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An efficient parallel iterativemethod with parameters on distributed-memorymulticomputer is investigated for solving the banded
linear equations in this work. The parallel algorithm at each iterative step is executed using alternating direction by splitting the
coefficient matrix and using parameters properly. Only it twice requires the communications of the algorithm between the adjacent
processors, so this method has high parallel efficiency. Some convergence theorems for different coefficient matrices are given,
such as a Hermite positive definite matrix or anM-matrix. Numerical experiments implemented on HP rx2600 cluster verify that
our algorithm has the advantages over the multisplitting one of high efficiency and low memory space, which has a considerable
advantage in CPU-times costs over the BSOR one.The efficiency for Example 1 is better than BSOR one significantly. As to Example
2, the acceleration rates and efficiency of our algorithm are better than the PEk inner iterative one.

1. Introduction

In recent years, the high-performance parallel computing
technology has been rapidly developed. The large sparse
banded linear systems are frequently encounteredwhen finite
difference or finite element methods are used to discretize
partial differential equations in many practice scientific and
engineering computing problems, especially in computa-
tional fluid dynamics (CFD). While many problems can be
efficiently resolved on sequential computers but are difficult
to solve on parallel computers, the communications take a
significant part of the total execution time. So we need more
efforts to investigate more efficient parallel algorithm to
improve the experimental results.

The parallel algorithms on the large sparse linear systems
have been widely investigated in [1–8]. Specifically, the multi-
splitting algorithm in [1] is a popular method at present.
In [3], the authors provide a method for solving block-tri-
diagonal linear systems in which local lower and upper tri-
angular incomplete factors are combined into an effective

approximation for global incomplete lower and upper trian-
gular factors of coefficient matrix based on two-dimensional
domain decomposition with small overlapping. The algo-
rithm is applicable to any preconditioner of incomplete type.
Duan et al. presented a parallel strategy based on theGalerkin
principle for solving block-tridiagonal linear systems in [4].
In [5], a parallel direct algorithm based on Divide-and-
Conquer principle and the decomposition of the coefficient
matrix is investigated for solving the block-tridiagonal linear
systems on distributed-memory multicomputers. The com-
munication of the algorithm is only twice between the adja-
cent processors. In [7], a direct method for solving circular-
tridiagonal block linear systems is presented. Some parallel
algorithms for solving the linear systems can be found in [9–
14]. The algorithm in this paper is discussed on the basis of
the advantages of the one in [2].

The goal of this paper is to develop an efficient, stable
parallel iterative method on distributed-memory multicom-
puter and to give some theoretical analysis. We appropri-
ately choose the splitting matrices W and V to establish
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the iterative scheme. Two examples have been done on the
HP rx2600 cluster; the experimental results indicate that the
parallel algorithm has advantages over the multisplitting one
of high parallel speedup and efficiency.

The content of this paper is as follows. In Section 2, the
parallel iterative algorithm is described. In Section 3, the
parallel iterative process is discussed. The analysis of conver-
gence is done in Section 4. The numerical results are shown
in Section 5. In Section 6, the conclusion is presented.

2. Parallel Algorithm

Let a banded linear equation AX = b be represented as
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real column vectors. In general, assuming that there are 𝑝

processors available and 𝑛 = 2ℎ𝑝 (ℎ ≥ 1, ℎ ∈ 𝑍

+), we
denote the 𝑖th processor by 𝑃

𝑖
(for 𝑖 = 1, 2, . . . , 𝑝) and split

the coefficient matrix A into A = W + V.

Then, we use the alternating direction iterative scheme in
[2] and obtain the new iterative scheme

(I + 𝜏W) (I + 𝜏V) (x(𝑘+1) − x(𝑘)) = −𝛼𝜏 (Ax(𝑘) − b) ; (2)

here I + 𝜏W and I + 𝜏V are nonsingular matrices and 𝛼 = 2.
And hence (2) is changed into

x(𝑘+1) = x(𝑘) − (I + 𝜏V)
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(3)

here, B
𝜔

= I − 2𝜏(I + 𝜏V)

−1
(I + 𝜏W)

−1A is the so-called
iterative matrix and g = 2𝜏(I + 𝜏V)

−1
(I + 𝜏W)

−1b.
Obviously, the matrices I + 𝜏W and I + 𝜏V should be

nonsingular and the definition of W and V is the most
important key of solving the linear systems by (3) in this
paper. If W and V are suitable, the algorithm would have
good parallelism and low CPU-times costs. So we chooseW
and V as follows
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From (3), let y = (I + 𝜏W)

−1
(Ax(𝑘) − b); we obtain

(I + 𝜏W) y = Ax(𝑘) − b; (5)

then the detailed calculation procedure is as follows:
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here, y = (y
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where z = (z
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𝑇 and z
𝑖
is a 2ℎ-dimentional

row vector. Then according to the aforementioned formulas,
we get x(𝑘+1) = x(𝑘) − 2𝜏z.

3. Process of Parallel Iterative Algorithm

Here, we show the storage method and computational proce-
dure of the parallel algorithm as follows.

3.1. Storage Method. The coefficient matrix is divided
into A
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Then, assign 𝑚 (𝑚 = 𝑛/𝑝) rows to each processor. The
processor stores the corresponding vectors b

𝑖
, x
𝑖
with 𝑖 =

1, 2, . . . , 𝑝. Here 𝑘
𝑢
and 𝑘

𝑙
are upper-band width and lower-

band width, respectively. In such a case, this saves much of
the memory space although programming is difficult. Note
that if 𝑛 is not divisible by 𝑝, some processors store [𝑛/𝑝] + 1

rows-block of A, sequentially, and others store [𝑛/𝑝] rows-
block; meanwhile, each processor stores the corresponding
vectors of x(0)and b. Thereby, it makes load of each processor
approach balance and shorten wait time.

3.2. Cycle Process. (1) 𝑃
𝑖
performs a parallel communication

to obtain x(𝑘)
(𝑖−1)2𝑚

, x(𝑘)
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and implements LU discretization one-step, whereW
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are the 𝑖th (for 𝑖 = 1, 2, . . . , 𝑝) block ofW, A, b, and x,

respectively.
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and implements LU discretization one-step; hereV
𝑖
is the 𝑖th

(for 𝑖 = 1, 2, . . . , 𝑝) block of V.
(3) On the 𝑃

𝑖
processor, judge whether the inequality

‖x(𝑘+1)
𝑖

− x(𝑘)
𝑖

‖ < 𝜀 (𝜀 is error bound, 𝑖 = 1, 2, . . . , 𝑝) holds.
Stop if these inequalities hold on every processor, or return
to (1) and continue cycling until all inequalities are satisfied.



4 Mathematical Problems in Engineering

4. Analysis of Convergence

To perform the theoretical analysis on convergence of the
parallel algorithm, we introduce the definition and several
lemmata.

Symbol and Definition

(i) 𝑅

𝑛×𝑛 represents the space of 𝑛 × 𝑛 real matrices.

(ii) I
𝑟
represents the unit matrix of order 𝑟.

(iii) W𝐻, V𝐻 represent the conjugate transpose matrix of
W, V, respectively.

(iv) W−1 represents the inverse matrix ofW.

Definition 1 (see [15]). Suppose A ∈ 𝑅

𝑛×𝑛 and A = Q − S,
where Q−1 ≥ 0 and S ≥ 0; then A = Q − S is called normal
splitting of matrix A.

Definition 2 (see [15]). Suppose A ∈ 𝑅

𝑛×𝑛 and A = Q − S,
where Q−1S ≥ 0; then A = Q − S is called weak normal
splitting of matrix A.

Definition 3 (see [15]). Suppose A ∈ 𝑅

𝑛×𝑛 and A = Q − S,
whereQ𝐻 + S is a Hermite positive definite matrix; then A =

Q − S is called 𝑃-normal splitting of matrix A.

Definition 4 (see [15]). Let A = (𝑎
𝑖𝑗

) ∈ R𝑛×𝑛, if 𝑎
𝑖𝑗

≤ 0 (𝑖 ̸= 𝑗)
and A−1 ≥ 0; then the matrix A is an 𝑀-matrix.

Here, we give some theoretical analysis for convergence
of the parallel iterative algorithm.

Lemma 5 (see [9]). LetA ∈ 𝑅

𝑛×𝑛, if the splittingA = M−N is
a weak normal splitting or normal splitting of coefficientmatrix
A; then 𝜌(M−1N) < 1 if and only if A−1 ≥ 0.

Lemma 6 (see [10]). Let A be an 𝑀-matrix. If any element of
A increases while outside elements of the main diagonal keep
nonpositive, then the transformation matrix B is also an 𝑀-
matrix and B−1 ≤ A−1.

Lemma 7 (see [15]). Let A ∈ 𝐶

𝑛×𝑛 be a nonsingular Hermite
matrix. If A = M − N is a 𝑃-normal splitting of the matrix A,
then 𝜌(M−1N) < 1 if and only ifA is a positive definite matrix.

Theorem 8. Let A ∈ 𝑅

𝑛×𝑛 be a Hermite positive definite
matrix. If 𝜏 > 0, 𝛽 = 1/2, and 0 ≤ 𝛼 ≤ 1, then the iterative
scheme (3) is convergent for all vector x(0).
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then we have
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matrix or a positive definite matrix. Hence the matrix

M𝐻 + N = 2I + 𝜏

2
(WV + V𝐻W𝐻)

= 2I + 𝜏

2
(WV + V𝐻W𝐻 − 2UU𝐻) + 2𝜏

2UU𝐻

(18)

is a Hermite positive definite matrix.
Therefore,A = M−N is a𝑃-normal splitting of thematrix

A, and then 𝜌(M−1N) < 1 by Lemma 7; we know that our
algorithm iterative scheme is convergent.

By the theorem, we know that the parallel algorithm is
convergent if A is a Hermite positive definite matrix.

Theorem 9. Let A ∈ 𝑅

𝑛×𝑛 be an 𝑀-matrix. If 0 < 𝜏 ≤

min{1/𝛼, 1/𝛽, 1/(1 − 𝛼), 1/(1 − 𝛽)}min(1/𝑎
𝑖𝑖

) for 𝑖 = 1, 2, . . . ,

2ℎ𝑝, here 0 < 𝛼, 𝛽 < 1 and 𝑎
𝑖𝑖
is the diagonal element of A;

then the iterative scheme (3) is convergent for all vector x(0).

Proof. Since M = (I + 𝜏V)(I + 𝜏W), N = (I − 𝜏W)(I − 𝜏V),
and

I + 𝜏V

=

(

(

(

(

(

(

(

I + (1 − 𝛼) 𝜏A
1

𝜏C
2

I + 𝜏 (1 − 𝛽)A
2

𝜏B
2

I + (1 − 𝛼) 𝜏A
3

𝜏C
4

I + 𝜏 (1 − 𝛽)A
4

𝜏B
4

d
I + (1 − 𝛼) 𝜏A

2ℎ𝑝−1

𝜏C
2ℎ𝑝

I + 𝜏 (1 − 𝛽)A
2ℎ𝑝

)

)

)

)

)

)

)

,

(19)

we have

(I + 𝜏V)

−1

=

(

(

(

(

(

(

(

(

(I + (1 − 𝛼) 𝜏A1)
−1

Q2 (I + (1 − 𝛽) 𝜏A2)
−1 F2
(I + (1 − 𝛼) 𝜏A3)

−1

Q4 (I + (1 − 𝛽) 𝜏A4)
−1 F4

d

(I + (1 − 𝛼) 𝜏A2ℎ𝑝−1)
−1

Q2ℎ𝑝 (I + (1 − 𝛽) 𝜏A2ℎ𝑝)
−1

)

)

)

)

)

)

)

)

.

(20)
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Here

Q
𝑖

= −𝜏(I + (1 − 𝛽) 𝜏A
𝑖
)

−1C
𝑖
(I + (1 − 𝛼) 𝜏A

𝑖−1
)

−1

,

(𝑖 = 2, 4, . . . , 2ℎ𝑝) ,

F
𝑖

= −𝜏(I + (1 − 𝛽) 𝜏A
𝑖
)

−1B
𝑖
(I + (1 − 𝛼) 𝜏A

𝑖+1
)

−1

,

(𝑖 = 2, 4, . . . , 2ℎ𝑝 − 2) .

(21)

Hence, we know that (I + (1 − 𝛼)𝜏A
𝑖−1

), (I + (1 − 𝛼)𝜏A
𝑖+1

),
and (I + (1 − 𝛽)𝜏A

𝑖
), (𝑖 = 1, 2, . . . , 2ℎ𝑝), are all 𝑀-

matrices by Lemma 6. Then (I + (1 − 𝛼)𝜏A
𝑖−1

)

−1
≥ 0,

(I + (1 − 𝛼)𝜏A
𝑖+1

)

−1
≥ 0, (I + (1 − 𝛽)𝜏A

𝑖
)

−1
≥ 0, Q

𝑖
≥ 0, and

F
𝑖

≥ 0; we obtain (I + 𝜏V)

−1
≥ 0. Similarly, we can obtain

(I + 𝜏W)

−1
≥ 0, andM−1 ≥ 0.

Since 0 < 𝜏 ≤ min{1/𝛼, 1/𝛽, 1/(1 − 𝛼), 1/(1 −

𝛽)}min(1/𝑎
𝑖𝑖

) for 𝑖 = 1, 2, . . . , 2ℎ𝑝, we have (I − 𝜏W) ≥ 0
and (I − 𝜏V) ≥ 0. That is, N ≥ 0 is obtained and A = M − N
is a normal splitting. Since A is an 𝑀-matrix, then A−1 ≥ 0;
we know that 𝜌(M−1N) < 1 by Lemma 5, and the iterative
scheme (3) is convergent.

By the theorem, we know that the parallel algorithm is
convergent if A is an 𝑀-matrix and 0 < 𝜏 ≤ min{1/𝛼, 1/𝛽,

1/(1 − 𝛼), 1/(1 − 𝛽)}min(1/𝑎
𝑖𝑖

) for 𝑖 = 1, 2, . . . , 2ℎ𝑝.

5. Numerical Examples

We performed two numerical experiments on the HP rx2600
cluster. The results are shown as follows.

Example 1. Consider a banded linear system AX = b; here

A =

(

(

(

A
1

B
1

C
2

A
2

B
2

d d d

C
𝑚−1

A
𝑚−1

B
𝑚−1

C
𝑚

A
𝑚

)

)

)

,

A
𝑖

= (

15.1 −3.5 −6.9

−2.7 20.1 −4.8

−15.7 −5.3 25.1

) ,

B
𝑖

= C
𝑖

= (

−3

−2

−4

) , b
𝑖

= (

1

1

1

) .

(22)

Let initialization value x(0)
𝑖

= (0 0 0)

T and 𝑚 = 80000. We
apply this algorithm with the optimal relaxation factor, the
multisplitting method, and BSOR method to the systems on
the HP rx2600 cluster. Here 𝑃 is the number of processor,
𝑇 is the run times (seconds), the 𝑆 is speedup (𝑇 of one
processor/𝑇 of all processors), 𝐿 is iteration times, 𝐸 is the
efficiency (𝐸 = 𝑆/𝑃), and the error 𝜀 = 1 × 10

−10. See Tables
1, 2, and 3 and Figures 1 and 2.

Table 1: The results for model 1 (the algorithm in the paper (𝜏 =

0.9, 𝛼 = 𝛽 = 1/2)).

𝑃 1 2 4 8
𝑇 2.9921 1.5179 0.8028 0.6492
𝑆 1.9712 3.7271 4.6089
𝐸 0.9856 0.9318 0.5761
L 39 39 39 39

Table 2: The results for model 1 (the multisplitting method).

𝑃 1 2 4 8
𝑇 7.9544 7.1352 3.3874 2.2426
𝑆 1.1148 2.3482 3.5470
𝐸 0.5745 0.5871 0.4434
𝐿 160 224 224 224

Table 3: The results for model 1 (BSOR method (𝜔 = 1.85)).

𝑃 1 2 4 8
𝑇 17.0168 8.9928 4.6551 3.8031
𝑆 1.8923 3.6555 4.4745
𝐸 0.9461 0.9139 0.5593
𝐿 495 532 532 532

Example 2. Consider an elliptic partial differential equation

𝐶
𝑥

𝜕

2
𝑢

𝜕𝑥

2
+ 𝐶
𝑦

𝜕

2
𝑢

𝜕𝑦

2
+ (𝐶
1
sin 2𝜋𝑥 + 𝐶

2
)

𝜕𝑢

𝜕𝑥

+ (𝐷
1
sin 2𝜋𝑥 + 𝐷

2
)

𝜕𝑢

𝜕𝑥

+ 𝐸𝑢 = 0,

0 ≤ 𝑥, 𝑦 ≤ 1,

(23)

equipped with the boundary conditions 𝑢|
𝑥=0

= 𝑢|
𝑥=1

= 10 +

cos𝜋𝑦, 𝑢|
𝑦=0

= 𝑢|
𝑦=1

= 10 + cos𝜋𝑥; here 𝐶
𝑥
, 𝐶
𝑦
, 𝐶
1
, 𝐶
2
, 𝐷
1
,

𝐷
2
, and 𝐸 are all constants.

We denote 𝐶
𝑥

= 𝐶
𝑦

= 𝐸 = 1, 𝐶
1

= 𝐶
2

= 𝐷
1

= 𝐷
2

=

0. Using the finite difference method, we obtain two block-
tridiagonal linear systems on condition that the step sizes
ℎ = 1/100. Then, we apply this algorithm with the optimal
relaxation factor, BSOR method, PEk method, and the mul-
tisplitting algorithm to the systems on the HP rx2600 cluster.
The numerical results are shown in Tables 4, 5, 6, and 7 and
Figures 3 and 4.

6. Results Analysis

From Table 1 to Table 7, we can get the following conclusion.

(i) It can be known that the results of the parallel algo-
rithm verify the results of the theoretical analysis.The
conditions in the theorems are only sufficient con-
ditions.

(ii) By the numerical results, it can be known that the par-
allel one has good parallelism.
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Figure 1: The parallel speedup for Example 1.
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Figure 2: The parallel efficiency for Example 1.

(iii) As to Examples 1 and 2, the results of the examples
show that the efficiency of the algorithm is better
than the multisplitting ones. Our algorithm has good
parallel speedup the same as BSOR methods to the
examples. As to Example 2, the efficiency of the algo-
rithm is also better than PEk methods.

(iv) The parallel algorithm is easily implemented on par-
allel computer and more flexible and simple than [1]
in practice.
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Figure 3: The parallel speedup for Example 2.
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Figure 4: The parallel efficiency for Example 2.

7. Conclusions

An efficient parallel iterative method on a distributed-mem-
ory multicomputer has been presented for solving the large
banded linear systems. We make full use of the decompo-
sition of the coefficient matrix to choose W and V to save
computational cost. The storage strategy can save memory
space. Only twice it requires the communications of the algo-
rithm between the adjacent processors. Theoretical analysis
and experiment show that the algorithm in this paper has
good parallelism and high efficiency.The results also confirm
correctness of convergence theorems. When the coefficient
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Table 4: The results for model 2 (the algorithm in the paper (𝜏 = 8.0, 𝛼 = 𝛽 = 1/2)).

𝑃 1 2 4 8 16
𝑇 11.3091 6.3632 5.5117 4.0755 3.3842
𝑆 1.7773 2.0152 2.7749 3.3417
𝐸 0.8886 0.5130 0.3469
𝐸 0.8886 0.5130 0.3469 0.2089
𝐿 1177 1177 1177 1177 1186
Δ 0.8163𝑒 − 10 0.8163𝑒 − 10 0.8163𝑒 − 10 08163𝑒 − 10 0.8140𝑒 − 10

Table 5: The results for model 2 (the multisplitting method).

𝑃 1 2 4 8 16
𝑇 15.3559 17.3404 10.5411 7.8602 5.9567
𝑆 0.8856 1.4568 1.9536 2.5779
𝐸 0.8886 0.5130 0.3469
𝐸 0.4428 0.3642 0.2442 0.1611
𝐿 310 824 975 1335 1556

Table 6: The results for model 2 (PEk method (𝑘 = 2.7)).

𝑃 1 2 4 8 16
𝑇 14.6964 20.0765 9.9533 6.3488 4.8215
𝑆 0.7320 1.4765 2.3148 3.0481
𝐸 0.8886 0.5130 0.3469
𝐸 0.3660 0.3691 0.2894 0.1905
𝐿 159 444 444 444 444

Table 7: The results for model 2 (BSOR method).

𝑃 1 2 4 8 16
𝑇 27.7668 21.6576 14.3278 10.1420 8.5949
𝑆 1.2821 1.9380 2.7378 3.2306
𝐸 0.8886 0.5130 0.3469
𝐸 0.6410 0.4845 0.3422 0.2019
𝐿 660 1039 1337 2101 2175

matrix is a Hermite positive definite matrix or an 𝑀-matrix,
we know that the parallel algorithm is convergent if the given
conditions are established. Our algorithm has an advantage
over the multisplitting one of high efficiency.
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