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Abstract

Given a quasianalytic structure, we prove that the singular locus
of a quasi-subanalytic set E is a closed quasi-subanalytic subset of E.
We rely on some stabilization effects linked to Gateaux differentiability
and formally composite functions. An essential ingredient of the proof
is a quasianalytic version of Glaeser’s composite function theorem,
presented in our previous paper.

1. Introduction. We are concerned with a quasianalytic structure R
on the real field with restricted quasianalytic functions. The sets definable
(with parameters) in the structure R are precisely the subsets of Rn, n ∈ N,
that are globally quasi-subanalytic (including infinity). We say that a ∈ E
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is a smooth point of a subset E of Rn if E is near a a smooth (i.e. of class
C∞) submanifold of Rn. Denote by SingE the set of all a ∈ E which are not
smooth points of E. The main purpose of this paper is to prove the following
theorems:

Theorem 1. If E ⊂ Rn is a definable subset, then the singular locus
SingE is a closed definable subset of E.

Theorem 2. Let U be an open subset of Rn and f : U −→ R a
continuous definable function. Denote by Reg (f) = C∞ (f) the set of those
points a ∈ U at which f is a smooth function. Then Reg (f) is an open
definable subset of U .

The above results are quasianalytic generalizations of those of Tamm [24]
for subanalytic sets and functions. As in the subanalytic case, the former
comes down to the latter (cf. [10], Sect. 7, or [1], Sect. 7), via an argument
due to Poly–Raby [21]. Several proofs of the subanalytic versions have been
provided by Tamm [24], Bierstone–Milman [1] and Kurdyka [10]; see also
paper [4] by van den Dries–Miller. However, they cannot be applied to the
above theorems in the case of quasianalytic settings, as explained below.

The proofs by Tamm and by Bierstone–Milman rely on Malgrange’s idea
of ”graphic points”, and more precisely, on the fact that, for analytic func-
tions, a formally graphic point is graphic (cf. [12]). This implication may be
seen as a corollary, in a very particular case, to Gabrielov’s rank theorem [8],
which was also proved by Eakin–Harris [6]. Quasianalytic geometry has no
such theorem at its disposal. It follows from a current paper by Elkhadiri [7],
who proved that every quasianalytic system with the Eakin–Harris property
is a subsystem of that of convergent power series.

Kurdyka [10], in turn, uses the effect of stabilization of the descending
sequence of subsets Gk (f) where a given subanalytic function f has the j-th
Gateaux differentials for all j ≤ k, and the Bochnak–Siciak analyticity the-
orem. Unfortunately, the latter is unavailable in the quasianalytic settings.

Our approach is based on some stabilization effects linked to Gateaux
differentiability and to formally composite functions, which are presented in
Sections 2 and 3, respectively. Section 4 provides a proof of Theorem 2. Its
essential ingredient is a quasianalytic version of Glaeser’s composite function
theorem, presented in our paper [19].
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We now recall the precise definitions. As in our previous papers [16, 17,
18], fix a quasianalytic system Q = (Qn)n∈N of sheaves of local R-algebras
of smooth functions on Rn, fulfilling conditions 1–6 below. For each open
subset U ⊂ Rn, Q(U) = Qn(U) is thus a subalgebra of the algebra C∞(U) of
real smooth functions on U . By a Q-analytic function (or a Q-function, for
short), we mean any function f ∈ Q(U). Similarly,

f = (f1, . . . , fk) : U −→ Rk

is called Q-analytic (or a Q-mapping) if so are its components f1, . . . , fk. The
following six conditions are imposed:

1. each algebra Q(U) contains the restrictions of polynomials;

2. Q is closed under composition, i.e. the composition of Q-mappings is a
Q-mapping (whenever it is well defined);

3. Q is closed under inverse, i.e. if ϕ : U −→ V is a Q-mapping between
open subsets U, V ⊂ Rn, a ∈ U , b ∈ V and if ∂ϕ/∂x(a) 6= 0, then
there are neighbourhoods Ua and Vb of a and b, respectively, and a Q-
diffeomorphism ψ : Vb −→ Ua such that ϕ ◦ ψ is the identity mapping
on Vb;

4. Q is closed under differentiation;

5. Q is closed under division by a coordinate, i.e. if f ∈ Q(U) and
f(x1, . . . , xi−1, ai, xi+1, . . . , xn) = 0 as a function in the variables xj,
j 6= i, then f(x) = (xi − ai)g(x) with some g ∈ Q(U);

6. Q is quasianalytic, i.e. if f ∈ Q(U) and the Taylor series f̂a = of f at
a point a ∈ U vanishes, then f vanishes in the vicinity of a.

Q-mappings give rise, in the ordinary manner, to the category Q of Q-
manifolds and Q-mappings, which is a subcategory of that of smooth man-
ifolds and smooth mappings. Similarly, Q-analytic, Q-semianalytic and Q-
subanalytic sets can be defined.

These conditions ensure some resolution of singularities in the category
Q, including transformation to normal crossings by blowing up (cf. [2, 22]),
whereon the geometry of quasianalytic structures relies (especially, in the
absence of their good algebraic properties).
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The examples of such categories (op. cit.) come from quasianalytic Denjoy–
Carleman classes QM , where M = (Mj)j∈N are logarithmically convex se-
quences. The class QM consists of smooth functions f(x) = f(x1, . . . , xn) in
n variables, n ∈ N, which satisfy locally the following growth condition

|∂|α|/∂xα(x)| ≤ C ·R|α| · |α|! ·M|α| for all α ∈ Nn,

with some constants C,R > 0 depending only on the vicinity of a given
point. Obviously, the class QM contains the real analytic functions. It is
quasianalytic iff

∞∑
j=0

Mj

(j + 1)Mj+1

=∞

(the Denjoy–Carleman theorem). It is closed under composition (Roumieu
[23]), under inverse (Komatsu [9]), and is closed under differentiation and
under division by a coordinate iff

sup
j

j

√(
Mj+1

Mj

)
<∞

(cf. [13, 25]). On the other hand, every polynomially bounded, o-minimal
structure R determines a quasianalytic system of sheaves of germs of smooth
functions that are locally definable in R (cf. [14] for the quasianalyticity of
these sheaves).

Denote by R = RQ the expansion of the real field R by restricted Q-
analytic functions, i.e. functions of the form

f̃(x) =

{
f(x), if x ∈ [−1, 1]n

0, otherwise

where f(x) is a Q-function in the vicinity of the compact cube [−1, 1]n.
The structure RQ is model complete and o-minimal (cf. [22, 16]). The de-
finable subsets in RQ coincide with those subsets of Rn, n ∈ N, that are
Q-subanalytic in a semialgebraic compactification of Rn. From now on, the
word ”definable” means ”definable with parameters” in the structure R.

2. Gateaux differentiability. This section is devoted to a study of
stabilization properties linked to Gateaux differentiability. For the sake of
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simplicity, however, it is more suitable to weaken slightly the concept of
Gateaux differentials by taking into account only the right-hand side direc-
tional derivatives. In the sequel, we shall consider formal power series built
from the (weak) k-th Gateaux differentials, k ∈ N, which will play a key role
in our approach to apply formally composite functions.

For a definable function f : U −→ R on an open subset U ⊂ Rn, consider
definable functions

F : U × Rn
u × Rt −→ R, F (x, u, t) := f(x+ tu),

and δk : U × Rn
u −→ R by putting

δk(x, u) :=

{
∂kF/∂tk(x, u, 0+), if this derivative exists for all u ∈ Rn;

1, otherwise;

here ∂kF/∂tk(x, u, 0+) denotes the k-th right-hand side derivative at t = 0.

If δk(x, u) is a homogeneous polynomial of degree k in the variables u,
this polynomial

δkx f(u) := δk(x, u) ∈ Pk
is called the (weak) k-th Gateaux differential of f at x; here, Pk stands for
the real vector space of homogeneous polynomials of degree k in Rn

u. We say
then that f is (weakly) k times Gateaux differentiable at x.

For k ∈ N, let Gk (f) be the set of those points x at which f has (weak)
j-th Gateaux differentials δjx f for all j ≤ k; let G∞ (f) denote the set of those
points x at which f has (weak) j-th Gateaux differentials δjx f for all j ∈ N.
The main result of this section is the following

Theorem 3. (on Gateaux Differentiability) If f : U −→ R is a definable
function on an open subset U ⊂ Rn, then
• the sets Gk (f)), k ∈ N, are definable;
• the descending sequence (Gk (f))k∈N stabilizes, whence G∞ (f) = Gk (f)

for k ∈ N large enough;
• furthermore, there exists a finite, definable, Q-analytic cell decomposi-

tion B of G∞ (f) such that the restriction to each cell B ∈ B of every (weak)
Gateaux differential

δk f : B 3 x −→ δkx f ∈ Pk
is a definable Q-analytic mapping.
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The above is a quasianalytic counterpart of a theorem by Kurdyka [10]
on subanalytic functions, strengthened by adding the conclusion about the
existence of a definable, Q-analytic cell decomposition B on each cell of which
all the Gateaux differentials under study are Q-analytic. This strengthening
allows us to achieve (in Section 3) some stabilization effects linked to formally
composite functions. An important role in the proof of Theorem 3 is played
by a quasianalytic version of Puiseux’s theorem with parameter, presented
below (cf. [20] for a classical analytic version).

Puiseux’s Theorem with Parameter. Let E ⊂ Rn
x be a definable

subset and
f : E × (0, 1) −→ R

be a definable function. Then one can find a definable cell decomposition of
E into finitely many Q-analytic cells E1, . . . , Es and open definable neigh-
bourhoods Ωi of Ei × {0} in Ei × Rt, i = 1, . . . , s, for which

• either the function f vanishes on Ωi ∩ (Ei × (0, 1));

• or there exist r ∈ N, p ∈ Q and a definable function F (x, t), Q-analytic
on Ωi, such that

f(x, t) = tp · F (x, t1/r) for all (x, t) ∈ Ωi ∩ (Ei × (0, 1))

and
F (x, 0) 6= 0 for all x ∈ Ei.

Observe first that we may assume that the function f is bounded. Indeed,
put

A := {(x, t) ∈ E × (0, 1) : |f(x, t)| ≤ 1}

and
B := {(x, t) ∈ E × (0, 1) : |f(x, t)| > 1}.

Further, consider a finite, definable, Q-analytic cell decomposition D of
E × (0, 1) which is compatible with the subsets A and B, and denote by
D1, . . . , Dj the lowest cells from D. It is easy to see that they are cells of the
layer type lying over some cells E1, . . . , Ej, which form a cell decomposition
of E. Then (Ei × {0}) ∪ Di is a neighbourhood of Ei × {0} in Ei × [0, 1).
Clearly, it suffices to analyse the restrictions of the function f to the cells Di,
i = 1, . . . , j. If Di ⊂ A, the restriction of f to Di is bounded. Otherwise, we
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can first analyse the function 1/f , which is bounded on Di, and next deduce
the conclusion of the theorem for the restriction of f to Di.

We shall continue the proof by induction with respect to the dimension
k of the set E. Via cell decomposition, we may, of course, assume that
E = (0, 1)k is an open cube in Rk. Then the set

Γ := closure (graph f) ⊂ Rk
x × Rt × R

is a compact definable subset of dimension k + 1. By the uniformization
theorem (cf. [2], Sect. 5), there exist a compact definable Q-analytic manifold
M of dimension k + 1 and a Q-analytic mapping

(ϕ, g) : M −→ Rk
x × Rt × R, ϕ = (ϕ1, . . . , ϕk+1),

which is generically a submersion and such that (ϕ, g)(M) = Γ. Actually,
we can take M to be a finite number of (k+ 1)-dimensional spheres; this fol-
lows immediately from the theorem on decomposition into immersion cubes
from [16].

Put H := (0, 1)k × {0}; then H̃ := ϕ−1(H) is a definable subset of M of

dimension k, and ϕk+1 vanishes on H̃. By means of a finite, definable, Q-
analytic cell decomposition and the induction hypothesis, we can assume that
H̃ is a definable Q-analytic hypersurface of M . Further, the same argument
allows us to assume that the restriction of ϕ to H̃ is of constant rank k, and
that ϕk+1 is of a constant order r ∈ N along H̃. The hypersurface H̃ can
be given in suitable local coordinates (v, w), v = (v1, . . . , vk), on M by the
equation w = 0. Then

ϕk+1(v, w) = wr · ψk+1(v, w)

for a Q-analytic function ψk+1 with ψk+1(v, 0) > 0. Therefore, the mapping

ψ(v, w) := (ϕ1(v, w), . . . , ϕk(v, w), w · ψ1/r
k+1(v, w)) : M −→ Rk

x × Rt

is a local Q-diffeomorphism along H̃. Again, via cell decomposition, we can
assume that ψ is a definable Q-diffeomorphism of a neighbourhood of H̃ in
M onto a neighbourhood of H in (0, 1)k × Rt.

Putting α(x, t) := (x, tr), we get α ◦ ψ = ϕ whence ϕ ◦ ψ−1 = α, and
consequently,

f ◦ α = f ◦ ϕ ◦ ψ−1 = g ◦ ψ−1 =: F
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is a definable function Q-analytic on a neighborhood Ω of H in (0, 1)k × Rt.
To complete the proof, it remains only to partition (0, 1)k into a finite

number of definable, Q-analytic cells Ei, so that the function F has a constant
t-order νi on each set Ei × {0}. Then the conclusion of the theorem holds
with Q-analytic cells Ei and their neighborhoods

Ωi := Ω ∩ (Ei × Rt).

Moreover, one disjunction of the conclusion follows if νi =∞, and the other
with p = νi/r follows if νi <∞.

We now turn to the

Proof of Theorem 3. We keep the foregoing notation. Let µ(k) be the
dimension of the real vector space Pk of homogeneous polynomials of degree
k. It is clear that generic systems of points pk,1, . . . , pk,µ(k) ∈ Rn determine
the polynomials from Pk, i.e. for any q1, . . . , qµ(k) ∈ R there is a unique

P ∈ Pk, P (u) =
∑

α∈Nn,|α|=k

aαu
α,

such that P (pk,i) = qi for all i = 1, . . . , µ(k). Moreover, the coefficients aα of
the polynomial P depend linearly on the values q1, . . . , qµ(k):

aα = aα(q1, . . . , qµ(k)), α ∈ Nn, |α| = k.

Therefore, f has the (weak) k-th Gateaux differential δkx(u) = δk(x, u) at x
iff

δk(x, u) = vk(x, u) :=
∑

α∈Nn,|α|=k

aα(δk(x, pk,1), . . . , δk(x, pk,µ(k))) · uα

for all u ∈ Rn. Put

wk(x, u) := δk(x, u)− vk(x, u), x ∈ U, u ∈ Rn.

We thus attain the following characterization of Gateaux differentiability:

f has a (weak) k-th Gateaux differential at x iff wk(x, u) = 0 for all
u ∈ Rn.

We now apply Puiseux’s theorem with parameter to the function F (x, u, t).
Since, by definition, it is bounded with respect to the variable t, one can find
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a definable cell decomposition of U × Rn into finitely many Q-analytic cells
E1, . . . , Es for which

• either the function F (x, u, t) in the variable t vanishes near zero for all
(x, u) ∈ Ei;
• or there exist r ∈ N and a definable function G(x, u, t), Q-analytic in a

neighbourhood Ωi of Ei × {0} in Ei × Rt, such that

F (x, u, t) = G(x, u, t1/r) for all (x, u, t) ∈ Ωi ∩ (Ei × (0,∞)).

We shall show that there exists a finite, definable, Q-analytic cell decom-
position C of U × Rn such that the restriction to each cell C ∈ C of every
function δk(x, u), k ∈ N, is Q-analytic. Indeed, for a given cell Ei as above,
and l ∈ N, put

Ei,l := {(x, u) ∈ Ei : ∂kG/∂tk(x, u, 0) = 0 for all k < lr, k 6∈ rN}.

The set Ei,l is the set of those points (x, u) in Ei such that the derivatives
∂kF/∂tk(x, u, 0+) exist for all k ≤ l.

The descending sequence (Ei,l)l∈N consists of the zero sets of some families
of definable Q-analytic functions on Ei. Hence and by topological noetheri-
anity (cf. [5, 2, 15]), this sequence stabilizes, i.e. there is an L = L(i) ∈ N
such that Ei,L = Ei,l for all l ≥ L.

It follows immediately that if Ci is a finite, definable, Q-analytic cell de-
composition of Ei compatible with the sets Ei,1, . . . , Ei,L, then the restriction
to each cell C ∈ Ci of every function δk(x, u), k ∈ N, is Q-analytic. Therefore,
it remains to take as C any finite definable Q-analytic cell decomposition of
U × Rn compatible with the decompositions Ci, i = 1, . . . , s.

We still need the following elementary

Lemma. Let C be a finite definable Q-analytic cell decomposition of
U × Rn and D the induced cell decomposition of U . Then there exists a
refinement D′ of D for which, over each cell D ∈ D′, one can find a cell
C ∈ C and an open subset W ⊂ Rn such that D ×W ⊂ C.

Observe first that it suffices to prove the lemma for a cell decomposition
C of U × (0, 1)n. Proceeding with induction with respect to n, we can easily
reduce the proof to the case n = 1. Thus suppose C is a finite definable
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Q-analytic cell decomposition of U × (0, 1). Consider a cell D ∈ D and the
definable Q-analytic functions ξi : D −→ R, i = 0, 1, . . . , s, with

ξ0 = 0 < ξ1 < . . . ξs−1 < ξs = 1,

which are involved in the cell decomposition C. In other words, C consists of
precisely s cells of the layer type which lie over D, namely, the cells

Ci := {(x, u) : x ∈ U, ξi−1(x) < u < ξi(x)}, i = 1, . . . , s.

We recursively define s pairs Ai,0, Ai,1, i = 1, . . . , s, of subsets of the cell D
by putting

A1,0 := {x ∈ D : ξ1(x) < 1/s}, A1,1 := {x ∈ D : ξ1(x) ≥ 1/s};

A2,0 := {x ∈ A1,0 : ξ2(x) < 2/s}, A2,1 := {x ∈ A1,0 : ξ2(x) ≥ 2/s};

A3,0 := {x ∈ A2,0 : ξ3(x) < 3/s}, A3,1 := {x ∈ A2,0 : ξ3(x) ≥ 3/s};

and so on ...

It is not difficult to check that As,0 = ∅ and D is the disjoint union

D = A1,1 ∪ A2,1 ∪ A3,1 ∪ . . . ∪ As,1.

Since
Ai,1 × ((i− 1)/s, i/s) ⊂ Ci for i = 1, . . . , s,

the conclusion of the lemma holds over each set Ai,1. Therefore, as a required
refinement D′ , we can take any refinement of the cell decomposition D which
is compatible with the sets Ai,1, i = 1, . . . , s, constructed for each cell D ∈ D.

Due to the above lemma, we may assume that, for each cell D ∈ D,
there is a cell CD ∈ C, CD ⊂ D × Rn such that, for every positive integer
k, the restriction to CD of δk(x, u) is Q-analytic, and we can choose points
pk,1, . . . , pk,µ(k) as above for which

D × {pk,1, . . . , pk,µ(k)} ⊂ CD.

Consequently, the restriction to each cell C ∈ C of every function vk(x, u),
and thus of wk(x, u) too, is Q-analytic.
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Hence and by topological noetherianity along with the foregoing char-
acterization of Gateaux differentiability, the descending sequence of subsets
(Gk (f))k∈N stabilizes, which is the required result. Finally, we should take as
B any refinement of the Q-analytic cell decomposition D that is compatible
with G∞ (f), concluding the proof.

3. Formally composite functions. We begin with the concept of a
formally composite function (cf. [3, 19]). For a smooth submanifold M and
any k ∈ N ∪ {∞}, denote by Ck(M) the Fréchet algebra of real functions of
class Ck on M . Let ϕ : M −→ N be a smooth mapping between two real
smooth manifolds with closed image T := ϕ(M) ⊂ N . Denote by (ϕ∗Ck(N))∧

the subalgebra of Ck(M) of all those functions g ∈ Ck(M) that are formally
Ck-composite with ϕ, i.e., for each a ∈ T , there is h ∈ Ck(N) such that the
function g − ϕ∗(h) is k-flat on the fibre ϕ−1(a). Since this definition is local
with respect to the target space, we may assume that N = Rn. Then, by
virtue of Borel’s lemma, a function g is formally composite with ϕ iff, for
each point a ∈ T , there is a formal power series

Ha ∈ R[[x− a]], x = (x1, . . . , xn),

such that
ϕ̂∗b(Ha) = Tb g for all b ∈ ϕ−1(a),

or
ϕ̂∗b(Ha)− Tb g is k-flat for all b ∈ ϕ−1(a),

according as k = ∞ or k ∈ N. In the latter case, of course, one can merely
require that Ha be a polynomial of degree not greater than k.

In the proof of Theorem 2, given in Section 4, we shall still need a quasi-
analytic version of Glaeser’s composite function theorem from our paper [19],
recalled below. This theorem reduces the problem whether a function g is
composite with ϕ to the problem whether g is formally composite with ϕ.

Composite Function Theorem. Consider a polynomially bounded,
o-minimal structure R which admits smooth cell decomposition. Let M ⊂ Rp

and N ⊂ Rq be smooth definable submanifolds, and ϕ : M −→ N be a smooth
definable mapping with closed image T , which is generically a submersion.
Then

(ϕ∗C∞(T ))∧ = ϕ∗C∞(T ).
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We shall return to the structure R = RQ investigated in this paper.
Our purpose now is to proceed with some stabilization properties linked to
formally composite functions. Let f : U −→ R be a definable function of
class G∞ on an open subset U of Rn, i.e. with all (weak) Gateaux differentials
δkx f , k ∈ N, at every point x ∈ U . Consider two Q-analytic mappings

ϕ : M −→ U and g : M −→ R

on a definable Q-analytic manifold M , and suppose that ϕ is surjective and
f ◦ ϕ = g. Let

Ψa ∈ R[[x− a]], Ψa(x− a) = Ψ(a;x− a) =
∑
α∈Nn

ψα(a)(x− a)α

be a unique formal power series determined by the (weak) Gateaux differen-
tials of f at each point a ∈ U .

By Theorem 3 (on Gateaux differentiability), there exists a finite definable
Q-analytic cell decomposition B of U such that the restriction to each cell
B ∈ B of every (weak) Gateaux differential δk f is Q-analytic. This means
exactly that every function ψα is Q-analytic on each cell B ∈ B.

Denote by Qb,M the local ring of Q-analytic germs at a point b of a Q-
analytic manifold M ; for simplicity, we shall drop the index M if this is not
misleading. Further, let Q̂b,M denote the completion of Qb,M in the Krull
topology, and m̂b,M its maximal ideal. For a ∈ U , we may, of course, identify

Q̂a with R[[x− a]].

For b ∈M and a = ϕ(b) ∈ U , let

ϕ̂∗b : Q̂a −→ Q̂b

be the local ring homomorphism induced by ϕ.

Denote by Gk, k ∈ N ∪ {∞}, the set of those points a ∈ U at which the
series Ψa realizes g as formally Ck-composite with ϕ, i.e.

G∞ = {a ∈ U : ϕ̂∗b(Ψa) = Tb g for all b ∈ ϕ−1(a)}

and

Gk = {a ∈ U : ϕ̂∗b(Ψa) ≡ Tb g (mod m̂k+1
b ) for all b ∈ ϕ−1(a)}, k ∈ N.
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Theorem 4. (on a Formally Composite Function) Under the above
assumptions, the following two properties hold:
• the sets Gk, k ∈ N, are definable;
• the descending sequence (Gk)k∈N stabilizes, whence there is a positive

integer l ∈ N such that

Gk = Gl for all k ∈ N ∪ {∞}, k ≥ l.

For a proof, fix a cell B ∈ B and a finite, definable, Q-analytic stratifica-
tion S of ϕ−1(B). Take a stratum V ∈ S and points b ∈ V , a = ϕ(b) ∈ B.
Put

G∞(V ) := {b ∈ V : ϕ̂∗b(Ψa) = Tb g}
and

Gk(V ) := {b ∈ V : ϕ̂∗b(Ψa) ≡ Tb g (mod m̂k+1
b )}, k ∈ N.

It is easy to check that (Gk(V ))k∈N is a descending sequence of sets which are
the zero sets of some families of definable Q-analytic functions on V . Hence
and again by topological noetherianity, G∞(V ) = Gk(V ) for k large enough,
say for k > k(V ). Putting

l(B) := max {k(V ) : V ∈ S},

we get G∞ ∩B = Gk ∩B for all k > l(B). Consequently,

G∞ = Gk for all k > l := max {l(B) : B ∈ B},

which is the required result.

4. Proof of Theorem 2. We shall make use of the stabilization effects
linked to Gateaux differentiability and formally composite functions, devel-
oped in Sections 2 and 3, as well as a quasianalytic version of the composite
function theorem from our paper [19]. It is sufficient to prove that there is
a positive integer N such that, for every point x ∈ U , if the function f is of
class CN near x, it is of class C∞ near x.

We may assume, without loss of generality, that the set U is bounded
and the function f is bounded. Let Γ ⊂ Rn+1 be the closure of the graph
of f . It follows from the uniformization theorem that there exist a compact
definable Q-manifold M of dimension n, and a definable Q-analytic mapping

(ϕ, g) : M −→ Rn × R
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such that (ϕ, g)(M) = Γ. Actually, we can take M to be a finite number
of n-dimensional spheres, which follows immediately from the theorem on
decomposition into immersion cubes from [16]. Clearly, we can assume that
ϕ : M −→ Rn is generically a submersion on each connected component of
M . It is easy to check that

Ω := (ϕ, g)−1(graph f) = ϕ−1(U)

is an open subset of M , and that f ◦ ϕ|Ω = g|Ω. Further, we shall regard
ϕ and g as definable Q-analytic mappings on Ω; obviously, ϕ : Ω −→ U is a
proper mapping.

It follows from Theorem 3 (on Gateaux differentiability) that the descend-
ing sequence of definable subsets (Gk (f))k∈N of those points x ∈ U at which
the function f : U −→ R has (weak) j-th Gateaux differentials δjx f for all
j ≤ k, stabilizes, i.e. there is a positive integer N1 such that

GN1 (f) = GN1+1 (f) = . . . = G∞ (f).

Therefore, at each point a ∈ GN1 (f) = G∞ (f) there is a unique formal power
series

Ψa ∈ R[[x− a]], Ψa(x− a) = Ψ(a;x− a) =
∑
α∈Nn

ψα(a)(x− a)α

determined by the (weak) Gateaux differentials of f . Furthermore, there
exists a finite definable Q-analytic cell decomposition B of GN1 (f) such that
the restriction to each Q-analytic cell B ∈ B of every (weak) Gateaux dif-
ferential δk f , k ∈ N, is Q-analytic. This means that every function ψα(x) is
Q-analytic on each cell B ∈ B.

Now, for a positive integer k, let Ck (f) denote the set of those points
a ∈ U in the vicinity of which f is of class Ck; obviously, the sets Ck (f),
k ∈ N, are open definable subsets of U . Obviously, Ck (f) ⊂ Gk (f) for any
k ∈ N; in particular,

CN1 (f) ⊂ GN1 (f) = G∞ (f),

and thus the formal power series Ψa(x− a) are defined for all a ∈ CN1 (f).

We are now going to apply the quasianalytic version of the composite
function theorem. For any k ∈ N ∪ {∞}, let Gk be the set of those points
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a ∈ CN1 (f) at which the series Ψa realizes g as formally Ck-composite with ϕ.
By Theorem 4 (on a formally composite function), the descending sequence
of definable subsets (Gk)k∈N stabilizes, i.e. there is a positive integer N2 ≥ N1

such that
GN2 = GN2+1 = . . . = G∞.

It is clear that CN2 (f) ⊂ GN2 . Therefore, the restriction of g to the open
subset ϕ−1(CN2 (f)) is formally C∞-composite with the restriction of ϕ to
ϕ−1(CN2 (f)). Hence and by the composite function theorem, there is a
smooth function

h : CN2 (f) −→ R

such that h ◦ ϕ = g on CN2 (f). Since g = f ◦ ϕ and the mapping ϕ is
surjective, we get f = h on CN2 (f), and thus f is a smooth function on
CN2 (f). This completes the proof of Theorem 2.

5. Final remarks. We conclude this paper with the following comment.
Given any polynomially bounded, o-minimal structure R, the smooth func-
tions definable in R form a quasianalytic system of sheaves Q, and induce a
quasianalytic structure RQ. It may, obviously, contain fewer definable sets
than the initial structure R. In particular, while the exponent field of R may
be any subfield of R, that of RQ is just Q.

The singular locus of a definable set or function may not be definable
if the polynomially bounded structure R does not admit smooth cell de-
composition. An example of such a structure is the one constructed by Le
Gal–Rolin [11]. This structure is polynomially bounded with exponent field
Q, and does not admit smooth cell decomposition. It is generated by a
function H : R −→ R with the following two properties:

• the restriction of H to the complement of any neighbourhood of 0 ∈ R
is piecewise given by finitely many polynomials;
• the germ of H at 0 ∈ R is not smooth, but is weakly smooth, i.e. is of

class Ck for any positive integer k.

It is easy to check that the singular locus Sing (H) is a countable set with
a unique accumulation point 0 ∈ R; obviously, we have

Reg (graph (H)) = graph (H) ∩ (Reg (H)× R).

Clearly, these sets are not definable.
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Open Problem. Do the results of our paper about singular locus ex-
tend to arbitrary, polynomially bounded, o-minimal structures which admit
smooth cell decomposition?

The only structures for which the answer is known to be in the affirmative
are RK

an where K is a subfield of R; here, RK
an is the expansion of the real

field R by restricted analytic functions and power functions with exponents
from K. This result was established by van den Dries–Miller [4].
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