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Modeling of Thermoacoustic
Resonators With Nonuniform
Medium and Boundary Conditions
The subject of this paper is modeling of low-amplitude acoustic fields in enclosures with
nonuniform medium and boundary conditions. An efficient calculation method is devel-
oped for this class of problems. Boundary conditions, accounting for the boundary-layer
losses and movable walls, are applied near solid surfaces. The lossless acoustic wave
equation for a nonuniform medium is solved in the bulk of the resonator by a finite-
difference method. One application of this model is for designing small thermoacoustic
engines. Thermoacoustic processes in the regular-geometry porous medium inserted in
resonators can be modeled analytically. A calculation example is presented for a small-
scale thermoacoustic engine coupled with an oscillator on a flexing wall of the resonator.
The oscillator can be used for extracting mechanical power from the engine. A nonuni-
form wall deflection may result in a complicated acoustic field in the resonator. This leads
to across-the-stack variations of the generated acoustic power and local efficiency of
thermoacoustic energy conversion. �DOI: 10.1115/1.4003200�

Keywords: thermoacoustic engine, energy conversion, acoustic resonator, nonuniform
media, linear acoustics
Introduction
Modeling of acoustic field in enclosures, such as mufflers,

ooms, and thermoacoustic devices, is an important engineering
roblem. Complete modeling of sound including damping mecha-
isms in the entire fluid domain is computationally expensive.
hen dissipation is not important and the sound amplitude is

mall, a simplified form of the linearized wave equation can be
asily solved by various techniques, such as boundary element
ethods. In many acoustic systems, losses are important only in

coustic boundary layers formed near solid surfaces. Then, using
all admittances �1,2� or thermoviscous functions �3�, it is pos-

ible to account for this damping while neglecting thermoviscous
ffects outside boundary layers.

Unsteady heat release in acoustic resonators can lead to sound
eneration or attenuation. Thermoacoustic engines represent novel
evices where acoustic power is produced from heat without in-
olving movable solid parts �4�. The acoustic power is usually
enerated inside a porous material known as a stack, which is
ubjected to a temperature gradient. A schematic of a classical
uarter-wavelength thermoacoustic engine is shown in Fig. 1. The
enerated acoustic power can be used for cooling applications,
lectricity production, and gas mixture separation. Calculations of
hermoacoustic engines often rely on using thermoviscous func-
ions to predict gain or loss of acoustic power in the system ele-

ents. For example, modeling of acoustic field in ducts by the
hermoacoustic code DELTAE �5� is based on the assumption that
coustic pressure and mean temperature are uniform across in the
uct cross sections, and the solution of a quasi-one-dimensional
ave equation is obtained using thermoviscous functions that ac-

ount for the wall effects.
In recent years, efforts have been undertaken to develop small-

cale thermoacoustic engines that can be used as elements of por-
able electric power generators �6,7�. The produced sound energy
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can be harnessed by electroacoustic transformers �Fig. 1�b��, such
as piezomembranes. These membranes create nonuniform bound-
ary conditions at the resonator walls and significantly distort the
one-dimensionality of acoustic field in resonators, especially in
enclosures with large cross-sectional areas, which are beneficial
for reducing wall losses. Also, heat sources/sinks in miniature
systems are placed �possibly asymmetrically� outside resonators,
and heat is delivered/removed to/from the stack ends via conduc-
tion through porous materials, such as wire mesh or end sections
of the stack. With less effective heat exchangers and wider reso-
nators, transverse variations of the mean temperature may become
significant and affect the acoustic field. These transverse nonuni-
formities make commonly used calculation methods �such as DEL-

TAE� inapplicable for acoustic modeling of resonators in miniature
thermoacoustic systems.

In the present paper, an efficient computational method address-
ing this problem is developed. The appropriate boundary condi-
tions are applied near the resonator boundaries, accounting for the
boundary-layer losses, movable walls, and thermoacoustic stack
interfaces. The lossless linearized acoustic wave equation is
solved in the bulk of the resonator �filled with a nonuniform fluid�
by a finite-difference method. Although the focus of this study is
on thermoacoustic engines, the discussed method can be applied
for other acoustic problems with lossy resonators.

2 Mathematical Model
Steady-state, low-amplitude, single-frequency acoustic oscilla-

tions are considered inside a resonator. The pressure and velocity
can be presented as follows �4�:

p�x� ,t� = pm + Re�p1�x��ei�t� �1�

u� �x� ,t� = Re�u�1�x��ei�t� �2�

where pm is the mean pressure, p1 and u�1 are the complex ampli-
tudes of acoustic pressure and velocity, respectively, � is the ra-
dian frequency, t is the time, and i is the imaginary unity. The
acoustic streaming is ignored in the present study due to consid-
eration of only low-amplitude sound. The acoustic streaming is a
second-order effect with respect to the acoustic pressure ampli-

tude. The streaming usually becomes important when the ratio
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1 / pm exceeds about 5% �4,8�. In all examples presented in this
aper, the relative pressure amplitudes are smaller than 2%, with
n exception of one special case with larger amplitudes.

Thermoviscous losses are considered to be negligible far from
he walls of the resonator. Therefore, the acoustic pressure field
atisfies a modified Helmholtz equation for a nonuniform me-
ium, which can be obtained from the linear acoustic theory �9�,

�2p1 +
�2

a2 p1 −
1

�
� p1 · �� = 0 �3�

here a and � are the local speed of sound and density, respec-
ively. The last term in Eq. �3� is responsible for a nonuniformity
f gas density inside a resonator, which can be caused, for ex-
mple, by a spatially variable mean temperature field. It is as-
umed that acoustic losses in the bulk of resonator are much
maller than those at the walls.

To account for thermoviscous losses at the resonator solid walls
nd possible normal oscillations of the walls, a boundary condi-
ion can be introduced for the amplitude u1 of the acoustic veloc-
ty normal to the wall and evaluated at the outer edge of the
coustic boundary layer. This condition follows from the acoustic
omentum equation,

i��u1 = i���u� + uw� = −
�p1

��
�4�

here � is the coordinate normal to the wall, u� is the amplitude
f the velocity due to thermoviscous effects in the acoustic bound-
ry layer, and uw is the velocity amplitude of the wall oscillations
Fig. 2�b��. In a nonuniform medium, the expression for velocity
� can be determined from results of Olson and Swift �10�,

ig. 1 Schematics of „a… classical standing-wave thermoa-
oustic engine and „b… low-aspect-ratio engine with electroa-
oustic transformer

ig. 2 „a… Part of numerical grid. „b… Magnified view of a zone

ear rigid surface.
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u� =
�i�

��3/2
�2p1

��2 −
�i��

�a2 �� − 1�p1 +
�i

�2�3/2���� − ��

1 − 	
− ��� ��

��

+
�

2��

��

��
	 �p1

��
�5�

where � is the coordinate parallel to the wall, � is the gas kine-
matic viscosity, � is the thermal diffusivity, � is the specific heat
ratio, and 	 is the Prandtl number.

The acoustic field in a resonator with a given mean temperature
field can be calculated by a finite-difference method. The numeri-
cal grid size is selected to be much greater than the acoustic
boundary-layer thickness �, which can be estimated as follows:

� 
 max��v;�k� = max��2�

�
;�2�

�
� �6�

where �v and �k are the viscous and thermal penetration depths,
respectively. For solving Eq. �3� in the bulk of the resonator, the
boundary points of the numerical mesh can be approximately
placed at the wall surface due to smallness of � in comparison
with a computational cell size �Fig. 2�a��. The boundary condition
in the form of Eq. �4� can be applied at these points. At the other
points �in the bulk of a resonator�, Eq. �3� is used. Discretized
forms of Eqs. �3� and �4� form a system of linear algebraic equa-
tions for the acoustic pressure amplitude. Once the pressure field
is determined, the acoustic velocity in the bulk of a resonator can
be found from the acoustic momentum equation,

i�u�1 = − �p1 �7�
If a porous material �called “stack” in thermoacoustics� is in-

serted inside a resonator, then a modified wave equation must be
solved inside this medium since viscous and thermal relaxation
effects will be important in the entire gas volume in the stack.
This equation was derived by Swift �4� for regular stacks with a
longitudinal-pore structure,

�1 + �� − 1�fk�p1 +
�pm

�2

d

dx
�1 − fv

�

dp1

dx
� −

a2

�2

fk − fv

1 − 	

1

T

dT

dx

dp1

dx
= 0

�8�

where x is the coordinate along pores in the stack, T is the time-
average temperature in the pore section, and fv and fk are the
thermoacoustic functions specific to the stack pore geometry. In
this analysis, the temperature distribution in the stack is treated as
a given condition, and no heat exchangers are included into con-
sideration. For a stack composed of parallel plates, thermoacoustic
functions are given as follows �4�:

fk,v =
tanh��1 + i�y0/�k,v�

�1 + i�y0/�k,v
�9�

where y0 is a half of the spacing between neighboring plates, and
penetration depths �k and �v are given in Eq. �6�. The acoustic
velocity component along the pore, averaged over the pore cross
section, is related to the acoustic pressure gradient,

�u1� = i
1 − fv

��

dp1

dx
�10�

It is assumed that at the stack-resonator interface the acoustic
pressure is continuous, while the acoustic velocity experience a
jump due to a slight variation of the cross-sectional area for os-
cillating gas flow in the stack,

p1
x=L1− = p1
x=L1+, p1
x=L2− = p1
x=L2+ �11�

u1
x=L1− = 
�u1�
x=L1+, u1
x=L2+ = 
�u1�
x=L2− �12�

where L1 and L2 are the coordinates of the stack ends �Fig. 3�a��
and 
 is the stack porosity �close to 1�. The acoustic pressure and

velocity may vary at the stack end planes. Equations �11� and �12�
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epresent simplified forms of the joining conditions. At large
coustic amplitudes or low-porous stacks, the joining conditions
ould require more complicated correction factors due to com-
lex thermal and acoustic processes at the interfaces �4,11�.

The coupling between the gas oscillating in a resonator and a
ibrating wall implies a relation between amplitudes of the wall
elocity uw and the local acoustic pressure p1. In general, this
elation depends on the structural properties of the flexing wall.
ince in this study we are concerned mainly with fluid oscillations

n the resonator, an idealized linear mechanical oscillator model is
dopted for a flexing part of the wall. In such an oscillator, its
ffective velocity amplitude U1 is coupled to the force amplitude
1 as follows:

U1 =
i�F1

K − �2M + i�R
�13�

here K and M are the stiffness and mass of an oscillator, U1
1 /A�AuwdA is the area-averaged velocity amplitude at the flex-

ng wall surface, and A is the surface area. For simplicity, it is
ssumed that there is no internal damping in the oscillator, so a
eal-valued coefficient R in Eq. �13� is responsible only for har-
essing the mechanical power of the oscillator by external means.
n practical applications this power can be further converted in
ther energy forms, such as electricity. The effective force in Eq.
13� is defined as follows:

F1 = −
1

Ũ1

�
A

p1ũwdA �14�

here the tilde stands for a complex conjugate and the minus sign
orresponds to the x-axis directed from the flexing wall into the
esonator as in Fig. 3�a�. The form of Eq. �14� ensures that the
ime-averaged acoustic power consumed by the flexing wall is
ompletely extracted from the oscillator. This power can be cal-
ulated via acoustic variables �for geometry in Fig. 3� or mechani-
al parameters,

P = −
1

2
Re��

A

p1ũwdA	 =
1

2
Re�F1Ũ1�

=

F1
2

2

R

��0
2/�2 − 1�2�2M2 + R2 �15�

here �0=�K /M is the natural frequency of the oscillator. If R
0, then no acoustic power is delivered to the flexing wall and no
echanical power is taken from the engine.

Results
The mathematical model is first validated for a constant-

emperature resonator. The resonator geometry is similar to that
hown in Fig. 3�a�, but with no stack present, and the left wall
scillates in a uniform, pistonlike motion with the velocity ampli-

ig. 3 „a… Geometry of a 2D thermoacoustic engine with flex-
ng wall on the left boundary. „b… Given mean temperature pro-
le at y=0.
ude uw=3 m /s at the half-resonance frequency. The 2 cm

ournal of Vibration and Acoustics
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�2 cm two-dimensional resonator is filled with 5 bar air at a
constant mean temperature of 400 K. The top and bottom bound-
aries are isothermal, while the left and right boundaries are adia-
batic. The analytical solutions for the acoustic pressure and veloc-
ity amplitudes averaged over the cross-sectional areas are given as
follows �9�:

p1�x� = A1 exp�− ikx� + B1 exp�ikx� �16�

u1�x� =
A1

Z
exp�− ikx� −

B1

Z
exp�ikx� �17�

where k and Z are the wavenumber and the specific acoustic im-
pedance, respectively. In a two-dimensional duct, they can be ex-
pressed via thermoviscous functions �Eq. �9�� with H /2 substi-
tuted for y0,

k =
�

a
�1 + �� − 1�fk

1 − fv
�18�

Z =
�a

��1 − fv��1 + �� − 1�fk�
�19�

Constants A1 and B1 in Eqs. �16� and �17� are found from two
boundary conditions, u1�0�=uw and u1�L�=0. A comparison be-
tween the analytical solution and the two-dimensional numerical
solution by the method developed here is shown in Figs. 4�a� and
4�b�.

Another validation has been carried out for the same system but
with a linear variation of mean temperature along the resonator, so
that the left and right walls are at 200 K and 600 K, respectively.
While the analytical solution is not possible for this case, a nu-
merical solution of the one-dimensional wave equation �Eq. �8��
can be easily found using thermoviscous functions �Eq. �9��. �A
similar approach is implemented in the DELTAE algorithm for reso-
nators.� The comparison between our 2D model and a solution of
1D wave equation is given in Figs. 4�c� and 4�d�. The agreement
between the results of the 2D model developed here and other
solutions is good.

Upon validation, the method described in Sec. 2 has been ap-
plied to model a small-scale two-dimensional thermoacoustic en-

Fig. 4 Model validation results. „a… Constant-temperature
lossy resonator. Solid lines, analytical solution; points, 2D nu-
merical solution. „b… Resonator with linear temperature varia-
tion. Solid lines, solution of 1D wave equation with thermovis-
cous functions „Eq. „8……; points, 2D numerical solution. Re and
Im symbols indicate the real and imaginary parts of solutions,
respectively.
gine with a flexing wall. The oscillating boundary can be used to
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xtract mechanical power from the engine. A system schematic is
hown in Fig. 3�a�, and main parameters are listed in Table 1. One
dvantage of this low-aspect-ratio configuration in comparison
ith common high-aspect-ratio engines is the reduced surface

rea of the resonator, which results in decreased acoustic attenu-
tion at the walls. Additionally, if the operational frequency of the
ngine is sufficiently smaller than the natural frequency of the
esonator, then the wall losses will be further reduced, since ther-
oviscous damping decreases with decreasing frequency. This

an be achieved if the natural frequency of the flexing wall is
elected to be much smaller than the resonator natural frequency.

There are two main modeling complications arising in this con-
guration. First, due to a nonuniform deflection of the flexing
all, the acoustic field in the direction transverse to dominant

coustic motions can also have significant nonuniformity. Second,
he mean temperature may vary with the y-coordinate since uni-
orm delivery/extraction of heat to/from the stack is difficult to
chieve in low-aspect-ratio small-scale systems. Previously used
hermoacoustic calculation tools �applied mainly for large sys-
ems� do not address these problems. However, the method pre-
ented in this paper can handle both effects. In this analysis, the
ean temperature field and a form of the movable wall deflection

re treated as given inputs since the focus of this study is on
olving the acoustic problem. In a complete analysis, additional
odels for heat transfer and wall deformation will have to be

ntroduced and coupled with the acoustic model.
In the presented calculation example, a simple but realistic form

f the mean temperature field is given as follows:

T�x,y� = �TL + �Tyy/H,x 
 L1

TL + �T�x − L1�/�L2 − L1� + �Tyy/H,L1 
 x 
 L2

TL + �T + �Tyy/H,x � L2
�
�20�

here L and H are the length and width of the resonator, respec-
ively, TL is the mean temperature of the cold part of the resonator,
nd �T�0 is a constant temperature difference between the stack
nds along the x-coordinate. The center-plane �y=0� mean tem-
erature profile is shown in Fig. 3�b�. �Ty is a constant tempera-
ure difference between the upper �y=H /2� and lower �y=
H /2� walls of the resonator. In the present example, a moderate

ransverse temperature difference of 20 K is chosen �Table 1�,
orresponding to realistic temperature nonuniformity estimated
or one particular system setup. However, the present mathemati-
al model can handle any �Ty, and practical systems with larger
Ty are also possible.
It is assumed that the flexing wall located at x=0 deforms as a

osine function of y, so its velocity amplitude �as well as the gas
elocity amplitude at the wall surface� is given by the following
xpression:

uw�y� = Uw cos��y

H
� �21�

here Uw is the wall velocity amplitude at y=0. The end points of
his wall are fixed, and the maximum velocity �and deflection� is

Table 1 Specifications of thermoacoustic engine

ength L=2 cm
eight H=2 cm
eft position of the stack L1=5 mm
ight position of the stack L2=10 mm
tack porosity 
=0.95
as type Air
ean pressure pm=5 bars
ean temperature of the cold part TL=300 K

ransverse temperature difference �Ty =20 K
chieved in the middle of the wall. The velocity of the flexing wall

31012-4 / Vol. 133, JUNE 2011
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described by Eq. �21� is an idealization. The actual velocity dis-
tribution in real devices will depend on the properties of the wall,
fluid, resonator geometry, and temperature field. The other walls
in the considered system, located at y=H /2, y=−H /2, and x=L,
do not move at all.

One of the most important characteristics of thermoacoustic
engines is the critical temperature difference between the stack
ends �Tcr, which corresponds to the onset of sound. This thresh-
old is calculated for the system with parameters given in Table 1.
The parallel-plate stack is considered with a half-spacing between
plates taken as y0=1.3�k, where �k is the thermal penetration
length defined in Eq. �6�. The wall oscillator mass M and its
natural frequency f0=�0 /2� are treated as variable parameters.
The number of computational nodes in each direction of the do-
main is selected to be n=21. �It was found that in a mesh with
twice smaller cell size a change in results is usually less than 1%.�
The wave equations in the resonator and stack �Eqs. �3� and �8��
are solved together with the boundary conditions �Eqs. �4�, �11�,
and �12�� by the second-order finite-difference scheme. The fre-
quency of acoustic oscillations f is the eigenvalue in this problem.
This frequency and the critical temperature difference are found
iteratively by ensuring that the power extraction coefficient R in
Eqs. �13� and �15� is zero at the sound onset.

The calculated values of �Tcr and f for various oscillator pa-
rameters M and f0 are shown in Fig. 5. In this figure, the resonator
natural frequency fr is estimated as for a half-wavelength uniform
resonator, i.e., fr=a /2L, where a is the mean speed of sound. This
frequency is not close to the frequency of acoustic oscillations due
to the presence of a flexing wall oscillator at the left boundary.
The mass of the gas in the resonator Mg �per unit length in a
two-dimensional problem� and the resonator natural frequency fr
are in the ranges of 1.64–2.13 g/m and 9.08–10.6 kHz, respec-
tively, for corresponding temperature conditions. The normalized
critical temperature difference shown in Fig. 5�b� is defined ac-
cording to Swift �4�,

� =
�Tcr

�Tcr,id
= �Tcr

�cp
�u1�

�Ls
p1


�22�

where Ls=L2−L1 is the stack length, and the gas properties and
acoustic amplitudes are evaluated as mean values at the stack
middle section x= �L1+L2� /2. The ideal critical temperature gra-
dient 
�Tcr,id
=�Tcr,id /Ls corresponds to a single plate placed in
an inviscid fluid that acoustically oscillates with a standing-wave
phasing.

From the results in Fig. 5�a�, one can see that selecting a low
natural frequency and a large mass of an oscillator �at fixed values
of other system parameters� is favorable for reducing the critical
temperature difference. At a higher ratio of the natural frequencies
of an oscillator and resonator, �Tcr increases and its sensitivity to
the oscillator mass decreases.

Similar to the behavior of �Tcr, the frequency of self-excited
acoustic oscillations f decreases with decreasing the natural fre-
quency of the oscillator and increasing mass �Fig. 5�c��. This leads
to the reduction of thermoviscous losses and earlier sound onset
�lower �Tcr�. The frequency of oscillations is always higher than
the oscillator natural frequency f0 in the studied range of the sys-
tem parameters �Fig. 5�d��, but it approaches f0 when the ratio
f0 / fr increases. As f0 �or oscillator stiffness K� approaches zero, f
stabilizes at a certain level which depends on the oscillator mass
�Fig. 5�c��. The role of stiffness in this limit is played by a com-
pressibility of the gas inside resonator.

An example of calculated acoustic pressure and x-component of
the velocity is given in Fig. 6. The system parameters are the same
as those given in Table 1 and described by Eqs. �20� and �21�.
Additionally, several other parameters are fixed as follows: the
stack plate half-spacing y0=5�10−5 m, the natural frequency of

the oscillator f0=450 Hz, the oscillator mass M =10 g /m, the

Transactions of the ASME
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Fig. 5 „„a… and „b…… Dimensional and normalized critical temperature difference. „„c… and „d…… Dimen-
sional and normalized frequency of the engine at the sound onset. Solid line, M /Mg=25; dashed line,

M /Mg=5; dotted line, M /Mg=1.
Fig. 6 Complex amplitudes of „„a… and „b…… acoustic pressure normalized by mean pressure and „„c…
and „d…… x-component of acoustic velocity normalized by maximum velocity at flexing wall. Velocities

inside stack are averaged over pore cross sections.
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tack temperature difference �T=100 K �which is above the cor-
esponding critical temperature difference�, and the maximum
all velocity amplitude Uw=3 m /s.
As shown in Fig. 6, the real component of the acoustic velocity

Fig. 6�c�� and the imaginary component of the acoustic pressure
Fig. 6�b�� dominate the imaginary velocity �Fig. 6�d�� and the
eal pressure �Fig. 6�a��, respectively. This indicates that the prin-
ipal acoustic motions occur in the standing-wave phasing, where
he acoustic pressure and velocity are shifted by about 90 deg.
owever, since the other components of the acoustic pressure and
elocity are not zero �Figs. 6�a� and 6�d��, the phase shift is not
xactly 90 degrees. This implies that some acoustic energy is
ransported through the system since the time-averaged acoustic
nergy flux is proportional to Re�p1ũ�1�.

Although the dominant acoustic motions occur along the
-coordinate, acoustic variables also depend on the y-coordinate
utside the boundary layers. The nonuniform motions of the flex-
ng wall cause a strong variability of the real component of the
coustic velocity at this wall boundary �Fig. 6�c��. This variability
isappears on the opposite stationary wall since the velocity ap-
roaches zero. The focusing of the imaginary acoustic pressure at
he center of the flexing wall �Fig. 6�b�� and the imaginary veloc-
ty in the central portion of the stack �Fig. 6�d�� are also notice-
ble.

The variation of acoustic field in the direction perpendicular to
he main acoustic oscillations leads to nonuniform thermoacoustic
nergy conversion in the stack. The flux of generated acoustic
nergy out of the stack, its normalized value, and the local stack-
ased thermoacoustic efficiency for the considered here geometry
an be defined as follows:

W�y� = 1
2Re�− �p1�y�ũ1�y��x=L1− + �p1�y�ũ1�y��x=L2+� �23�

w�y� =
W�y� · H

1

2�
−H/2

H/2

Re�− �p1ũ1�x=L1− + �p1ũ1�x=L2+�dy

�24�

�st�y� =
w�y�
q�y�

�25�

here q is the local heat addition rate to the stack per its cross-
ectional area, which can be found from the enthalpy flux along
he stack pores �4� and conduction-type heat transfer. It is as-
umed that the heat conduction leak in the stack occurs mainly in
he gas, and the stack solid plates have negligibly low longitudinal
hermal conductivity. The normalized acoustic power density and
he stack-based efficiency are calculated for the system defined
bove under the temperature difference �T=100 K and with vari-
ble width H. The results are shown in Fig. 7. The resonator with
spect ratio H /L=0.5 has nearly uniform acoustic power flux and
ocal efficiency, with the difference between values at the walls
2y /H= �1� caused by the temperature variation along the y-axis.
he acoustic pressure and velocity shown in Fig. 6 also have
mall asymmetry due to finite �Ty. In real systems this will also
ead to asymmetry of the flexing wall velocity, which is assumed
ymmetrical in the present study �Eq. �21��.

The transverse nonuniformities become large at aspect ratio
/L=1.5. They are caused by a strongly nonuniform acoustic

eld in the stack, such as the local increase of the imaginary
elocity amplitude �similar to that in Fig. 6�d��. This variation
cross-the-stack suggests that optimized stacks in such systems
hould have lengths and positions of the stack segments varying
ver the resonator cross section.

The engine produces net acoustic power above the temperature
ifference threshold. Steady-state operations, i.e., when acoustic
mplitudes are saturated and do not change in time, will require
ither nonlinear acoustic losses or limits on how much heat can be

iven/taken to/from the stack or how much acoustic power can be
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extracted from the wall oscillator. In this example, we consider the
amount of extracted mechanical power to be the limiting factor.
The thermomechanical efficiency in the excited regime can be
defined as follows:

�tm =
P

Q
�26�

where P is the mechanical power removed from the oscillator �Eq.
�15�� and Q is the rate of total heat supplied to the stack �4�.
Calculated for the system with the same parameters defined
above, the aspect ratio H /L=1.0, and variable mechanical loads
and stack temperature differences, the thermomechanical effi-
ciency is shown in Fig. 8. Two low-power cases �0.1 W/m and 1.0

Fig. 7 „a… Normalized flux of acoustic power produced in the
stack. „b… Local stack-based thermoacoustic efficiency. Solid
line, H /L=0.5; dashed line, H /L=1.0; and dotted line, H /L=1.5.

Fig. 8 Calculated thermomechanical efficiency. Solid line, P
=0.1 W/m; dashed line, P=1.0 W/m; and dotted line, P

=10 W/m.
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/m� correspond to the relative acoustic pressure amplitudes
1 / pm below 2%, while the highest power case �10 W/m� corre-
ponds to p1 / pm within 2–6% in the considered range of �T.
naccounted here, finite-amplitude acoustic effects may become

mportant in the case with the highest power output.
As shown in Fig. 8, the thermomechanical efficiency increases

ith the mechanical power output at fixed �T since the parasitic
eat conduction along x-axis is not sensitive to the acoustic am-
litudes, and the contribution of the heat leak to the total rate of
upplied heat decreases with increasing power output �or acoustic
mplitudes�.

The dependence of efficiency on the stack temperature differ-
nce at fixed power output is not monotonic. If �T is only slightly
reater than �Tcr, then the oscillator power-extracting coefficient
is small, and acoustic amplitudes must be large for a constant

ower level P �Eq. �15��. The supplied heat rate increases with
oth the acoustic amplitudes and the stack temperature difference
4�. With increasing �T, R also increases, while acoustic ampli-
udes must decrease to keep constant P. Therefore, the supplied
eat rate initially decreases and the efficiency initially increases
ith increasing �T when the conduction heat leak is relatively

mall. At sufficiently large �T, the conduction heat leak becomes
dominant component of the supplied heat, leading to an increase
f Q and a reduction of the efficiency. This suggests an existence
f optimal �T at fixed P, where the efficiency reaches its maxi-
um. The efficiency peak shifts to higher temperature differences

t larger mechanical loads �Fig. 8�.
It should be emphasized that heat transfer due to acoustic

treaming is not accounted for here because only low amplitudes
re considered. No optimization of the system geometry and ma-
erial properties is attempted in this study. Hence, the efficiency
nd power in Fig. 8 correspond to realistic values in the chosen
onfiguration, but significant improvements can be expected when
he system parameters are designed for a specific operational con-
ition. Nevertheless, even efficiency levels of several percent are
onsidered attractive for practical applications of small-scale
ower systems �12�. At the same time, various nonlinear effects
gnored here may negatively impact the system performance in
igh-amplitude regimes.

Conclusions
A numerical model has been developed for calculating low-

mplitude acoustic fields in resonators with nonuniform media
nd boundary conditions. This method can be used for designing
hermoacoustic devices and other systems where the assumption
bout one-dimensionality of pressure and mean temperature fields
oes not hold and acoustic losses at solid surfaces are important.
he main advantage of the considered approach in comparison
ith complete thermoviscous modeling by computational fluid
ynamics codes is the computational efficiency. Sparse numerical
rids can be used in the bulk of resonators, while analytical solu-
ions in boundary layers near solid surfaces provide appropriate
ournal of Vibration and Acoustics
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boundary conditions. The model is convenient for optimizing ther-
moacoustic systems since all important parameters of geometry
and material properties are included into consideration, and calcu-
lations are fast.

The example considered in this paper involves a new configu-
ration of a small-scale thermoacoustic engine. Operating at a fre-
quency much lower than a natural frequency of the acoustic reso-
nator, such an engine may achieve reasonably high efficiencies
and have a low temperature difference threshold in order to serve
as a portable electric power source when the engine is coupled
with an electroacoustic transformer.

Future modeling developments in the direction of this study can
include a heat transfer analysis for determining a temperature field
in the resonator at given thermal boundary conditions. Accounting
for large-amplitude acoustic effects, such as acoustic streaming
and higher harmonics, will be important for high-power regimes
of operations of thermoacoustic engines. More detailed models for
electroacoustic transformers are needed to adequately predict
electric power generated at different electric loads and to provide
accurate boundary conditions at the flexing walls of resonators. A
complete validation of the developed model requires experimental
studies of thermoacoustic resonators with significant transverse
nonuniformities in the acoustic and temperature fields.
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