
Frame Fountain: Coding and Decoding MAC
Frames

Qingmei Yao, Chong Tang, Shaoen Wu

School of Computing
University of Southern Mississippi

118 College Drive, Box 5106 , Hattiesburg, MS, 39406, USA
Emails: qingmei.yao, chong.tang@eagles.usm.edu, shaoen.wu@usm.edu

Abstract

To address the large latency and degraded network throughput due to the retransmission triggered by frame loss in high speed
wireless networks, this paper proposes a solution called Frame Fountain that encodes and decodes data frames in the MAC layer.
This solution intelligently encodes a number of redundant frames from original frames upon link loss rate so that a receiver
can effectively recover lost original frames without significant retransmissions. Meanwhile, various probability distributions are
investigated to find an optimal one as the degree distribution adopted by this coding solution. Extensive experiments show that,
working with a degree distribution improved upon robust Soliton distribution, Frame Fountain can recover most of original frames
with large probability.

Index Terms
FEC codes, Fountain codes, MAC, Frame Fountain

I. INTRODUCTION

Wireless networking technologies have been widely deployed in civil and military applications such as 3G/4G and IEEE
802.11 WLAN networks. However, wireless communication suffers from frame losses due to channel fading, shadowing,
mobility and transmission collisions (interferences). Frame loss significantly undermines wireless network performance in that
1) latency is enlarged and 2) throughput is degraded. The large latency is incurred by the retransmission of lost frames in
the MAC layer that is part of most MAC protocols for reliable link layer point-to-point transmission. For example, in IEEE
802.11 [?], if a source node which sends a data frame does not receive an acknowledgement (ACK) on time, it will retransmit
this data frame until it receives the ACK from the receiver node or a timer (usually called Retransmission Timeout value)
expires. Large latency afflicts multimedia applications. Meanwhile, the frame delivery ratio is significantly hurt by frame loss.
Therefore, the throughput is impaired as well.

To improve wireless network performance experiencing frame loss incurred from channel instability, one important solution
is to code information into a format different from its original presentation. Coding has been studied in different network
layers. In the physical layer, channel coding algorithms, like Trellis [?] and Viterbi [?], provides redundancy, resilience, error
detection and correction for modulated bits transmitted on wireless links. In the networking layer, in recent years, network
coding solutions have been proposed for opportunistic transmission to improve network performance. For example, COPE [?]
proposed for wireless mesh networks by Katti, et al. not only forwards the packets but also mixes packets form different
sources into a single transmission and decomposes the packets at the receiver. In upper layers, a coding concept called Digital
Fountain has been proposed by Byers, et al. [?] to generate a stream of packets, including some redundant packets, like in
water fountain to address potential packet loss in multicast applications that do not allow retransmission. Since then, many
Digital Fountain coding methods have been invented such as Luby transform codes (LT codes)[?] and Raptor codes [?].

This paper proposes a coding solution in MAC layer, named Frame Fountain, to reduce the retransmission because of the
frame losses in high speed wireless networks, e.g. IEEE 802.11n. Frame Fountain encodes a number of redundant frames
from a stream of original data frames upon certain probabilistic distributions and the frame loss ratio of a wireless link, and
then sends all of these frames in a batch to the receiver with the expectation that even if some of these frames are lost, the
complete set of raw frames can still be recovered with large probability. In particular, multiple probabilistic distributions were
investigated to find an optimal one that can generate redundancy of various degrees in encoding to recover lost original frames
with a great probability.

The remaining of this paper is organized as follows. Section II briefly introduces the background and previous work followed
by our motivations. Section III discusses the coding concept of our proposed Frame Fountain and the coding methods using
different probability distributions. Simulation results of comparing different coding methods are reported and analyzed in
Section IV. Finally, the conclusion is given in Section V.

II. RELATED WORK AND MOTIVATIONS

This section briefly reviews the channel coding methods in the physical layer and Digital Fountain coding proposals in the
application layer. Then the motivations of our work to code frames in the MAC layer are presented.

A. Forward Error Correction Coding

Forward Error Correction (FEC), also called channel coding, was originated by Shannon in 1948 [?]. It is an important
technique that significantly improves data transmission reliability in error-prone channels, particular true in wireless commu-
nication, by using an error control structure that adds redundant information through some algorithm to the original messages
at the sender before transmission to make the message more resilient against noise and interference. If error occurs in the
transmission on the channel, the receiver can use the redundancy to correct the errors in messages unless the number of errors
is beyond the error correct capability of the FEC algorithm. Generally, there are two categories of FEC codes: convolutional
codes and block codes.

Convolutional codes[?] are one of the most widely used channel codes in numerous applications to achieve reliable data
transmission. Convolutional codes were first introduced by Elias [?] in 1957 as an replacement of block codes. This kind of
codes works on arbitrary length of bits or symbols. The encoded bits depend not only on the current k raw bits but also on
the previous input bits. Thus they can convert the entire data stream into one codeword. There are many convolutional coding
algorithm such as low-rate convolutional coding [?], high-rate recursive convolutional coding [?] and cyclic convolutional
codes [?]. Viterbi algorithm [?] which was first proposed by Viterbi in 1967 is the most often used algorithm to decode the
bit streams coded by convolutional coding algorithms.

Block codes [?] work on fixed-size blocks of bits or symbols and can be used to either detect or correct errors. These coding
methods use a block of k original information bits as input and generate a block of n coded bits in which n − k redundant
bits are added. These codes can be represented as (n, k) block codes. Many block codes have been proposed in the past such
as Hamming codes[?], Bose-Chaudhuri-Hocqhuenghem (BCH) codes [?], Reed-Solomon codes [?] and Low Density Parity
Check (LDPC)[?] .

B. Digital Fountain

Digital fountain was introduced in 1998 by Byers, et al. in the paper [?] to address end-to-end packet loss in multicast
applications where no retransmission is allowed. The core of Digital Fountain is rateless error correcting coding algorithms
whose code rates vary. With these coding algorithms, potentially a limitless sequence of encoding symbols can be generated
from a given set of source symbols, say K symbols, and the original k source codes can be recovered from any of the encoded
P symbols where P is no less than K. Although Reed-Solomon (RS) codes[?] and LDPC[?] codes were invented in 1960s,
they can also be considered as Digital Fountain codes.

Luby Transform codes (LT codes) are the first practical Digital Fountain codes presented in 2002 by Luby [?]. They are
rateless coding methods that encode and generate symbols on the fly. In encoding, first, an information message is divided
into blocks of equal size and a degree d (1 ≤ d ≤ n, where n is the number of original blocks) is generated by the
degree distribution. Then d blocks are randomly selected and are combined with bitwise XOR operation. The encoded block
is transmitted in a packet. When enough encoded packets are generated or the sender get an acknowledgement(ACK) from the
receiver the encoding process stops. The decoding process of LT codes depends on the identity of the received packets. If a
degree-1 packet is received, it is itself an original block. Then this degree-1 packet is used to XOR with other received packets
to remove itself from other encoded packets of degree greater than 1, and meanwhile decrement the degree of the encoded
packet. If new degree-1 packets are found, the decoding process continues iteratively until all the original messages have been
recovered.

It should be noted that the degree distribution, which is a probability distribution to define the number of blocks combined in
one packet, is extremely significant in LT codes. To completely recover the orignal data and ensure the LT process success it has
to meet the basic requirements: a few encoding packets must have high degree while many other packets must have low degree
to keep the total number of operations small to be practical. To meet the requirements, Luby discussed two distributions: the
ideal Soliton distribution and the robust Soliton distribution. Further discussion of these distributions is deferred to Section III
where our proposed MAC frame encoding is presented.

C. Our Motivation

Although coding approaches have been well studied in the physical layer for bit streams, in the networking layer for
opportunistic routing and in the application layer for reliable end-to-end transmission, there is no work attempting the coding
for the MAC layer for hop-to-hop communication. In wireless networks, the unstable hop-by-hop links likely incur large frame
loss rate. Retransmission mechanisms in most of MAC protocols for wireless networking is possible to yield large latency and
significantly undermines network throughput. We are therefore motivated to exploit encoding solutions to efficiently address
these challenges due to the frame loss in wireless networks.

III. FRAME FOUNTAIN

A. Frame Fountain: coding and decoding

In this work, we propose an approach called Frame Fountain that intelligently encodes redundant frames from a stream of
original MAC frames based on the current frame loss rate (rl) of a wireless link. Then, both redundant and original frames are
transmitted in a batch. It is expected that all original information can be recovered at a receiver even with a limited number of
frames lost in the transmission. Namely, when a receiver receives the enough number of frames, it can probabilistically recover
all the original frames in the batch immediately. In addition to reduce the retransmission, another strength of Frame Fountain is
that for a batch of frames only one ACK needed to feedback to the source. Therefore, Frame Fountain can definitely improve
the throughput efficiency and reduce the network latency. Below discussed in detail are the encoding and decoding processes
and the degree distributions.

1) Encoding Process:: The encoding process of Frame Fountain is shown in Algorithm 1. In the encoding, there are two
types of frames in a frame flow (or batch): original frame(s) and encoded redundant frame(s). The frame type is marked in
the frame header. The number of redundant frames, k, is calculated upon a given frame lose rate rl of a wireless link. Denote
n as the number of original frames in each encoding cycle. Then k = dn/(1 − rl)e − n. Encoding stops at a sender either
when the sender receives an ACK from the receiver indicating that original frames have been recovered or when the number
of sending out frames is up to n+ k.

To generate an encoded frame, the encoding algorithm first computes a degree number d with a degree distribution. Then
it randomly (or sequentially with random starting point) selects d distinct original frames and combines these frames into one
encoded redundant frame with bitwise XOR operation. In this process, two encoding methods are proposed: random coding
and continuous coding. In the random coding, d distinct original frames are randomly selected and encoded into one redundant
frame with bitwise XOR operation. In the continuous coding, a streak of d sequential original frames are encoded, but the
starting point of the streak is randomly selected. In continuous coding, if the end of the entire sequence of original frames is
reached, the fetching cyclically starts from the beginning of the entire sequence of original frames until d frames are taken. For
example, if the entire sequence of original frames is a, b, c, d, e and the degree distribution generates a degree of 3. Random
coding likely to generate a redundant frame of c � b � e, while continuous coding possibly generates a redundant frame of
e� a� b.

Algorithm 1 The encoding process of Frame Fountain algorithm
1: calculate the number of redundancy frames k by the given loss rate rl and the number of original frames needed to sent n

k = dn/(1− rl)e − n

2: send out the n original frames
3: repeat
4: choose a degree d from the distribution ρ(d)
5: choose d distinct randomly or sequentially frames (m(i1),m(i2), · · · ,m(id)) form n original frames
6: send the frame m(i1) �m(i2) � · · ·�m(id)
7: until the sender get an ACK from the receiver or the number of the redundancy is up to k

2) Decoding process:: Algorithm 2 explains the detail of the decoding process of Frame Fountain. The received frames
are stored into two buffers: Bo for those original frames and Be for those encoded redundant frames. If the received frame
Fr is an encoded frame (this could be done by checking the mark in the frame header) with coding degree d, the decoding
algorithm does XOR operation upon this frame against buffer Bo to get rid of those original frames encoded into the frame
Fr but has been received and stored in buffer Bo. For example, if Fr is encoded as A�B � C �D with a degree of 4 and
if C and D have been received in Bo, then the decoding does Fr � C � D = A � B. After the operation, Fr is reduced
to a frame F ′r with the degree reduced to d′r by the number of original frames ruled out. If d′r is 1, the frame F ′r should
be an original frame. If it is a new original frame that is not stored in buffer Bo, it is first added into buffer Bo. Then, this
new original frame is XORed against the left encoded frames in buffer Be to iteratively conduct the decoding until no more
decoding is possible to reduce the degrees of encoded frames in buffer Be. Otherwise, if F ′r is still an encoded frame as in the
example, it is stored in buffer Be to wait till new original frame(s) to arrive to be decoded. One condition to stop the decoding
process is when buffer Bo has n distinct original frames, namely all original frames have been received or recovered. Then,
the receiver will stop receiving and decoding frames for this sequence of frames and send an ACK back to the sender. Another
condition to stop decoding is when a receiver timer expires or the receiver receives the last frame of the receiving flow. In this
case, the source has sent out all n+ k frames and stopped, but the receiver has not got enough frames to recover all original
frames. Then, the receiver will send back an NACK with the information of the missing original frames. Then retransmission
of lost frame(s) is necessary, but this can be done with a new sequence of frames in a new Frame Fountain cycle without

Algorithm 2 The decoding process of Frame Fountain algorithm
1: check the header of the received frame Fr

2: if Fr is an original frame then
3: put it into the buffer Bo

4: check the number of frames in buffer Bo, if the number is n send back an ACK and break
5: else
6: compare the information in the frame header Fr

7: do XOR operation with Fr and frames which both in the buffer Bo and also encoded in Fr, and get F ′r
8: if the degree of F ′r is 1 after the XOR operation then
9: F ′r becomes and original frame,

10: check the header of other frames in buffer Be and reduce their complexity via do XOR operation with F ′r
11: then put F ′r in the buffer Bo and check the number of frames of buffer Bo, if the number is n send back an ACK

and break
12: else
13: put F ′r into the buffer Be

14: end if
15: end if
16: repeat
17: check header and degrees of frame in the Be buffer
18: if find an frame with degree 1 then
19: compare other frames’ headers and do XOR operation if needed
20: put this degree-1 frame into the Bo buffer, check the number of frames of buffer Bo, if the number is n send back

an ACK and break
21: end if
22: until buffer Be has no frame with degree 1
23: check the number of frames of buffer Bo

24: if the number is n then
25: send back an ACK and tell the source to go to the next sequence’s transmission
26: else
27: send back an ACK to the source and piggyback the information of lost frames
28: end if

explicitly retransmitting lost frames one by one as in current MAC protocols. It should also be noted that the probability of
this retransmission is significantly reduced because of the redundant frames.

The decoding process in this algorithm is suboptimal, because we do not do comparison between the encoded frames. For
example, there are two encoded frames left in the buffer Be: one is Fe1 encoded by a� b� c and the other one is Fe2 encoded
by a� c. If we do XOR operation to the two frames we can get frame b (Fe1 � Fe2 = a� b� c� a� c = b). However, this
would increase the computation enormously and introduce more latency to the wireless network transmission. To improve the
decoding algorithm of Frame Fountain is part of our future work.

B. Degree distributions

Just as in LT codes, the degree distribution is a critical element in Frame Fountain encoding algorithms. Suppose that each
time the original and encoded frames are sent as a batch and each batch has n original frames and k encoded frames. We
investigate several probability distributions as the degree distribution used in the Frame Fountain encoding process. They are
presented as follows.

1) Uniform distribution:
pi = 1/n ∀i = 1, · · · , n.

2) Normal distribution:
µ = bn/2c, σ = k/2

pi =
1√
2πσ2

e−
(xi−µ)

2

2σ2 ∀i = 1, · · · , k

where xi =
⌊

randn ∗ σ + µ
⌋

3) sequential distribution:

pi =
1

n− dn/ke
∀i = bn/kc, · · · , n

4) ideal Soliton distribution:

p1 = 1/n

pi =
1

i(i− 1)
, fori = 2, 3, · · · , n

5) Robust Soliton distribution [?]: First define, R = c ln(n/δ)
√
n, where c and δ are extra parameters; c > 0 is some

suitable constant.

τi =


R
i·n , for i = 1, 2, · · · , (n/R)− 1,
R
n ln(R/δ), for i = (n/R),
0, otherwise.

The robust Soliton distribution is denoted by a linear combination of the ideal Soliton distribution and τi,

pi =
p∗i + τi
C

,

where p∗i corresponds to the ideal Soliton distribution and C is the normalization constant [?].
6) Improved Robust Soliton distribution: In the improved robust Soliton distribution, we also use R = c ln(n/δ)

√
n as in

the robust Soliton distribution where c and δ are extra parameters; c > 0 is some suitable constant.

τi =


R

(i−ω)·n + R
i·n , for i = ω, · · · , 2ω − 1

R
i·n , for i = 2ω, · · · , n/R− 1,
n
R ln(R/δ), for i = (n/R),
0, otherwise.

where ω = bn/kc and the ω must satisfy that 2ω < n/R, which means R < k/2. The ideal Soliton distribution has been
changed to

p∗i =


1

i∗(i−1) +
1
n , for i = ω + 1,

1
i∗(i−1) +

1
(i−ω)∗(i−ω−1) , for i = ω + 2, · · · , n,

0, otherwise.

Then, pi =
p∗i + τi
C

where C is a normalization constant. The difference between the robust Soliton distribution and the improved one is on the
sampling. In the improved distribution, only digrees larger than ω can be generated for encoding. The reason is that in Frame
Fountain, enough degree-one symbols are already guaranteed by the original frames, the improved robust Soliton distribution
only need to generate various large degrees (range: ω to n). In this case, enough frames can be encoded together as redundant
frames to make sure there are enough diversity of encoded frames at the receiver.

IV. EXPERIMENT ANALYSIS AND OBSERVATIONS

Frame Fountain with different degree distributions are extensively evaluated. The following presents the experiment
methodology and observations.

A. Experimental Methodology

The experiments are conducted on Matlab R2009b. The simulation in this experiment is only one hop frame transmission.
The degrees of the encoded frames are notified to the receiver as an array and the indexes of the information of the encoded
frames are assembled into a matrix for decoding at the receiver side. In the experiments, the encoding and decoding methods are
implemented based on different degree distributions including Normal distribution, Uniform distribution, sequential distribution
and the improved robust Soliton distribution. Each case repeats 10000 times. Both encoding methods are implemented and
experimented: random coding and continuous coding

B. Observations

1) Coding Efficiency: To investigate the coding efficiency of two coding methods, random coding and continuous coding,
upon various degree distributions, we compare their Cumulative Distribution Functions (CDF) of recovering original frames
at a receiver. This experiment is configured with n = 100 and rl = 0.04. In each run, the sender transmits 100 original and
5 encoded frames over the lossy link and the receiver gets only 100 frames in total, some of which are very likely encoded
frames. Then the receiver conducts the decoding process to decode as many original frames as possible. Ideally, it is expected
that a good encoding method is able to recover almost all original frames at its best. Namely, it is very desirable to see that
an encoding method can recover all (or almost all) original frames (100 in our case) from received frames (100 in our case)
with a large probability. The result of this case is plotted on Figure1, where the X-axis denotes the number of original frames

95 95.5 96 96.5 97 97.5 98 98.5 99 99.5 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of frames: x

C
D

F

Uniform distribution

random coding

continuous coding

95 95.5 96 96.5 97 97.5 98 98.5 99 99.5 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of frames: x

C
D

F
Normal distribution

random coding

continuous coding

95 95.5 96 96.5 97 97.5 98 98.5 99 99.5 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of frames: x

C
D

F

sequential distribution

random coding

continuous coding

95 95.5 96 96.5 97 97.5 98 98.5 99 99.5 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of frames: x

C
D

F

improved robust Soliton distribution

random coding

continuous coding

Fig. 1. CDFs of recovering original frames
the receiver can decode at most from received frames and the Y -axis shows the CDF of recovering the number of frames
at the receiver’s best. The solid line in the figure shows the coding efficiency of the continuous coding and the dash line
for that of the random coding. From this figure, we obtain two observations. First, the random coding has more probability
(with a sharper increase, larger gradient, on the figure) distributed on larger numbers on X-axis (towards the right) in all
cases of various degree distribution. In another word, it is more likely to recover almost all original frames than continuous
coding. Another observation is that, in the four degree distributions, the performance of uniform distribution is the worst. The
normal distribution has the probability of 13% to decode 100 frames which is higher than other three distributions. However,
its probability to decode more than 96 frames is 43% which is lower than 89.5% and 80% for sequential distribution and
improved robust Soliton distribution respectively. Namely, its overall performance is worse. The sequential distribution has very
similar performance to the improved robust Soliton distribution although the latter performs slightly better when the number
of decoding frames is higher than 96.

Since the continuous coding performs much worse than the random coding, the remaining experiments are conducted upon
the random coding only.

2) Comparison of Degree Distributions: We also attempt to identify the optimal degree distribution with more investigations.
The first is to compute the expectations of probabilities of four degree distributions for recovering original frames at most.
The expectation is calculated:

E[x] =
n∑

i=xmin

xipi

where x is the number of original frames that can be decoded by the receiver at its best. For the case of random coding
in Figure1, the expectation are 96.34, 96.71, 97.53 and 97.59 for Uniform Distribution, Normal Distribution, Sequential
Distribution and improved robust Soliton Distribution respectively. Since improved robust Soliton distribution has the largest
expectation, it performs best in this case.

In addition, we conduct experiments as in Section IV-B1 under the setting of n = 50 and rl = 0.04. The CDF results are
shown on Figure 2 where the X-axis denotes the number of original frames the receive can decode at most from received
frames and the Y -axis shows the CDF of recovering the number of frames at the receiver’s best. We choose n = 50 to get
close to the practice (currently in IEEE 802.11n, this number is about 64 in a typic channel coherent time). It is easy to see that
the Uniform distribution is still the worst one since it only has the probability of 65% to decode more than 47 frames. Though
the Normal distribution performs better when the decoded frames number is greater than 48, it performs worse for decoding
small number of frames. On the other hand, the sequential distribution and improved robust Soliton distribution works much
better than others. The expectation for sequential distribution is 48.63 and for the improved robust Soliton distribution is 48.68.
Thus, the coding efficiency of improved robust Soliton distribution is slightly superior to the sequential distribution.

3) Impact of Loss Rate: To investigate the performance of random coding in various lossy environment, experiments are
conducted to plot the CDF of recovering original frames in different loss rates for the sequential distribution and improved
robust Soliton distribution. In these cases, there are 50 original frames with loss rate varying from 0.01 to 0.15.

47 47.5 48 48.5 49 49.5 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of frames: x

C
D

F

Uniform distribution

random coding

(a) uniform distribution

47 47.5 48 48.5 49 49.5 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of frames: x

C
D

F

Normal distribution

random coding

(b) normal distribution

47 47.5 48 48.5 49 49.5 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of frames: x

C
D

F

sequential distribution

random coding

(c) sequential distribution

47 47.5 48 48.5 49 49.5 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of frames: x

C
D

F

improved robust Soliton distribution

random coding

(d) improved robust Soliton distri-
bution

Fig. 2. Different degree distributions with random coding

49 49.1 49.2 49.3 49.4 49.5 49.6 49.7 49.8 49.9 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of frames: x

C
D

F

the comparison of two kinds of distribution

sequential distribution

improved robust Soliton distribution

(a) comaprison for n = 50 & rl = 0.01

48 48.2 48.4 48.6 48.8 49 49.2 49.4 49.6 49.8 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of frames: x

C
D

F

the comparison of two kinds of distribution

sequential distribution

improved robust Soliton distribution

(b) comaprison for n = 50 & rl = 0.02

48 48.2 48.4 48.6 48.8 49 49.2 49.4 49.6 49.8 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of frames: x

C
D

F

the comparison of two kinds of distribution

sequential distribution

improved robust Soliton distribution

(c) comaprison for n = 50 & rl = 0.03

47 47.5 48 48.5 49 49.5 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of frames: x

C
D

F

the comparison of two kinds of distribution

sequential distribution

improved robust Soliton distribution

(d) comaprison for n = 50 & rl = 0.05

45 45.5 46 46.5 47 47.5 48 48.5 49 49.5 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of frames: x

C
D

F

the comparison of two kinds of distribution

sequential distribution

improved robust Soliton distribution

(e) comaprison for n = 50 & rl = 0.08

41 42 43 44 45 46 47 48 49 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of frames: x

C
D

F
the comparison of two kinds of distribution

sequential distribution

improved robust Soliton distribution

(f) comaprison for n = 50 & rl = 0.15

Fig. 3. sequential distribution and improved robust Soliton distribution with various loss rates

Figure 3 shows the results where X-axis denotes the number of original frames recovered at best and the Y -axis represents
the CDF of recovering these original frames. When the loss rate of the wireless network is very small, for example rl =
0.01 in case (a), both of these two distributions can achieve 100% efficiency (recover all original frames). The expectations
(Esequential, Eimproved soliton) of recovering original frames in first six cases (a), (b), (c), (d), (e) and (f) are (50, 50), (49.18,
49.22), (49.17, 49.22), (48.63, 48.68),(47.73, 47.78), (46.21, 46.28). Overall, the improved robust Soliton distribution performs
marginally better. Thus the Frame Fountain with improved robust Soliton distribution as degree distribution works efficiently
to its purpose.

V. CONCLUSION AND FUTURE WORKS

In this work, we propose a coding method called Frame Fountain, the first encoding method working directly on the data
frames in the MAC layer to reduce retransmission due to frame loss on wireless lossy links and improve network performance.
Different distributions are investigated to find an optimal degree distribution for this coding solution. Extensive experiments
demonstrate that Frame Fountain with the improved robust Soliton distribution can effectively recover original frames in lossy
environments. Our future work is to implement and evaluate this solution on a test bed in practice.

VI. ACKNOWLEDGEMENT

This work is supported by the National Science Foundation through grant OCI#1041292.

