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Abstract

Given a quasianalytic structure, we prove that the singular locus
of a quasi-subanalytic set E is a closed quasi-subanalytic subset of E.
We rely on some stabilization effects linked to Gateaux differentiability
and formally composite functions. An essential ingredient of the proof
is a quasianalytic version of Glaeser’s composite function theorem,
presented in our previous paper.

1. Introduction. We are concerned with a quasianalytic structure R
on the real field with restricted quasianalytic functions. The sets definable
(with parameters) in the structure R are precisely the subsets of R", n € N,
that are globally quasi-subanalytic (including infinity). We say that a € E

Research partially supported by Research Project No. N N201 372336 from the Polish
Ministry of Science and Higher Education.

2010 MSC. Primary: 32B20, 32505; Secondary: 03C64, 26E10, 14P15.

Key words: quasi-subanalytic functions and sets, singular locus, uniformization,
Gateaux differentials, Puiseux’s theorem with parameter, composite function theorem.



is a smooth point of a subset E of R™ if F is near a a smooth (i.e. of class
C*°) submanifold of R™. Denote by Sing F the set of all a € E which are not
smooth points of £. The main purpose of this paper is to prove the following
theorems:

Theorem 1. If E C R" is a definable subset, then the singular locus
Sing F is a closed definable subset of E.

Theorem 2. Let U be an open subset of R" and f : U — R a
continuous definable function. Denote by Reg (f) = Cu (f) the set of those

points a € U at which f is a smooth function. Then Reg (f) is an open
definable subset of U.

The above results are quasianalytic generalizations of those of Tamm [24]
for subanalytic sets and functions. As in the subanalytic case, the former
comes down to the latter (cf. [10], Sect. 7, or [1], Sect. 7), via an argument
due to Poly—Raby [21]. Several proofs of the subanalytic versions have been
provided by Tamm [24], Bierstone-Milman [1] and Kurdyka [10]; see also
paper [4] by van den Dries-Miller. However, they cannot be applied to the
above theorems in the case of quasianalytic settings, as explained below.

The proofs by Tamm and by Bierstone-Milman rely on Malgrange’s idea
of ”graphic points”, and more precisely, on the fact that, for analytic func-
tions, a formally graphic point is graphic (cf. [12]). This implication may be
seen as a corollary, in a very particular case, to Gabrielov’s rank theorem [8],
which was also proved by Eakin-Harris [6]. Quasianalytic geometry has no
such theorem at its disposal. It follows from a current paper by Elkhadiri [7],
who proved that every quasianalytic system with the Eakin—Harris property
is a subsystem of that of convergent power series.

Kurdyka [10], in turn, uses the effect of stabilization of the descending
sequence of subsets Gy (f) where a given subanalytic function f has the j-th
Gateaux differentials for all j < k, and the Bochnak-Siciak analyticity the-
orem. Unfortunately, the latter is unavailable in the quasianalytic settings.

Our approach is based on some stabilization effects linked to Gateaux
differentiability and to formally composite functions, which are presented in
Sections 2 and 3, respectively. Section 4 provides a proof of Theorem 2. Its
essential ingredient is a quasianalytic version of Glaeser’s composite function
theorem, presented in our paper [19].



We now recall the precise definitions. As in our previous papers [16, 17,
18], fix a quasianalytic system Q = (Q,)nen of sheaves of local R-algebras
of smooth functions on R”, fulfilling conditions 1-6 below. For each open
subset U C R™, Q(U) = Q,(U) is thus a subalgebra of the algebra C=(U) of
real smooth functions on U. By a Q-analytic function (or a Q-function, for
short), we mean any function f € Q(U). Similarly,

f:(f17---;fk)1U—>Rk

is called Q-analytic (or a Q-mapping) if so are its components fi, ..., fz. The
following six conditions are imposed:

1. each algebra Q(U) contains the restrictions of polynomials;

2. @ is closed under composition, i.e. the composition of Q-mappings is a
Q-mapping (whenever it is well defined);

3. Q is closed under inverse, i.e. if ¢ : U — V is a Q-mapping between
open subsets U,V C R, a € U, b € V and if 0p/dz(a) # 0, then
there are neighbourhoods U, and V, of a and b, respectively, and a Q-
diffeomorphism 1 : V;, — U, such that ¢ o % is the identity mapping
on V;

4. @Q is closed under differentiation;

5. Q is closed under division by a coordinate, ie. if f € Q(U) and
f(x1, ... %1, @iy Tiga, ..., x,) = 0 as a function in the variables x;,

j # 1, then f(z) = (x; — a;)g(x) with some g € Q(U);

6. Q is quasianalytic, i.e. if f € Q(U) and the Taylor series f; =of [ at
a point a € U vanishes, then f vanishes in the vicinity of a.

Q-mappings give rise, in the ordinary manner, to the category Q of Q-
manifolds and Q-mappings, which is a subcategory of that of smooth man-
ifolds and smooth mappings. Similarly, Q-analytic, Q-semianalytic and Q-
subanalytic sets can be defined.

These conditions ensure some resolution of singularities in the category
Q, including transformation to normal crossings by blowing up (cf. [2, 22]),
whereon the geometry of quasianalytic structures relies (especially, in the
absence of their good algebraic properties).
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The examples of such categories (op. cit.) come from quasianalytic Denjoy—
Carleman classes (s, where M = (M;),en are logarithmically convex se-
quences. The class @y consists of smooth functions f(z) = f(z1,...,2,) in
n variables, n € N, which satisfy locally the following growth condition

0110 (x)) < O~ RI*V - |all - My, for all o€ N",

with some constants C', R > 0 depending only on the vicinity of a given
point. Obviously, the class @)y, contains the real analytic functions. It is
quasianalytic iff

oo

M;

= U+ 1) M

= 0

(the Denjoy—Carleman theorem). It is closed under composition (Roumieu
23]), under inverse (Komatsu [9]), and is closed under differentiation and
under division by a coordinate iff

(cf. [13, 25]). On the other hand, every polynomially bounded, o-minimal
structure R determines a quasianalytic system of sheaves of germs of smooth
functions that are locally definable in R (cf. [14] for the quasianalyticity of
these sheaves).

Denote by R = Rq the expansion of the real field R by restricted Q-
analytic functions, i.e. functions of the form

f(:c)—{ f(x), ifxel-1,1]"

1 0, otherwise

where f(z) is a Q-function in the vicinity of the compact cube [—1,1]".
The structure R is model complete and o-minimal (cf. [22, 16]). The de-
finable subsets in R coincide with those subsets of R", n € N, that are
Q-subanalytic in a semialgebraic compactification of R”. From now on, the
word ”definable” means ”definable with parameters” in the structure R.

2. Gateaux differentiability. This section is devoted to a study of
stabilization properties linked to Gateaux differentiability. For the sake of
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simplicity, however, it is more suitable to weaken slightly the concept of
Gateaux differentials by taking into account only the right-hand side direc-
tional derivatives. In the sequel, we shall consider formal power series built
from the (weak) k-th Gateaux differentials, k& € N, which will play a key role
in our approach to apply formally composite functions.

For a definable function f : U — R on an open subset U C R", consider
definable functions

F:UxRl xR, — R, F(x,u,t):= f(x+tu),
and d; : U xR — R by putting

Sl ) = OFF [0t* (2, u,0%), if this derivative exists for all u € R™;
BT 1, otherwise;

here 9% F/ot*(z,u,0") denotes the k-th right-hand side derivative at t = 0.

If 0x(z,u) is a homogeneous polynomial of degree k in the variables u,
this polynomial
6 f(u) = oz, u) € Py

is called the (weak) k-th Gateaux differential of f at x; here, Py stands for
the real vector space of homogeneous polynomials of degree k£ in R.. We say
then that f is (weakly) k times Gateaux differentiable at x.

For k € N, let G (f) be the set of those points x at which f has (weak)
Jj-th Gateaux differentials §2 f for all j < k; let G, (f) denote the set of those
points x at which f has (weak) j-th Gateaux differentials §7 f for all j € N.
The main result of this section is the following

Theorem 3. (on Gateaux Differentiability) If f : U — R is a definable
function on an open subset U C R", then

o the sets G, (f)), k € N, are definable;

e the descending sequence (G, (f))ren stabilizes, whence Goo (f) = G (f)
for k € N large enough;

e furthermore, there exists a finite, definable, Q-analytic cell decomposi-
tion B of Goo (f) such that the restriction to each cell B € B of every (weak)
Gateaux differential

*f:Box— 8 fep,
1s a definable Q-analytic mapping.



The above is a quasianalytic counterpart of a theorem by Kurdyka [10]
on subanalytic functions, strengthened by adding the conclusion about the
existence of a definable, Q-analytic cell decomposition B on each cell of which
all the Gateaux differentials under study are Q-analytic. This strengthening
allows us to achieve (in Section 3) some stabilization effects linked to formally
composite functions. An important role in the proof of Theorem 3 is played
by a quasianalytic version of Puiseux’s theorem with parameter, presented
below (cf. [20] for a classical analytic version).

Puiseux’s Theorem with Parameter. Let E C R? be a definable
subset and
f:Ex(0,1) —R

be a definable function. Then one can find a definable cell decomposition of
E into finitely many Q-analytic cells E1, ..., Es and open definable neigh-
bourhoods Q; of E; x {0} in E; x Ry, i =1,...,s, for which

e cither the function f vanishes on ; N (E; x (0,1));

e or there existr € N, p € Q and a definable function F(x,t), Q-analytic
on €;, such that

f(x,t) =t7- F(z,tY")  forall (z,t) € QN (E; x (0,1))

and

F(z,0)#0 forall z € E;.

Observe first that we may assume that the function f is bounded. Indeed,
put
A= {(5,0) € Ex (0,1): | f(z,8)] <1}

and
={(z,t) € Ex (0,1):|f(x,t)] > 1}.

Further, consider a finite, definable, Q-analytic cell decomposition D of
E x (0,1) which is compatible with the subsets A and B, and denote by
Dy, ..., D; the lowest cells from D. It is easy to see that they are cells of the
layer type lying over some cells £, ..., E}, which form a cell decomposition
of E. Then (E; x {0}) U D; is a neighbourhood of E; x {0} in E; x [0, 1).
Clearly, it suffices to analyse the restrictions of the function f to the cells D;,
1=1,...,75. If D; C A, the restriction of f to D; is bounded. Otherwise, we



can first analyse the function 1/f, which is bounded on D;, and next deduce
the conclusion of the theorem for the restriction of f to D;.

We shall continue the proof by induction with respect to the dimension
k of the set E. Via cell decomposition, we may, of course, assume that
E = (0,1)* is an open cube in R*. Then the set

I' := closure (graph f) C R¥ x R, x R

is a compact definable subset of dimension k£ 4+ 1. By the uniformization
theorem (cf. [2], Sect. 5), there exist a compact definable Q-analytic manifold
M of dimension k + 1 and a Q-analytic mapping

(@79):M—>R’;XRL‘XR7 90:(9017'-'79016-1-1)7

which is generically a submersion and such that (¢, g)(M) = I'. Actually,
we can take M to be a finite number of (k + 1)-dimensional spheres; this fol-
lows immediately from the theorem on decomposition into immersion cubes
from [16].

Put H := (0,1)* x {0}; then H := ¢ ~*(H) is a definable subset of M of
dimension k, and ¢, vanishes on H. By means of a finite, definable, Q-
zglalytic cell decomposition and the induction hypothesis, we can assume that
H is a definable Q-analytic hypersurface of M. Further, the same argument
allows us to assume that the restriction of ¢ to H is of constant rank %, and
that g1 is of a constant order » € N along H. The hypersurface H can
be given in suitable local coordinates (v,w), v = (vy,...,vx), on M by the
equation w = 0. Then

@k—l—l(vaw) =w" - ¢k+1(vv w)

for a Q-analytic function ¢y, 1 with 1,11(v,0) > 0. Therefore, the mapping
(v, w) = (p1(v,w), ..., opv,w),w - wifl(v,w)) ‘M — RF xR,

is a local Q-diffeomorphism along H. Again, via cell decomposition, we can
assume that ¢ is a definable Q-diffeomorphism of a neighbourhood of H in
M onto a neighbourhood of H in (0,1)* x R;.

Putting a(z,t) := (x,t"), we get a o1 = ¢ whence p op™! = a, and
consequently,

foa=fopoypt=goy =
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is a definable function Q-analytic on a neighborhood € of H in (0,1)* x R,.

To complete the proof, it remains only to partition (0,1)* into a finite
number of definable, Q-analytic cells F;, so that the function F has a constant
t-order v; on each set E; x {0}. Then the conclusion of the theorem holds
with Q-analytic cells E; and their neighborhoods

Qi =0nN (El X Rt)

Moreover, one disjunction of the conclusion follows if v; = oo, and the other
with p = v, /r follows if v; < oc.

We now turn to the

Proof of Theorem 3. We keep the foregoing notation. Let u(k) be the
dimension of the real vector space P of homogeneous polynomials of degree
k. It is clear that generic systems of points py1,...,Pkurk) € R™ determine
the polynomials from Py, i.e. for any qi, ..., qux) € R there is a unique

PePy, Plu)= Z aqu”,
aeN |a|=k

such that P(py;) = ¢ for alli =1,..., u(k). Moreover, the coefficients a,, of
the polynomial P depend linearly on the values qi, ..., q,u):

Ao = aolq1s - Qury), @ €N, |a| =k

Therefore, f has the (weak) k-th Gateaux differential 6%(u) = & (z,u) at
iff

(5k(a:,u) :Uk(l',U) = Z aa(ék(xapk,l)a"'75k(x7pk,u(k))) -u

aeN” |a|=k
for all u € R". Put
wi(z,u) = 0 (z,u) — vp(z,u), €U, ueR"

We thus attain the following characterization of Gateaux differentiability:

[ has a (weak) k-th Gateauzx differential at x iff wi(x,u) = 0 for all
u € R™.

We now apply Puiseux’s theorem with parameter to the function F'(z, u, t).
Since, by definition, it is bounded with respect to the variable ¢, one can find
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a definable cell decomposition of U x R™ into finitely many Q-analytic cells
Ey, ..., E, for which

e cither the function F(x,u,t) in the variable ¢ vanishes near zero for all
(z,u) € E;;

e or there exist r € N and a definable function G(x,u,t), Q-analytic in a
neighbourhood Q; of E; x {0} in E; x Ry, such that

F(z,u,t) = G(z,u,t") forall (z,u,t)e€ QN (E; x(0,00)).

We shall show that there exists a finite, definable, Q-analytic cell decom-
position C of U x R™ such that the restriction to each cell C' € C of every
function dx(z,u), k € N, is Q-analytic. Indeed, for a given cell E; as above,
and [ € N, put

Eiy = {(z,u) € E;: 0"G/ot"(x,u,0) =0 forall k <Ir, k¢&rN}.

The set E;; is the set of those points (x,u) in E; such that the derivatives
OFF/otk (2, u,0") exist for all k < 1.

The descending sequence (E;;)en consists of the zero sets of some families
of definable Q-analytic functions on E;. Hence and by topological noetheri-
anity (cf. [5, 2, 15]), this sequence stabilizes, i.e. there is an L = L(i) € N
such that F; ;, = E;; for all { > L.

It follows immediately that if C; is a finite, definable, Q-analytic cell de-
composition of F; compatible with the sets E; 1, ..., E; 1, then the restriction
to each cell C' € C; of every function 6 (z,u), k € N, is Q-analytic. Therefore,
it remains to take as C any finite definable Q-analytic cell decomposition of
U x R™ compatible with the decompositions C;, i = 1,...,s.

We still need the following elementary

Lemma. Let C be a finite definable Q)-analytic cell decomposition of
U x R"™ and D the induced cell decomposition of U. Then there exists a
refinement D' of D for which, over each cell D € D', one can find a cell
C € C and an open subset W C R" such that D x W C C.

Observe first that it suffices to prove the lemma for a cell decomposition
C of U x (0,1)™. Proceeding with induction with respect to n, we can easily
reduce the proof to the case n = 1. Thus suppose C is a finite definable



Q-analytic cell decomposition of U x (0,1). Consider a cell D € D and the
definable Q-analytic functions §; : D — R, i = 0,1, ..., s, with

S=0<& < o <=1,

which are involved in the cell decomposition C. In other words, C consists of
precisely s cells of the layer type which lie over D, namely, the cells

Ci={(zv,u):z el () <u<&z)}, i1=1,...,s.

We recursively define s pairs 4,9, A4;1, 2 = 1,...,s, of subsets of the cell D
by putting

Ajg:={xeD:&(x)<1/s}, Aip:={zxeD:&(x)>1/s}
A270 = {JI S AI,O : 52(1‘) < 2/8}, Ag’l = {l’ c Al,O : 52(.%) > 2/8},
A370 = {l‘ S A270 : 53(317) < 3/8}, A371 = {CL’ € A270 : 53(1‘) > 3/8}7

and so on ...

It is not difficult to check that Asg = 0 and D is the disjoint union
D - A171 U A2,l U A3,l U...U As,l'

Since

Aiix((1—=1)/s,i/s) C C; for i=1,...,s,

the conclusion of the lemma holds over each set A; ;. Therefore, as a required
refinement D’ | we can take any refinement of the cell decomposition D which
is compatible with the sets A;1,7=1,..., s, constructed for each cell D € D.

Due to the above lemma, we may assume that, for each cell D € D,
there is a cell Cp € C, Cp C D x R™ such that, for every positive integer
k, the restriction to Cp of dx(z,u) is Q-analytic, and we can choose points
Dkl - - - Phy(k) as above for which

D X A{pr1,- - Prut} C Ch.

Consequently, the restriction to each cell C' € C of every function vy (x,u),
and thus of wy(z,u) too, is Q-analytic.
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Hence and by topological noetherianity along with the foregoing char-
acterization of Gateaux differentiability, the descending sequence of subsets
(Gk (f))ken stabilizes, which is the required result. Finally, we should take as
B any refinement of the Q-analytic cell decomposition D that is compatible
with G (f), concluding the proof.

3. Formally composite functions. We begin with the concept of a
formally composite function (cf. [3, 19]). For a smooth submanifold M and
any k € NU {oo}, denote by C*(M) the Fréchet algebra of real functions of
class C¥ on M. Let ¢ : M — N be a smooth mapping between two real
smooth manifolds with closed image T := (M) C N. Denote by (©*C*(N))"
the subalgebra of C*(M) of all those functions g € C¥(M) that are formally
C*-composite with ¢, i.e., for each a € T, there is h € C*(N) such that the
function g — ¢*(h) is k-flat on the fibre ¢ ~!(a). Since this definition is local
with respect to the target space, we may assume that N = R". Then, by
virtue of Borel’s lemma, a function g is formally composite with ¢ iff, for
each point a € T, there is a formal power series

H, € Rl[x —d]], == (z1,...,2,),

such that
Bi(H,) = Tyg forall be ' (a),

or
@r(H,) — Tyg is k-flat for all b€ o '(a),

according as k = oo or k € N. In the latter case, of course, one can merely
require that H, be a polynomial of degree not greater than k.

In the proof of Theorem 2, given in Section 4, we shall still need a quasi-
analytic version of Glaeser’s composite function theorem from our paper [19],
recalled below. This theorem reduces the problem whether a function ¢ is
composite with ¢ to the problem whether g is formally composite with ¢.

Composite Function Theorem. Consider a polynomially bounded,
o-manimal structure R which admits smooth cell decomposition. Let M C RP
and N C R? be smooth definable submanifolds, and ¢ : M — N be a smooth
definable mapping with closed image T, which is generically a submersion.
Then

(¢"C=(T))" = ¢*C=(T).
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We shall return to the structure R = R investigated in this paper.
Our purpose now is to proceed with some stabilization properties linked to
formally composite functions. Let f : U — R be a definable function of
class G on an open subset U of R", i.e. with all (weak) Gateaux differentials
6k f, k € N, at every point x € U. Consider two Q-analytic mappings

oM —U and g¢g:M—R

on a definable Q-analytic manifold M, and suppose that ¢ is surjective and
fop=g. Let

U, € R[[z —a]], Vulr—a)=T(a;x—a) 27’% (x —a)®

aeN"
be a unique formal power series determined by the (weak) Gateaux differen-
tials of f at each point a € U.

By Theorem 3 (on Gateaux differentiability), there exists a finite definable
Q-analytic cell decomposition B of U such that the restriction to each cell
B € B of every (weak) Gateaux differential 6% f is Q-analytic. This means
exactly that every function v, is Q-analytic on each cell B € B.

Denote by Qs the local ring of Q-analytic germs at a point b of a Q-
analytic manifold M for simplicity, we shall drop the index M if this is not
misleading. Further, let @b,M denote the completion of Qs in the Krull
topology, and My, 5 its maximal ideal. For a € U, we may, of course, identify
Q. with R[[z — a]].

For b € M and a = ¢(b) € U, let
9/5; : Q\a E— @b
be the local ring homomorphism induced by ¢.

Denote by &, k € NU {oo}, the set of those points a € U at which the
series U, realizes ¢ as formally C*-composite with ¢, i.e.

B ={acU: G;(V,)=Tyg forall bep'(a)}
and

&,={acU: §;(V,)=Tyg (modm;*') forall beyp'(a)}, keN.
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Theorem 4. (on a Formally Composite Function) Under the above
assumptions, the following two properties hold:

o the sets &y, k € N, are definable;

e the descending sequence (&y)ren Stabilizes, whence there is a positive
integer | € N such that

&, =6, forall ke NU{o0}, k>1.

For a proof, fix a cell B € B and a finite, definable, Q-analytic stratifica-
tion S of ¢!(B). Take a stratum V € S and points b € V, a = p(b) € B.
Put

Go(V) = bEV: Fi(W) = Tyg}

and

&(V):={beV: ¢;(¥,) =Tyg (modm;™)}, keN.
It is easy to check that (& (V))en is a descending sequence of sets which are
the zero sets of some families of definable Q-analytic functions on V. Hence
and again by topological noetherianity, &..(V') = &, (V) for k large enough,
say for k > k(V'). Putting

I(B) :=max{k(V): V €S},
we get B, N B =&, N B for all k > [(B). Consequently,
G, =6, forall k>1:=max{l(B): B € B},

which is the required result.

4. Proof of Theorem 2. We shall make use of the stabilization effects
linked to Gateaux differentiability and formally composite functions, devel-
oped in Sections 2 and 3, as well as a quasianalytic version of the composite
function theorem from our paper [19]. It is sufficient to prove that there is
a positive integer N such that, for every point x € U, if the function f is of
class CVV near z, it is of class C* near x.

We may assume, without loss of generality, that the set U is bounded
and the function f is bounded. Let I' C R""! be the closure of the graph
of f. It follows from the uniformization theorem that there exist a compact
definable Q-manifold M of dimension n, and a definable Q-analytic mapping

(6,9): M — R" xR
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such that (p,g)(M) = I'. Actually, we can take M to be a finite number
of n-dimensional spheres, which follows immediately from the theorem on
decomposition into immersion cubes from [16]. Clearly, we can assume that
@ : M — R" is generically a submersion on each connected component of
M. 1t is easy to check that

Q= (¢, 9) M(graph f) = ¢ (U)

is an open subset of M, and that f o ¢|Q) = g|2. Further, we shall regard
¢ and g as definable Q-analytic mappings on {2; obviously, ¢ : Q@ — U is a
proper mapping.

It follows from Theorem 3 (on Gateaux differentiability) that the descend-
ing sequence of definable subsets (Gy (f))ren of those points z € U at which
the function f : U — R has (weak) j-th Gateaux differentials 67 f for all
7 < k, stabilizes, i.e. there is a positive integer N; such that

Gn (f) =G (f) = . = G ().

Therefore, at each point a € Gy, (f) = G (f) there is a unique formal power
series

U, e Rl[x —a]], Yu(z—a)=Y(a;z—a) Zwa (x —a)”

aeN”

determined by the (weak) Gateaux differentials of f. Furthermore, there
exists a finite definable Q-analytic cell decomposition B of Gy, (f) such that
the restriction to each Q-analytic cell B € B of every (weak) Gateaux dif-
ferential % f, k € N, is Q-analytic. This means that every function v, (z) is
Q-analytic on each cell B € B.

Now, for a positive integer k, let Ci (f) denote the set of those points
a € U in the vicinity of which f is of class C¥; obviously, the sets Cy, (f),
k € N, are open definable subsets of U. Obviously, Cy. (f) C Gi (f) for any
k € N; in particular,

CNl (f) CgNl (f) :goo(f>7
and thus the formal power series ¥,(x — a) are defined for all a € Cy;, (f).

We are now going to apply the quasianalytic version of the composite
function theorem. For any k € N U {oo}, let & be the set of those points
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a € Cy, (f) at which the series ¥, realizes g as formally C*-composite with ¢.
By Theorem 4 (on a formally composite function), the descending sequence
of definable subsets (B )ren stabilizes, i.e. there is a positive integer Ny > N;
such that

By, =Bn,01 =... = B

It is clear that Cy, (f) C ®y,. Therefore, the restriction of g to the open
subset ' (Cp, (f)) is formally C*-composite with the restriction of ¢ to
© Y(Cn, (f)). Hence and by the composite function theorem, there is a
smooth function

hICNQ(f)—>R

such that hop = g on Cy, (f). Since g = f o ¢ and the mapping ¢ is
surjective, we get f = h on Cy, (f), and thus f is a smooth function on
Cn, (f). This completes the proof of Theorem 2.

5. Final remarks. We conclude this paper with the following comment.
Given any polynomially bounded, o-minimal structure R, the smooth func-
tions definable in R form a quasianalytic system of sheaves (), and induce a
quasianalytic structure Rq. It may, obviously, contain fewer definable sets
than the initial structure R. In particular, while the exponent field of R may
be any subfield of R, that of R is just Q.

The singular locus of a definable set or function may not be definable
if the polynomially bounded structure R does not admit smooth cell de-
composition. An example of such a structure is the one constructed by Le
Gal-Rolin [11]. This structure is polynomially bounded with exponent field
Q, and does not admit smooth cell decomposition. It is generated by a
function H : R — R with the following two properties:

e the restriction of H to the complement of any neighbourhood of 0 € R
18 piecewise given by finitely many polynomaials;

e the germ of H at 0 € R is not smooth, but is weakly smooth, i.e. is of
class C* for any positive integer k.

It is easy to check that the singular locus Sing (H) is a countable set with
a unique accumulation point 0 € R; obviously, we have

Reg (graph (H)) = graph (H) N (Reg (H) x R).

Clearly, these sets are not definable.

15



Open Problem. Do the results of our paper about singular locus ex-
tend to arbitrary, polynomially bounded, o-minimal structures which admit
smooth cell decomposition?

The only structures for which the answer is known to be in the affirmative
are RE where K is a subfield of R; here, RE is the expansion of the real
field R by restricted analytic functions and power functions with exponents
from K. This result was established by van den Dries-Miller [4].
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