View metadata, citation and similar papers at core.ac.uk

Vol. 1 Issue 1 Oct-Dec 2013

Feeder Renovation in Electric Power System for Reduction of Transmission and Distribution Losses

'Sandhya Gour, "Dr. Bharti Dwivedi

M.Tech Student Institute of Engineering & Technology Lucknow

"Professor Deptt. of Electrical Engineering Institute of Engineering & Technology Lucknow

'dolly.sarvi@gmail.com, "bharti_dwivedi@yahoo.com

Abstract

Feeder renovation is a technique basically of high transmission and high distribution system as opposed to present high transmission but low distribution scheme. It aims at reducing the amount of loading at individual transformers and eventually leading to increase in number of transformers. High distribution cable voltage would be stepped down and from there supply would be given to end consumers. The basic idea is to reduce unpaid loads. The constraints associated are very high installation cost and complete over hauling of existing power supply system. It is a time taking idea and requires proper monitoring. Also the time period of recovery is about 3-4 years. Stability of power supply can be an important parameter to judge a country's economic condition.

Keywords

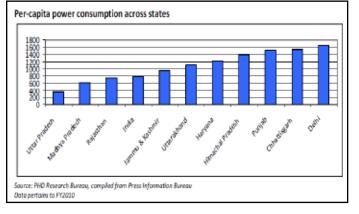
Feeder renovation, Distribution, Transmission, T & D losses, Powerworld Simulator

I. Introduction

Feeder renovation consists of the modification of the topology of an electrical system. The Indian energy sector is today at a crucial juncture of development. With growing economy, the aspiration of people for improved energy services in terms of availability, accessibility, quality and affordable power have come up in a big way. However, the present energy scenario is not satisfactory as the demand and supply represents a deficit overall as well as across the states.[1] The power sector reforms were initiated in the early 1990s with a need to accelerate the power generation. However, still there remains a wide scope for further reforms in several directions. Study found that states with higher power tariffs like Delhi, Punjab and Haryana have exhibited low power deficits while the states with lower power tariffs have high deficit such as J&K and UP. India is currently facing power deficit of 8.5%.[2] In the state of Rajasthan distribution system was suffering badly from very high distribution losses as well as poor quality of supply and electrical network which needed to be improved by making proper capital investment on a techno-economic consideration to finally affect a turnaround of the Distribution company and quality services to the consumers. In 1993, the Government of Rajasthan (GoR) decided to reform its power sector. This was followed by a Broad Reform Policy Statement, issued in Sept [3]. 1995. The policy statement was further revised in 1997 and 1998 and finally adopted in May 1999. Rajasthan Electricity Regulatory Commission (RERC) established on 2nd January, 2000 under the ERC Act, 1998. The main theme of FRP was to segregate electrical network for three phase agriculture load and single phase D.S. NDS etc. load besides so many other interventions.[6]

II. Method


In FR we segregation of domestic and agriculture supply system. To reduce accident risks associated with snapping of conductor in rural areas. In this simulation we use Newton raphson method and compare Existing and Proposed system


 $x_{n+1} = x_n - f(x_n)/Q(x_{n-1}; x_n)$

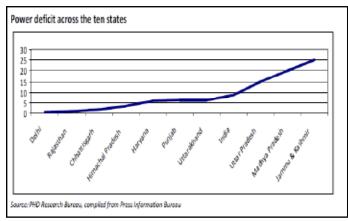

; where Q(xn-1; xn) = f(xn-1)-f(xn)/xn-1 - xn

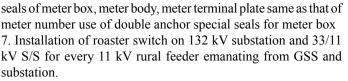
Table 1:

5. na.	States	GSDP as a % of India's GSDP(FY2009)	Industrial i	investments p investr duri	% Energy Surplus(+]/deficit(-)		
			2009	2010	2011(upto June)		
1	UP	8.92	0.97	0.79	1.39	-15	
2	Rejecthen	4.76	1.29	1.71	0.57	-0.9	
3	Dehi	4,04	0.03	0.01	0.003	-0.3	
4	Haryana	3.67	0.23	0.60	0.53	-5.6	
5	MP	3.63	6.41	11.77	7.86	-20.2	
6	Punjab	3.42	0.94	0.39	0.82	-6	
7	Chhattisgarh	1.77	12.56	16.45	4.32	-1.7	
8	Uttarakhand	0.91	0.89	0.46	0.32	-6	
9	HP	0.88	0.58	0.21	0.10	-3.4	
10	188	0.81	0.12	0.07	0.11	-25	

1. To develop single phase H.T. system for D.S. & NDS consumers of rural areas by extending one phase of HT system and neutral wire from the existing three phase 11 kV H.T. system.

2. Installation of low rating, low loss copper wound single phase distribution transformers on this extended one phase H.T. system.

3. Providing of 25 kVA distribution transformers with a M&P box attached to its body, having provision for installation of two meters, MCBs and capacitor in the M&P box. The LT bushings of these transformers are completely concealed thus maximum two consumers on each transformer.


2. Laying of separate 3 Phase AB cable for each AG consumer from distribution transformers with a maximum length of 270 meters.

3. Replacement of bare conductor LT over head lines by AB cables and insulated rabbit conductor.

4. Laying of single phase AB cable from single phase distribution transformers for providing supply to Domestic and non domestic consumers of rural area

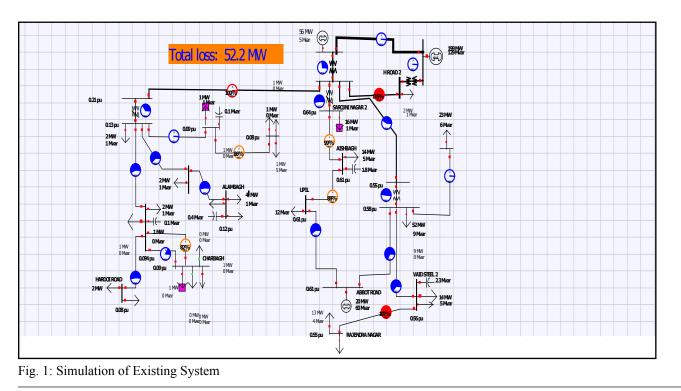
5. Replacement of existing obsolete service line of consumer by armoured XLPE cable

6. Installation of push fit type static meters by replacing the existing slow and sluggish old type meters. To keep the serial number of

8. Installation of metering equipment at the emanating point of all feeders for feeder metering to calculate T&D losses of feeders.

Table. 2:

Contents	Units					
Installed Capacity	176 GW					
Private sector share in generation	22%					
Share of RE capacity	10.42					
Gross generation	811 bn KWh					
PLF(Central sector)	85%					
PLF(State sector)	71%					
Peak deficit	9.8%					
Energy Deficit	8.5%					
Per-capita energy consumption(FY2010)	779KWh					
Villages Electrified	91%					
Households Electrified	56%					
Transmission & Distribution loss (FY2009)	25.4%					


III. EXISTING AND PROPOSED MODELS WITH COMPARISON

1. Existing model

Existing model has interruptable power supply with around 40% T&D losses. Also the rate of transformer failure is high. The POWERWORLD simulator circuit for existing system is attached in the following pages.

2. Proposed model

Proposed model aims at reducing T&D losses to a maximum of 15% initially. It would lead to regulated power supply. Also the rate of transformer failure would be effectively reduced. Eventually all this would lead to a drastic reduction in fiscal deficit.

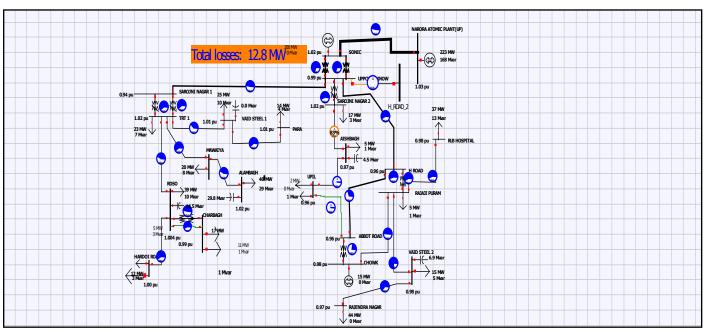


Fig. 2: Simulation of Proposed System

Results: COMPARISON BETWEEN EXISTING AND PROPOSED MODEL Table. 3: Results From Existing System

Fre	m Number From Name	To Number To Name	Cn 🛦	Status Xfm	WW From	Mvar From	MVA From	Lin MVA	% of MVA Limit (Max)	W Loss	Avar Loss
Г	20 VAID STEEL	21 RAJENDRA	1	Closed NO	44.5	0.4	44.5	72.0	61.9	0.19	0.41
	18 UPIL	22 ABBOT ROA	1	Closed NO	53.3	26.0	59.3	80.0	74.1	0.01	0.38
	1 NARORA A	2 SONIC	1	Closed NO	222.7	158.4	279.2	600.0	46.8	0.35	-2.55
	23 CHOWK	22 ABBOT ROA	1	Closed YES	-12.5	43.2	45.0	187.0	24.0	0.03	1.09
	3 UPPOL LUCI	6 H ROAD	1	Closed NO	108.8	20.7	110.8	200.0	55.4	2.11	11.11
	3 UPPCL LUCK	7 H_ROAD_2	1	Closed YES	0.0	-0.0	0.0	100.0	0.0	0.00	0.00
	8 TRT 1	4 SAROJNEN/	1	Closed YES	-106.7	-17.6	108.2	187.0	58.8	0.20	8.06
	3 UPPCL LUC	4 SAROJNEN/	1	Closed NO	217.9	77.3	231.2	500.0	46.2	3.93	26.03
	3 UPPCL LUC	2 SONIC	1	Closed YES	-210.9	-68.8	221.9	334.0	68.3	0.29	15.68
	10 RAJAJI PUR	6 HROAD	1	Closed YES	-87.7	-60.0	106.3	187.0	57.5	0.05	2.12
	6 H ROAD	22 ABBOT ROA	1	Closed NO	18.9	-52.5	55.8	185.0	30.2	0.05	-12.59
	8 TRT 1	11 RDSO	1	Closed NO	84.8	10.2	85.4	200.0	42.7	1.07	3.38
	8 TRT 1	12 MAWAIYA	1	Closed NO	65.9	4.9	66.1	112.0	59.0	0.19	-1.25
	8 TRT 1	13 VAID STEEL	1	Closed NO	39.8	13.6	42.1	112.0	37.6	0.15	0.43
	9 AISHBAGH	18 UPIL	1	Closed NO	70.6	28.0	75.9	100.0	75.9	0.25	1.00
1	19 RLB HOSPIT	10 RAJAJI PUR	1	Closed NO	-37.2	-13.4	39.5	72.0	55.1	0.15	-0.02
	20 VAID STEEL	10 RAJAJI PUR	1	Closed NO	-59.8	1.5	59.9	82.0	73.6	0.50	1.15
	10 RAJAJI PUR	23 CHOWK	1	Closed NO	-14.9	46.0	48.3	100.0	51.0	0.15	-2.73
	5 SAROJNEN	3 UPPOL LUO	1	Closed YES	-94.6	-32.2	100.0	186.7	55.0	0.18	7.20
	5 SAROJNE N	9 AISHBAGH	1	Closed NO	77.8	29.7	83.3	100.0	83.3	2.27	5.18
	17 HARDOL RC	11 RDSO	1	Closed NO	-16.6	-3.2	15.9	30.0	56.6	0.09	0.07
	15 ALAMBAGH	12 MAWAIYA	1	Closed NO	-46.2	0.6	46.2	112.0	41.3	0.02	-1.11
1	13 VAID STEEL	14 PARA	1	Closed NO	14.4	3.6	14.8	25.0	59.2	0.03	-0.06
	3 UPPCL LUCK	2 SONIC	2	Closed YES	-210.6	-68.6	221.5	325.0	70.0	0.29	15.64
	11 RDSO	16 CHARBAGH	2	Closed YES	12.1	-44.7	46.3	101.0	46.4	0.02	0.65
1	8 TRT 1	4 SAROJNE NJ	2	Closed YES	-106.7	-17.6	108.2	187.0	58.8	0.20	8.05
	11 RDSO	15 CHARBAGH	3	Closed NO	15.9	53.1	55.4	101.0	54.9	0.02	0.83

Table. 4: Results From Existing System

1	From Number	From Name	To Number	To Name	Circuit	Status	Xfmr	MW From	Mvar From	MVA From	Lin MiA	% of MVA Limit (Max) 🔻	MW Loss	Mvar Loss
1	7	H ROAD 2		1 NARORA ATOMI	1	Closed	YES	-170,8	-234.3	290.0	220.0	152.6	0.92	54.19
2	7	H ROAD 2	1	3 UPPOL LUCONON	1	Closed	NO	168.8	233.8	288.4	250.0	115.3	16.88	117.55
3	5	SAROJNE NAGAF		9 AISHBAGH	1	Closed	NO	86.4	4.6	86.5	82.0	105.5	4.02	9.38
4	20	VAID STEEL 2	2	1 RAJENORA NAG	1	Closed	NO	27.3	6.7	28.1	27.0	194.1	0.24	0.57
5	3	UPPCL LUCONON		4 SAROJNE NAGAR	1	Closed	NO	40.4	146.0	151.5	155.0	97.7	14.50	100.24
6	9	AISHBAGH	1	B UPIL	1	Closed	NO	68.2	-7.8	68.6	72.0	95.3	0.55	2.23
7	1	NARORA ATOMI		2 SONIC	1	Closed	NO	27,1	-155.0	157.4	197.0	86.1	1.75	-322.82
8	13	VAID STEEL 1	1	4 PARA	1	Closed	NO	5.3	6.6	8.4	10.0	84.1	0.95	1.27
9	11	RDSO	1	5 CHARBAGH	2	Closed	NO	0.7	0.3	0.8	1.0	79.4	0.00	-0.01
10	19	RLB HOSPITAL	1	RAJAJI PURAM	2	Closed	NO	-22.6	-6.3	23.4	30.0	78.7	0.12	0.19
11	8	TRT 1	1	3 VAID STEEL 1	1	Closed	NO	7.7	10.2	12.8	17.0	75.2	1.01	3.22
12	10	RAJAJI PURAM	2	2 ASBOT ROAD	1	Closed	NO	-43.8	-36.2	56.8	83.0	70.5	1.36	1.01
13	22	ABBOT ROAD	1	3 UPIL	1	Closed	NO	-25.3	22.8	34.0	50.0	68.0	0.82	1.08
- 14	20	VAID STEEL 2	1	RAJAJEPURAM	1	Closed	NO	-49.7	-9.0	50.5	82.0	63.6	1.14	2.76
15	17	HARDOL ROAD	1	1 R050	1	Closed	NO	-2.5	-0.3	2.5	5.0	60.3	0.33	0.81
15	8	TRT 1	1	2 MAWATYA	1	Closed	NO.	6.9	1.7	7.1	12.0	59.1	0.15	0.74
17	5	SAROJNE NAGAF		3 UPPCL LUCONON	1	Closed	YES	-102.7	-5.5	102.9	186.7	57.0	0.54	20.37
18	8	TRT 1	1	1 R050	1	Closed	NO	8.9	6.1	10.8	20.0	54.0	1.17	3.80
19	15	ALAMBAGH	1	2 MAWAIYA	1	Closed	NO	-5.0	-0.4	5.0	10.0	50.2	0.02	0.04
20	3	UPPOL LUCONON		2 SONIC	2	Closed	YES	-76.2	-80.1	110.6	400.0	48.1	1.71	95.76
21	19	RAJAJI PURAM	1	5 HROAD 1	1	Closed	YES	-80.4	8.9	80.9	187.0	43.3	0.22	8.88
22	3	UPPOL LUCONON		5 HROAD 1	1	Closed	NO	84.4	24.5	87.9	233.0	37.7	3.79	24.58
23	8	TRT 1		4 SAROJNE NAGAR	2	Closed	YES	-25.2	-18.6	31.3	300.0	17.5	0.72	27.18
24	11	RDSO	1	5 CHARBAGH	1	Closed	NO	0.7	0.3	0.8	5.0	15.9	0.00	-0.01

IV. Conclusion

The Indian energy sector is today at a crucial juncture of development. With growing economy, the aspiration of people for improved energy services in terms of availability, accessibility, quality and affordable power have come up in a big way. However, the present energy scenario is not satisfactory as the demand and supply represents a deficit overall as well as across the states.

THE PROJECT intends to bridge the gap between losses in INDIA and FOREIGN COUNTRIES. Transmission and distribution losses if reduced to 8-9% as outside would be a boon for the country. A lot more houses can be lightened. More power coverage would lead to modernization of the economy as well.

But as every coin has both the aspects, same is the case here as well. It's a time taking process and requires a lot of initial fund investment to be implemented. INDIA at present can't afford it. Also corruption nexus acts as a major deterrent. So these have to be taken care of while implementation. Contrarily If done properly, it can prove a silver lining in the cloud!

V. Acknowledgement

In the sense of great pleasure and satisfaction we present this project entitled "Feeder Renovation in Electric Power System for Reduction of Transmission and Distribution Losses". The completion of this project is no doubt a product of invaluable support and contribution of number of people. I would like to express our sincere thanks to our guide Mrs. Bharti Dwivedi (Professor, Department of Electrical and Electronics Engineering.) for his continuous help and valuable suggestions and also providing encouraging environment, without which our project and its documentation would not have been possible.

References

[1] "Construction part idea" www.uppcl.org/ www.upvunl.org.
[2] "Loss reduction programme in distribution sector", Rajasthan

- [3] Case Study on, "Gujarat Electricity Board A Benchmark in the progress of SEB reforms".
- [4] Shah Alam, Selangor, "Implementation of DG for Loss Minimization and Voltage Profile in Distribution System" 4thInternational Power Engineering and Optimization Conference, (PEOCO2010), 23-24 June 2010.
- [5] "Literature over Indian power sectors in different states".
- [6] "Application for annual revenue requirement and tariffs for FY 2004 -05" Uttar Pradesh Electricity Regulatory Commission, Petition No.183 of 2004.
- [7] Karl A. Seger, David J. Icove, "Power Theft The Silent Crime", March 1988.
- [8] Prof. K.L.Lo, "Feeder reconfiguration for losses reduction in distribution system" IEEE transactions on power delivery, vol. 13. no. 3, July 1998.
- [9] Whei min lin, "A new approch for distribution Feeder reconfiguration for loss reduction and service restoration", IEEE transactions on power delivery, Vol. 13. No. 3, July 1988.
- [10] S. Civanlar, J.J.Grainger, H.Yin, S.S.H.Lee, "Distribution Feeder Reconfiguration for LOSS reduction", IEEE Transaction on Power Delivery, vol. 3, no. 3, 1988.
- [11] Shrmohammady, D. Hong H.W., "Reconfigureation of Electric distribution networks for Resistive line losses reduction", IEEE Trans. On power apparatus and systems, Vol.4, pp. 1492-1498, 1989.
- [12] "Reduction of losses in distribution system", A Report on Worldbank Electricity Board.