 here 

3.2.1. Skin temperature reliability at rest and during exercise 

Sweat rate did not differ between trials (Trial 1; 1.52 L.hr-1, Trial 2; 1.48 L.hr-1, p=0.726).  

No differences in TSKIN were observed between trials (p=0.137) for HW (Figure 2). The HW 

system displayed a consistently small mean bias with a mean value of 0.01°C across rest and 

0.18°C during exercise (Table 4). Across the statistics adopted, the largest differences 

occurred during the first 20 minutes of rest, with the greatest reliability after 30 minutes of 

rest. Initially TE was high (0.53°C), but improved throughout the rest period (mean=0.34°C), 

reaching 0.2°C after 30 minutes and remaining just above the analytical limit throughout 

exercise (mean=0.31°C). Similarly, LOA was initially high (1.47°C after 10 minutes), but 

acceptable at the end of rest (35 minutes; 0.56°C, mean=0.95°C). This further improved 

during exercise, with the mean value 0.86°C. Correlation between the trials across rest 

(r=0.67) and exercise (r=0.62) was low, although after 30 minutes of the rest period the 

correlation increased (r=0.84) to a level just below the predefined limit. 

 

Table 4 here 
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No main effect between trials was observed (p=0.343) for TT, however a time*trial 

interaction was present (p=0.040) with differences during the final two exercise stages 

(Figure 2). A small mean bias was observed throughout the TT trial 2 (-0.05°C) which was 

within acceptable limits, as was bias during rest (-0.1°C) and exercise (-0.19°C). Typical 

error within TT was greatest at the start of rest (0.48°C), reducing to 0.29°C after 30 minutes, 

and remained low for the remainder of the trial (mean during exercise 0.24°C, overall mean 

0.31°C), either below or very close to the acceptable limit. As with HW, despite overall 

correlation for the entire protocol being below 0.9 (r=0.74), points of strong agreement were 

observed for TT, in particular during exercise with correlation coefficients of r=0.89, 0.95 

and 0.96 for the final three stages. 

A main effect was observed between trials (p=0.023) for TC reflecting a systematic 

difference from trial 1 to trial 2. Similarly a trial*time interaction was observed (p=0.001) 

with differences in TC identified from the second exercise stage and continuing to the end of 

the trial (Figure 2). Agreement was poor for all statistics with none consistently meeting the 

acceptable limits (Table 4). A large negative bias was observed throughout trial 2 (-0.65°C). 

 

Figure 2 here 

3.2.2 Skin temperature validity comparison 

A main effect for tool (p=0.002) was observed with differences between HW and TT 

(p=0.03) and HW and TC (p=0.007). A tool*time interaction (p<0.001) was also observed 

with differences displayed in Table 5. A tabular report is shown in Table 5. The TT system 

showed good agreement with HW throughout the protocol. Mean bias was consistently low 

(mean: -0.18°C), achieving the predefined limit. This is supported by low mean typical error 

(0.18°C) and strong correlation (r=0.92). Similarly, mean LOA are narrow and within the 

acceptable limits (0.39°C). Unlike TT, TC did not show good agreement with HW. A large 

bias was recorded throughout rest (-0.87°C) and exercise (-1.92°C) phases. Typical error 

consistently exceeded the limits and correlations were low throughout the trial (mean 

r=0.45). These errors translated into large limits of agreement, consistently above the 

predefined limit (1.30°C). 
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4. Discussion 

4.1 Overview 

Assessing novel tools in a controlled, static environment as well as ecologically valid 

situations allows objective assessments of measurement accuracy and improved interpretation 

of data. A telemetry thermistor system (TT) offers a technologically similar, but more 

convenient option to traditional hard-wired systems. Thermal cameras (TC) measure the 

emitted infrared radiation from a body, permitting live non-contact infrared measurements, 

but have not previously been assessed across a range of running speeds in a hot, humid 

environment. The aim of this study was to compare the validity and reliability of these 

measurement tools when measuring TSKIN whilst resting and running in a hot and humid 

environment. As expected, hard-wired thermistors (HW) demonstrated good agreement with 

the criterion thermocouple (CT) during the initial waterbath comparison and were reliable 

between trials. The TT system demonstrated the smallest error and greatest agreement with 

CT during static waterbath measurement. This system also performed well when measuring 

TSKIN at rest and during exercise, displaying the least error and largest correlations between 

trials, as well as the strongest agreement with the criterion suggesting it is appropriate for use 

within environmental physiology research. The thermal camera also demonstrated a small 

error during the waterbath measures, although a large systematic bias was detected. Using the 

current protocol, the camera did not perform as well as the other devices when providing live, 

handheld measurements of TSKIN during exercise and we would not recommend it for use in 

this manner, as it has a tendency to under-read during exercise which presents safety 

implications. 

 

4.2.1 Waterbath validity comparison 

The correction of collected data based on a criterion measure has been advocated by previous 

research (Harper-Smith et al. 2010). This in-house calibration procedure is time consuming 

and requires specialist equipment, but is relatively inexpensive and the differences between 

raw and corrected data in this study suggest it is worthwhile when accurate results are 

required. Furthermore, completing this process prior to subsequent human testing will assist 

in partitioning error into biological, environmental and random error, incorporating the 
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equipment error itself. Prior to correction, overall reliability from both HW and TT was 

acceptable based on the predefined analytical limits (Table 1). Such limits were adopted 

based on what constitutes a meaningful physiological change, the limits adopted by similar 

research and the precision of the criterion thermometer. Of particular note was the mean bias 

(2°C) and LOA (0.74°C) observed in TC, which despite meeting the manufacturer stated 

accuracy, far exceeds the acceptable error (0.2°C) for safe and meaningful measurements of 

TSKIN. Although TC over-estimated across all waterbath temperatures, a heteroscedastic trend 

is observed with the greatest errors occurring at the highest temperatures (Figure 1). Within 

the range assessed, the indicated water temperature was above that measured by CT. Despite 

being setup in accordance with manufacturer’s guidelines, it is possible TC partially detected 

water temperature rather than solely the metal block. Thermal cameras are usually calibrated 

by taking readings on an electronically heated black body and corrected as necessary. The 

purpose of the waterbath was not to calibrate the tools, but to allow a simultaneous 

comparison of all tools to facilitate a communal correction to help detect differences. This 

method was adopted given the traditional method for thermistor comparison was 

inappropriate for including TC and following correspondence with the TC manufacturer. 

These results may indicate a flaw for TC when measuring against a background which is 

hotter than the object in question. These errors were minimised after correction, such that TC 

accuracy was acceptable in terms of mean bias, no significant difference and low CV. Other 

statistics were extremely close to acceptable limits. 

 

4.2.2 Waterbath reliability comparison 

Data collected during trial 2 of the waterbath analysis were corrected based on the differences 

observed by the criterion between trials. This was necessary due to a difference between 

plateau temperatures (0.1°C, p<0.001) on day two. Correction allowed the remaining 

differences to be attributed to the tools themselves rather than the waterbath conditions. The 

correction reduced the mean bias for all tools and eliminated the significant difference 

between trials for HW, but not for TT and TC. However, significance testing alone does not 

preclude a device from being considered reliable or valid, which is why a battery of statistics 

was completed. When a significant difference is identified, it is typically the magnitude of 

this difference that is relevant to the end user (Hopkins et al. 2009). Cohen’s d effect sizes 
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state these differences to be trivial. Therefore, where a significant difference was observed, in 

the context of the accepted limits the difference was not critical. TT was the most reliable 

tool, achieving all other a priori limits, both with the raw and corrected data. Wired 

thermistors and TC failed to meet the acceptance levels for TE and LOA, however both 

displayed low mean bias, strong correlations and low CV, so were deemed to have performed 

reliably. 

 

4.2 Skin temperature validity comparison 

During rest and exercise HW recorded a consistently higher temperature than TT and TC. 

However, there was strong agreement between HW and TT, with all a priori limits achieved, 

meaning TT can be considered a valid measurement tool. Conversely, TC showed poor 

agreement and could not be considered valid for measurement of TSKIN using this method or 

similar conditions with an error of 2°C potentially affecting mean body temperature by 0.4°C. 

During exercise, both TT and TC recorded lower temperatures than HW, despite reading 

higher during the waterbath. The mean difference from HW for TT was small (-0.18°C) with 

the largest difference during exercise (-0.25°C) still within predefined acceptable limits 

(<0.3°C). In the context of previous research on TSKIN measurements, such differences appear 

very small, with Harper-Smith et al. (2010) reporting differences of 0.26-1.36°C between 

thermistors and iButtons. Furthermore, when retest variation of both HW and TT are 

considered, this difference becomes negligible and may not even exist. Such results may 

afford opportunities to measure TSKIN in extreme environments using TT with the receiver 

unit needing only to be within 2 km of the exercising individual. Until now, the potential for 

this type of research has been limited by the need for trailing wires when using HW systems. 

However, the differences observed in TSKIN from TC were sizeable. Utilising TC in a 

dynamic, ecologically valid situation is in contrast to the techniques adopted in the majority 

of previous research with thermal cameras that has shown broadly encouraging results (Merla 

et al. 2010; Ferreira et al. 2008; Chudecka & Lubkowska 2012), albeit not unanimously 

(Fernandes et al. 2014). Specifically, tripod mounted cameras have been used to generate 

thermograms of participants who have spent up to 40 minutes in thermo-neutral conditions. 

Thermograms are then analysed post hoc using area averages to identify temperatures within 
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specific anatomical regions. For an exercise physiologist, the problem with such an approach 

is the lack of real-time data upon which decisions can be made. Consequently, the rationale 

for including TC in this study was to examine whether TC could provide accurate and 

reliable data through the live-view function during an exercise test. Johnstone et al. (2012) 

also reported poor validity of an IR sensor within a physiological monitoring system that 

provided live data during exercise in the heat. Despite an acceptable mean bias (0.49°C), they 

reported a large random error with the LOA range -1.36-4.14°C. There are a range of 

difficulties associated with exercise that may explain the erroneous readings in both studies 

and why these findings differ from previous research that has successfully used this 

technology. A fundamental difference between thermistor and IR measurement techniques is 

covering of the measurement site. Thermistors were attached using breathable film patches, 

which may lessen a micro-climate effect relative to other fixation methods, but may still 

over-estimate relative to uncovered skin (Tyler 2011). Whilst secure fixation for thermistors 

is necessary to minimise small angular changes during exercise, the precise angle and 

distance of IR measurements in both studies was not fixed, which could lead to increased 

measurement error (Hershler et al. 1992). An aim of this study was to assess tools taking live 

measurements in an ecologically valid setting. As such, a widely used incremental, 

discontinuous protocol was completed which permitted short, but regular measurement 

opportunities at the end of each stage. Temperatures at four body sites were required in 

approximately 30 s and although precautions were taken, some variation in angle between 

measurements is to be expected. The short measurement period prevented ensuring that the 

skin was completely dry for measurements. Protocol sweat rates were approaching 2 L.h-1, 

which compromised drying the skin and completing measurements within the permitted time. 

Water may alter  the emissivity of the skin, so causing the camera to under-read; a trend 

observed by Johnstone et al. (2012). Further, the effect of the waterbath correction procedure 

on subsequent exercising values should be considered. As previously mentioned TC may 

have partially detected the surrounding water temperature, rather than simply the metal block, 

resulting in over-estimation of values. In this instance the correction formula may be 

inaccurate, falsely suggesting TC under-estimated during exercise. However, as a linear 

correction was applied to the data, the high levels of random error TC displayed throughout 

TSKIN measurements remain an obstacle for dynamic use. 
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Modifications to the TC protocol are required if accurate results are going to be yielded from 

such a test. Subsequent pilot testing in our laboratory (unpublished data) suggests that 

improved accuracy is possible with this model of camera when camera positions are fixed 

and longer periods of time are available for measurements to be taken. When transferring 

tools to applied situations, a compromise must be made between maximising measurement 

accuracy and maintaining ecological validity of the protocol. Consequently, whilst TC may 

still have a role to play in static, controlled situations within environmental physiology, using 

the current protocol it cannot be considered a valid alternative to either of the thermistor 

systems for live monitoring of TSKIN during exercise. 

4.3.2 Skin temperature reliability comparison 

The reliability of both thermistor systems was acceptable throughout the exercise tests, whilst 

TC again displayed large errors. The lack of difference in sweat rate between trials would 

indicate that TC did not under-read as a consequence of an adaptation eliciting a greater 

sweat response from the heat exposure during trial 1. Moreover, allowing 7 days between 

trials is likely to have prevented this effect (Barnett & Maughan 1993). The graphs for both 

HW and TT (Figure 2) display converging means throughout the rest period, with 

dissociation during the latter part of exercise. This supports the need for a long stabilisation 

period and suggests that temperature differences occurred as exercise intensity rises. Reduced 

reliability is associated with challenges to homeostasis and this occurs throughout 

incremental tests where thermal equilibrium is never achieved. Other literature has made 

comparisons during steady-state exercise (Buono et al. 2007; Smith et al. 2010), so the small 

differences observed may be a characteristic of this test and the reliability of all tools may 

improve when examined under similar circumstances. 
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5. Conclusion 

A telemetry thermistor system offers a valid and reliable alternative measure of skin 

temperature to traditional hard-wired thermistors. Such a system may provide for data 

collection up to a range of 2 km from the datalogger allowing ecologically valid 

measurements to be taken in the field. Thermal cameras may still be useful tools for 

measuring skin temperature in static and controlled environments, however their use is not 

recommended for live monitoring during exercise.  
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Figure Captions: 

Figure 1 Mean uncorrected data from hard-wired, telemetry system and thermal camera 
during each waterbath plateau temperature across the range 25-40°C. The dark line represents 
the criterion thermocouple (CT) against which thermistors and camera data was corrected.  

Figure 2: Mean (SD) reliability of wired thermistors, telemetry thermistors and thermal 
camera measuring skin temperature. ‘R’ = rest, ‘Ex’ = exercise. ‘*’ denotes a difference 
between trials (p<0.05).  

 

Highlights 

� The purpose of this study was to investigate the validity and reliability of skin 
temperature measurements using a telemetry thermistor system and a thermal camera. 

� Assessments were completed on a solid body in a thermostatically controlled 
waterbath and on participants at rest and during exercise in a hot environment.  

� Post hoc calibration based on waterbath results displayed good validity and reliability 
for the thermistor system but not the thermal camera. 

� The use of telemetry thermistors are recommended for measurements in the field 
where traditional methods may be impractical. 

� Thermal cameras may be better suited to controlled, static situations. 

 

Tables: 

Table 1. Analytical limits adopted for both part 1 (waterbath) and part 2 (TSKIN measurement) 

of this study. Sig = relative to criterion, with thermocouple the criterion during the waterbath 

and hard wired thermistors criterion during exercise. 

 Δ mean 

(°C) 

Sig.  TEE/TE

M (°C) 

TE 

(CV%) 

ICC LOA 

(°C) 

Waterbath <0.2 p>0.05 <0.1 <1% >0.9 <0.3 

Exercise <0.5 p>0.05 <0.3 <1% >0.9 <0.9 
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Columns left to right; change in mean (Δ mean), statistical difference (Sig), typical error of the 

estimate (TEE)/measure (TEM), typical error as a coefficient of variation (TE[CV%]), 

intraclass correlation coefficient (ICC) and limits of agreement (LOA). 

 

 

 

Table 2: Reliability of wired thermistors, telemetry thermistors and thermal camera after 

correction to account for difference in bath temperature between trials 1 and 2. 

 
Δ mean (°C) 

(95% CI) 
Sig 

TEM (°C) 

 

TE 

(CV%) 
ICC 

LOA (°C) 

(95% CI) 

Analytical limit: <0.2°C p>0.05 <0.1°C <1% >0.9 <0.3°C 

Wired 
-0.10 

(-0.15- -0.05) 
p=0.005 0.14 0.3 0.996 

0.38 

(-0.28-0.48) 

Telemetry 
-0.04 

(-0.06- -0.02) 
* 0.05 0.2 1.000 

0.14 

(-0.10-0.18) 

Thermal camera 
0.14 

(0.08-0.20) 
* 0.16 0.5 0.996 

0.44 

(-0.06-0.30) 

Columns left to right; change in mean between trials (Δ mean), statistical difference (Sig), 

typical error of the measure (TEM), typical error as a coefficient of variation (TE[CV%]), 

intraclass correlation coefficient (ICC) and limits of agreement (LOA). ‘*’ denotes p<0.001, 

‘95% CI’ = 95% confidence interval. 
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Table 3: Validity of wired thermistors, telemetry thermistors and thermal camera relative to 

the criterion thermocouple. Mean values from 33, 35 and 38°C are presented. 

Raw data 

 

Manufacturer 

accuracy 

(±°C) 

Δ mean (°C) 

(95% CI) 

Sig 

 

TEE 

(°C) 

TE 

(CV%) 

ICC 

 

LOA (°C) 

(95% CI) 

Analytical 

limit: 
 <0.2°C p>0.05 <0.1°C <1% >0.9 <0.3°C 

Wired 0.2 
-0.22 

(-0.24 - -0.20) 
* 0.07 0.2 0.85 

0.13 

(-0.35- -0.09) 

Telemetry 0.1 
0.15 

(0.13-0.17) 
* 0.07 0.2 0.86 

0.16 

(0.00-0.31) 

Thermal 

camera 
2 

2.01 

(1.91-2.10) 
* 0.17 0.5 0.99 

0.74 

(1.26-2.75) 

Corrected 

Wired 0.2 
0.08 

(0.05-0.11) 
* 0.07 0.2 0.85 

0.21 

(-0.13-0.29) 

Telemetry 0.1 
0.02 

(0.00-0.04) 
p=0.267 0.08 0.2 0.86 

0.15 

(-0.13-0.17) 

Thermal 2 -0.02 p=1.000 0.16 0.5 0.86 0.31 



25 

 

Columns left to right; manufacturer stated accuracy, change in mean (Δ mean), statistical 

difference (Sig), typical error of the estimate (TEE), typical error as a coefficient of variation 

(TE[CV%]), intraclass correlation coefficient (ICC) and limits of agreement (LOA). ‘*’ 

denotes p<0.001, ‘95% CI’ = 95% confidence interval. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

camera (-0.07-0.02) (-0.34-0.29) 
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Table 4: Reliability of wired thermistors, telemetry thermistors and thermal camera 

measuring skin temperature at rest and during exercise.  

  

Δ mean (°C) 

(95% CI) 
TEM 
(°C) 

TE 
(CV%) ICC 

LOA (°C) 

(95% CI) 

 

Analytical 
limit: <0.5°C <0.3°C <1% >0.9 <0.9°C 

HW 
Rest 0.01 (-0.27-0.29) 0.34 1 0.67 0.95 (-0.95-0.94) 

Exercise 0.18 (-0.46-0.09) 0.31 0.88 0.62 0.86 (-0.62-1.09) 

TT 
Rest 0.10 (-0.22-0.42) 0.38 1.11 0.64 1.04 (-1.14-0.94) 

Exercise -0.19 (-0.42-0.04) 0.24 0.7 0.84 0.67 (-0.48-0.87) 

TC 
Rest -0.38 (-0.83-0.07) 0.53 1.58 0.52 1.46 (-1.08-1.85) 

Exercise -0.92 (-1.35-0.49) 0.5 1.5 0.56 1.40 (-0.60-2.20) 

Columns left to right; change in mean (Δ mean), typical error of the measure (TEM), typical 

error as a coefficient of variation (TE[CV%]), intraclass correlation coefficient (ICC) and 

limits of agreement (LOA). ‘CI’ = 95% confidence interval. 
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Table 5: Tabular report of validity comparisons between hard wired thermistors, telemetry thermistors and 
thermal camera at rest and during exercise.  

 Rest 1 Rest 2 Rest 3 Rest 4 Rest 5 Exerci
se 1 

Exerci
se 2 

Exerci
se 3 

Exerci
se 4 

Exerci
se 5 

 10min
s 

20mins 25mins 30mins 35mins 4mins 8mins 12mins 16mins 20mins 

HW – 
mean 
(sd) 

33.81 
(0.44) 

33.93 
(0.52) 

34.10 
(0.43) 

34.10 
(0.39) 

34.16 
(0.41) 

34.75 
(0.50) 

35.26 
(0.31) 

35.19 
(0.31) 

35.19 
(0.40) 

35.25 
(0.56) 

TT – 
mean 
(sd) 

33.72 
(0.47) 

33.77 
(0.46) 

33.96 
(0.38) 

33.94 
(0.39) 

34.05 
(0.40) 

34.51 
(0.54) 

35.02 
(0.32) 

34.96 
(0.45) 

34.95 
(0.56) 

35.02 
(0.69) 

� mean 
(�C) 
(95% 
CI) 

�0.09 
(�0.23
–0.05) 

�0.16 
(�0.34
–0.02) 

�0.13 
(�0.27
–0.00) 

�0.15 
(�0.29
–0.02) 

�0.12 
(�0.26–
0.03) 

�0.23� 
(�0.34
–0.12) 

�0.25� 
(�0.34
–0.16) 

�0.22 
(�0.35
–0.10) 

�0.24 
(�0.42
–0.06) 

�0.24 
(�0.47
–0.00) 

TEE 
(CV%) 

0.21 
(0.6) 

0.25 
(0.7) 

0.20 
(0.6) 

0.20 
(0.6) 

0.20 
(0.6) 

0.15 
(0.4) 

0.11 
(0.3) 

0.10 
(0.3) 

0.15 
(0.4) 

0.26 
(0.7) 

ICC 0.91 0.92 0.91 0.90 0.91 0.97 0.96 0.92 0.92 0.92 

LOA 
(�C) 
(95% 
CI) 

0.41 
(�0.32
–0.50) 

0.45 
(�0.29
–0.61) 

0.38 
(�0.24
–0.51) 

0.38 
(�0.23
–0.54) 

0.39 
(�0.27–
0.50) 

0.30 
(�0.07
–0.53) 

0.21 
(0.04–
0.46) 

0.35 
(�0.13
–0.57) 

0.46 
(�0.22
–0.70) 

0.59 
(�0.36
–0.83) 

HW – 
mean 
(sd) 

33.81 
(0.44) 

33.93 
(0.52) 

34.10 
(0.43) 

34.10 
(0.39) 

34.16 
(0.41) 

34.75 
(0.50) 

35.26 
(0.31) 

35.19 
(0.31) 

35.19 
(0.40) 

35.25 
(0.56) 

TC – 
mean 
(sd) 

33.06 
(0.65) 

33.04 
(0.81) 

33.06 
(0.83) 

33.27 
(0.67) 

33.31 
(0.80) 

32.63 
(1.13) 

33.45 
(0.54) 

33.26 
(0.85) 

33.33 
(0.94) 

33.32 
(0.99) 

Change 
in 
mean 
(�C) 

�0.75 
(�1.19
–0.31) 

�0.89 � 
(�1.30
–0.48) 

�1.04 � 
(�1.46
–0.61) 

�0.83 � 
(�1.18
–0.48) 

�0.85 
�� 
(�1.29–
0.41) 

�2.12 � 
(�2.93
–1.31) 

�1.82 � 
(�2.29
–1.35) 

�1.93 � 
(�2.39
–1.46) 

�1.86 � 
(�2.37
–1.36) 

�1.94 � 
(�2.50
–1.37) 
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 Rest 1 Rest 2 Rest 3 Rest 4 Rest 5 Exerci
se 1 

Exerci
se 2 

Exerci
se 3 

Exerci
se 4 

Exerci
se 5 

 10min
s 

20mins 25mins 30mins 35mins 4mins 8mins 12mins 16mins 20mins 

TEE 
(CV %) 

0.43 
(1.3) 

0.37 
(1.1) 

0.31 
(0.9) 

0.32 
(0.9) 

0.33 
(1.0) 

0.51 
(1.5) 

0.33 
(1.0) 

0.22 
(0.6) 

0.24 
(0.7) 

0.45 
(1.3) 

ICC 0.33 0.75 0.65 0.60 0.58 0.18 0.23 0.55 0.65 0.64 

LOA 
(�C) 
(95% 
CI) 

1.28 
(�0.54
–2.03) 

1.05 
(�0.16
–1.94) 

1.17 
(�0.13
–2.20) 

1.01 
(�0.18
–1.84) 

1.21 
(�0.36–
2.06) 

2.22 
(�0.11
–4.34) 

1.10 
(0.72–
2.92) 

1.27 
(0.66–
3.19) 

1.28 
(0.58–
3.15) 

1.44 
(0.49–
3.38) 

 

 

From top to bottom; descriptive statistics, change in mean (Δ mean), typical error of the estimate (TEE), 
intraclass correlation coefficient (ICC), limits of agreement (LOA). ‘*’ denotes significant difference whereby 
p<0.05, ‘CI’ = 95% confidence interval.  
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Figure 1 Mean uncorrected data from hard-wired, telemetry system and thermal camera during each 

waterbath plateau temperature across the range 25-40°C. The dark line represents the criterion 

thermocouple (CT) against which thermistors and camera data was corrected. 
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Figure 2: Mean (SD) reliability of wired thermistors, telemetry thermistors and thermal camera 

measuring skin temperature. ‘R’ = rest, ‘Ex’ = exercise. ‘*’ denotes a difference between trials 

(p<0.05). 
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