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Abstract—An efficient and well-established technology for power

transmission across long distances is high voltage direct current

transmission (HVDC). However, HVDC is up to now almost com-

pletely limited to peer-to-peer connections or networks with peers

situated closely to each other. This contribution introduces the

flatness-based design of a feedforward control of tree-like, i.e.

cycle-free, HVDC transmission networks comprising two or more

converter stations. The resulting control concept allows a flexible

determination of the power distribution within the network. Fur-

thermore, effects like power losses and delays due to wave prop-

agation, which are related especially to long transmission lines,

can be easily taken into account. Numerical simulations for an

example network are included to prove the value of the results.

Power grid; Multi-Terminal HVDC; Travelling waves on

transmission lines; Flatness-based control;

I. INTRODUCTION

Electric power transmission by means of alternating current
(AC) is not feasible for transmission distances larger than 1000
km due to high reactive currents and undesiredwave reflections.
High voltage direct current transmission (HVDC) is an effi-
cient alternative to overcome these limitations [1,2]. The well-
established standard configuration of an HVDC system is a
peer-to-peer link connecting two conventional AC networks as
depicted in Fig. 1. The AC network and the DC link are coupled
by a converter terminal equipped with a power converter [3],
which works as inverter or rectifier depending on the direction
of the power flow.

3∼ 3∼

DC transmission line

converter terminalconverter terminal

AC networkAC network

Fig. 1. Peer-to-peer HVDC link with two converter terminals and a DC

transmission line connecting them

Although, up to now the vast majority of all implemented
HVDC systems are in standard peer-to-peer configuration, there
has been increasing interest in HVDC networks with more than
two converter terminals, the so called Multi-terminal HVDC
[1,4–6]. As a result of the evolving technology for power con-
verters and the increasing exploitation of renewable energy

resources such networks have been put into practice, e.g. for
offshore wind farms [7–9]. A central goal for the control of
an HVDC Multi-Terminal network is to keep the power bal-
ance between the electrical power fed into and taken from
the DC network by the connected converter stations. At the
same time one desires to adjust the power distribution between
the converter terminals flexibly during the operation of the
system. Furthermore, time delays due to travelling waves can
become considerable for long transmission distances [6] and
should then be taken into account. This work proposes a control
method that reaches these goals taking a flatness-based ap-
proach. For the discussed transmission system, the description
of which involves partial differential equations (PDEs), this
means that the solution of the system equations is parametrized
by the trajectories of a special set of system variables, called a
flat output of the system [10–12]. The number of the compo-
nents of the flat output equals the number of the control inputs.

The remaining part of the paper is structured as follows.
Section II describes the mathematical model of the HVDC
transmission network. Thereafter, a flat output of this model
is derived and the flatness-based control design is explained
in section III. The results are illustrated by the numerical
example of section IV. Finally, section V gives some remarks
on practical issues and on potential extensions to be considered
in future work.

II. MODEL OF THE HVDC NETWORK

This section introduces the mathematical model of the
HVDC network, which the control design is based on.

A. General network structure

A general transmission network is assumed to consist of nP
uniquely numbered nodes Pµ, µ ∈ P where P is the set of
all node indices existing in the network. Two arbitrary nodes
Pµ and Pν can be connected by an electric transmission line

denoted by Lνµ where the notations Lνµ and L
µ
ν coincide, see

Fig. 2. Then L is the set of the index pairs of all nL existing
lines. Regarding the transmission line Lνµ the notation z

ν
µ is used

for the spatial coordinate at node Pµ and z
µ
ν is used at node Pν

respectively.
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Every node Pµ, µ ∈ P can be connected to a converter ter-
minal which is calledCµ in this case. The set Pa ⊆ P comprises
the indices of all network nodes equipped with a converter ter-
minal, called active nodes, whereas Pp = P \ Pa comprises the
indices of all nodes without converter terminal, called passive
nodes. Every node which is connected to only one line is called
terminating node. Obviously, a passive terminating node would
be useless in practice, which is why all terminating nodes are
assumed to be active.

Pµ Pν

z = zνµ z = z
µ
ν

µ, ν ∈ P

Lνµ

(µ, ν) ∈ L

Fig. 2. Notation for nodes and transmission lines in a general network

A node Pµ is called neighbor of node Pν if there exists a line
Lνµ, (µ, ν) ∈ L connecting them. The indices of all mν neigbors
of Pν form the set Nν.

B. Tree-like networks

The considerations in this paper are restricted to the special
case of tree-like, i.e. cycle-free, networks sketched in Fig. 3.
The abscence of transmission line cycles implies that the path

Pµ

Pρ(µ)

Pα

Fig. 3. Network in tree-like structure with an arbitrarily chosen initial node Pα,

one of the remaining nodes Pµ and the path between them

between any two converter terminals through the network is
unique. Because of this property every node in a circuit-free
network has a unique predecessor with respect to a certain
initial node. Chosing an arbitrary node Pα, α ∈ P as this initial
node, the predecessor Pρ(µ) of Pµ, µ ∈ P \ {α} is definded as
the node which precedes Pµ on the unique path from Pα to
Pµ. Note that the predecessor index ρ(µ) belonging to node Pµ
depends on the choice of the initial node Pα although this is not
represented by the notation for the sake of simplicity.

In the case of tree-like networks the notation for transmis-
sion lines and their node coordinates may be simplified to

Lµ := L
µ

ρ(µ)
= L

ρ(µ)
µ , z

µ

ρ(µ)
= 0, z

ρ(µ)
µ = ℓµ,

∀µ ∈ P \ {α}, where ℓµ is the length of Lµ. This notation
illustrated in Fig. 4 will be used throughout the remaining parts
of this work.

Pρ(µ) Pµ

z = z
µ

ρ(µ)
= 0 z = z

ρ(µ)
µ = ℓµ

µ ∈ P

Lµ

Fig. 4. Simplified notation for nodes and transmission lines in tree-like networks

C. Converter terminals

For each converter terminal Cµ, ∀µ ∈ Pa the voltage is
Uµ and the current is Iµ. Thanks to modern semiconductor
technology recent power converters allow to generate almost
arbitrary current or voltage trajectories at their DC side [3].
Hence, each converter can be seen either as an ideal current
source with a freely adjustable current Iµ(t) or as an ideal
voltage source with a freely adjustable voltage Uµ(t). The AC
part of the converter is therefore neglected. The converters are
the actuators of the transmission system. If Cµ is chosen to
be a current source then Iµ is a control input of the network.
Otherwise, if Cµ is chosen to be a voltage source then Uµ is
a control input. The control design is independent from this
choice which thus can be made according to technical aspects.

D. Transmission line equations and boundary conditions for
tree-like networks

The model of the transmission lines should allow to take
effects like wave propagation, related delays and transmission
losses into account. Therefore, the voltage profile uµ and the
current profile iµ on each transmission line Lµ, µ ∈ P \ {α} are
described by the hyperbolic system of PDEs

∂uµ

∂z
(z, t) + L

∂iµ

∂t
(z, t) + Riµ(z, t) = 0 (1a)

∂iµ

∂z
(z, t) +C

∂uµ

∂t
(z, t) +Guµ(z, t) = 0 (1b)

with z ∈ (0, ℓµ), t > 0 and the constant positive, line-specific
parameters R, G, L and C [13]. The current iµ is considered
positive in the direction assigned to line Lµ which is from Pρ(µ)
to Pµ.

The electrical interconnection of the transmission lines at
the network nodes leads to a coupling of the corresponding line
PDEs at their boundaries, see Fig. 5 and Fig. 6. The boundary
conditions at each node Pµ result from Kirchhoff’s current and
voltage laws. The current law yields

−
∑

k∈Nα

ik(0, t) =

{

Iα(t), if α ∈ Pa

0, if α ∈ Pp

(2a)

for the boundary values of the line currents at the initial node
Pα and

iµ(ℓµ, t) −
∑

k∈Nµ
k,ρ(µ)

ik(0, t) =

{

Iµ(t), ∀µ ∈ Pa \ {α}
0, ∀µ ∈ Pp \ {α}

(2b)

for the remaining nodes. The converter current Iµ(t) is defined
to be positive if it is directed away from node Pµ. Kirchhoff’s
voltage law leads to

uk(0, t) = ūµ(t), ∀k ∈ Nµ \ {ρ(µ)}, ∀µ ∈ P (3a)

uµ(ℓµ, t) = ūµ(t), ∀µ ∈ P \ {α} (3b)

for the boundary values of the line voltages at Pµ with ūµ(t)
denoting the node voltage at Pµ. Accordingly, the voltages at
the converters connected to the active nodes of the network are

Uµ(t) = ūµ(t), ∀µ ∈ Pa. (3c)

Altogether, the 2nL PDEs (1) and the boundary conditions
(2) and (3) constitute a linear distributed parametermodel of the
transmission network. The currents Iµ or the voltages Uµ, µ ∈
Pa of the converter terminals are the concentrated control inputs
located at the boundaries of the transmission lines.



III. FLATNESS-BASED CONTROL DESIGN

This section deals with the design of a flatness-based feed-
forward control for the transmission network model described
in section II. It is shown that the trajectories of all system
variables can be calculated from prescribed trajectories of the
current Iα and the voltage Uα of the converter at an arbitrarily
chosen initial node Pα and some current allocation parameters
(CAP), which are introduced additionally at each network node.
Therefore, the mentioned variables form a flat output of the
system. Once the trajectories for the flat output are chosen the
remaining system trajectories can be conveniently calculated
from node to node. Finally, this yields the desired control input
trajectories for the converter currents or voltages.

A. Derivation of a flat output

Initial node The first step is to choose an arbitrary node
with converter terminal as the initial node Pα, α ∈ Pa. This
determines the simplified notation for the network, which is
clarified by Fig. 5 and Fig. 6. In the following the system
variables shall be calculated from some prescribed current Iα(t)
and voltageUα(t) at Cα. Because of (3a) and (3c), the converter
voltage Uα directly gives the line voltages

uk(0, t) = Uα(t), ∀k ∈ Nα (4)

of the lines connected at Pα. In order to determine the currents
at Pα one introduces mα real, time-varying current allocation
parameters (CAP) σkα,∀k ∈ Nα, such that

ik(0, t) = −σ
k
α(t)Iα(t), ∀k ∈ Nα, (5)

where
∑

k∈Nα

σkα(t) = 1 (6)

has to be guaranteed to avoid the violation of the current law
(2a). This means that the trajectories for (mα − 1) of the mα
new parameters can be chosen freely to determine the desired
fraction (5) of Iα(t) for each line L

k
, ∀k ∈ Nα at node Pα.

The vector comprising these (mα − 1) chosen parameters as
components is denoted by σα in the following. The equations
(4)–(6) give a complete parametrization of the line voltages
u
k
(0, t) and currents i

k
(0, t),∀k ∈ Nα at node Pα in terms of

Uα, Iα and σα.

Pα

Iα(t) i
k
(0, t) = −σkα(t)Iα(t),
∀k ∈ NαCα

u
k
(0, t)

= Uα(t) = ūα(t)

L
k

Fig. 5. Currents and voltages at the initial node Pα, α ∈ Pa

Remaining nodes Fig. 6 shows one of the remaining network
nodes Pµ, µ ∈ P \ {α}, its unique predecessor Pρ(µ) and the
line Lµ connecting them. The solution of the line equations
(1) allows for the direct calculation of the voltage and current
trajectories of line Lµ at Pµ from some known voltage and
current trajectories at the preceeding end at Pρ(µ) by

PµPρ(µ)

iµ(0, t) iµ(ℓµ, t)

Iµ(t)
= σ̄µ(t)iµ(ℓµ, t)

i
k
(0, t) = σkµ(t)iµ(ℓµ, t),

∀k ∈ Nµ \ {ρ(µ)}
Lµ

Cµ

uµ(0, t)
= ūρ(µ)(t) uµ(ℓµ, t)

= u
k
(0, t)

= Uµ(t) = ūµ(t)

L
k

Fig. 6. Currents and voltages at one of the remaining nodes Pµ, µ ∈ Pa \ {α}
and the connected line Lµ

uµ(ℓµ, t) =
e−γτµ

2
uµ(0, t − τµ) +

eγτµ

2
uµ(0, t + τµ)

+

τµ
∫

−τµ

g(ℓµ, t̄) uµ(0, t − t̄) dt̄

+

√

L

C

(

e−γτµ

2
iµ(0, t − τµ) −

eγτµ

2
iµ(0, t + τµ)

)

−
τµ

∫

−τµ

hu(ℓµ, t̄) iµ(0, t − t̄) dt̄, (7a)

iµ(ℓµ, t) =
e−γτµ

2
iµ(0, t − τµ) +

eγτµ

2
iµ(0, t + τµ)

+

τµ
∫

−τµ

g(ℓµ, t̄) iµ(0, t − t̄) dt̄

+

√

C

L

(

e−γτµ

2
uµ(0, t − τµ) −

eγτµ

2
uµ(0, t + τµ)

)

−
τµ

∫

−τµ

hi(ℓµ, t̄) uµ(0, t − t̄) dt̄ (7b)

with τµ =
√
LCℓµ and the functions

hu(z, t) = R f (z, t) + L
∂ f

∂t
(z, t),

hi(z, t) = G f (z, t) +C
∂ f

∂t
(z, t),

g(z, t) =
∂ f

∂z
(z, t), f (z, t) =

e−γt

2
√
LC

J0(β
√

LCz2 − t2)

employing the bessel function J0 of the first kind and the
constants

β =
1

2

(

R

L
− G

C

)

, γ =
1

2

(

R

L
+
G

C

)

,

see [14]. Equations (7) reflect the wave propagation process
taking place on line Lµ, since they involve distributed delays
and predictions. This means the values uµ(ℓµ, t) and iµ(ℓµ, t) at
a certain time instant t are determined by the trajectories of
uµ(0, t̄) and iµ(0, t̄) on the complete time intervall t̄ ∈ [t − τµ, t +
τµ]. The delay τµ can be interpreted as the time that a voltage
and current wave needs to travel between the ends of Lµ.

Analogously to the procedure at the initial node the distri-
bution of the currents between the lines and a possibly con-
nected converter at Pµ shall be determined by (mµ − 1) CAPs

σkµ, ∀k ∈ Nµ \ {ρ(µ)} and an additional CAP σ̄µ if Pµ is active.
This means



ik(0, t) = σ
k
µ(t) iµ(ℓµ, t), ∀k ∈ Nµ \ {ρ(µ)} (8a)

Iµ(t) = σ̄µ(t) iµ(ℓµ, t), if µ ∈ Pa. (8b)

Again Kirchoff’s current law (2b) requires
∑

k∈Nµ
k,ρ(µ)

σkµ(t) =

{

1, if µ ∈ Pp

1 − σ̄µ(t), if µ ∈ Pa.
(9)

Due to (9) one can freely chose the trajectories for only (mµ−2)
out of (mµ − 1) CAPs if µ ∈ Pp or (mµ − 1) out of mµ CAPs
if µ ∈ Pa. The vector comprising these chosen parameters as
components is denoted by σµ. According to (3) the voltages at
Pµ are

uk(0, t) = ūµ(t) = uµ(ℓµ, t), ∀k ∈ Nµ \ {ρ(µ)} (10a)

Uµ(t) = uµ(ℓµ, t), if µ ∈ Pa. (10b)

The equations (7)–(10) give a parametrization of all voltages
and currents at Pµ in terms of the voltage uµ(0, t) and the current
iµ(0, t) at the preceeding node Pρ(µ) and the CAPs σµ at Pµ.
These equations hold for all remaining nodes Pµ, µ ∈ P \ {α}.
Therefore, it is now possible to calculate all voltage and current
trajectories at each node in the network from the trajectories of
Uα and Iα at the initial node and the freely determined CAP
trajectories σµ, ∀µ ∈ P at the network nodes. Hence, these
variables form the flat output

y =

(

Uα, Iα,
(

σµ

)

∀µ∈P

)

(11)

of the transmission network.

Clearly, it is convenient to perform the calculations of the
system trajectories stepwise from node to node beginning at
the initial node Pα. At first (4) and (5) are used to determine the
voltage and current trajectories at node Pα from the determined
trajectories of Uα, Iα and the chosen CAPs σα. After that
the neighbors of Pα are considered. Their predecessor is Pα.
Employing (7)–(10) with ρ(µ) = α together with the CAP
trajectories for each node Pµ, µ ∈ Nα gives all voltage and
current trajectories at these nodes. In the next step, these nodes
Pµ serve as predecessors for all their neighbors (except Pα)
and the equations (7)–(10) can be applied again. One follows
this procedure until finally all terminating nodes are reached. A
particular result of these calculations are the trajectories of the
converter currents Iµ and voltages Uµ, µ ∈ Pa obtained in (8b)
and (10b). Together with the trajectories for Iα andUα these are
the feedforward control trajectories that will lead to the system
behaviour defined by the previously chosen trajectories for the
flat output.

Note that the initial node plays a special role for the opera-
tion of the network. In contrast to the other nodes the converter
current and voltage trajectories at this node can be chosen freely
since they are included in the flat output y. Therefore, if a direct
determination of the current or voltage trajectories at a certain
node is desired for some operational maneuver this node should
be chosen as the initial node. It might be useful to choose
different initial nodes for different maneuvers. The CAPs being
the remaining components of the flat output y determine the
current fractions on the transmission lines at each node. This is
why they can be used to adjust the power distribution between
the converter stations within the network.

B. Trajectory planning: Transition between two states of rest

Several control tasks can be solved much easier if a flat
output of the system is known. A particular example is the

transition between two states of rest which is relevant for the ap-
plication of this work, too. Most of the time the HVDC system
will be operated in a balanced state of rest with constant voltage
and current values which meet all operational requirements. If
these requirements change the transition to a suitable new state
of rest will be desired.

In a state of rest every system variable remains constant
over time by definition. Since for flat systems all trajectories
are parametrized by the flat output and its derivatives each state
of rest of the system is completely characterized by constant
values ȳk for the ny components yk, k = 1, 2, . . . , ny of the flat
output:

yk(t) = ȳk,
d jyk(t)

dt j
= 0, j = 1, 2, . . . (12)

In order to implement the transition from an initial state of

rest with yk(t) = ȳi
k
to a new final state of rest with yk(t) = ȳ

f

k
one can chose polynomials pk(t) to connect the constant parts
of the trajectories, such that

yk(t) =























ȳik, if t < ti

pk(t), if ti ≤ t ≤ t f

ȳ
f

k
, if t > t f

(13)

with

pk(ti) = ȳik, pk(t f ) = ȳ
f

k
, (14a)

dpk

dt
(ti) = 0,

dpk

dt
(t f ) = 0, k = 1, 2, . . . , ny. (14b)

The obtained trajectory for one component yk is depicted in
Fig. 7. The desired transition time ∆t = t f − ti can be chosen
freely.

The conditions (14b) assure continuous differentiability
with respect to time for the trajectories of the flat output. This
smoothness property is maintained during the computations in
section III.A. because derivations with respect to time do not
occure. Thus, continuous differentiability is obtained for all
system trajectories. The four requirements of (14) can be met
with the third order polynomials

pk(t) = ȳik +
(

ȳ
f

k
− ȳik

)

(3 − 2t̄) t̄2, t̄ =
t − ti
t f − ti

,

k = 1, 2, . . . , ny.

(15)

The subsequent computation of the remaining system tra-
jectories according to the stepwise procedure of section III
comprises the repeated use of (7) including predictions and
delays. This entails that the chosen trajectories (13) are involved
on some larger time intervall 1 [ti − τmax, t f + τmax] rather that
only on [ti, t f ] as indicated in Fig. 7. The resulting system
trajectories and the control input trajectories in particular will
leave their initial constant values already up to τmax before
t = ti and will reach their final constant values up to τmax after
t = t f . Again, this reflects the wave propagation process taking
place on the transmission lines. In practice this means that an
operationalmaneuver, which intends to change the values of the
variables belonging to the flat output y within ti ≤ t ≤ t f , has to
start at t = ti − τmax and will not end before t = t f + τmax.

1 The maximum delay time τmax can be computed by τmax = max
k∈Pt
τ̃k where

Pt is the set of the indices of all terminating nodes of the network and τ̃µ the

sum of all delays τk of the lines Lk forming the path from the initial node Pα to

the terminating node Pµ, µ ∈ Pt . This means τ̃µ is the time that a current and

voltage wave needs to travel from the initial node Pα to the terminating node

Pµ.



ti − τmax ti t f t f + τmax

t

yk

ȳ
f

k

ȳi
k

∆t

Fig. 7. Polynomial trajectory for one component yk of the flat output y for the

transition between two states of rest

C3 C4

C1

P1

P2P3 P4

Fig. 8. Example of a circuit-free network with three converters

C3 C4

C1

I3(t) I4(t)

I1(t)

P1

ū3(t)
= u

3
(ℓ

3
, t)

= U3(t)

ū4(t)
= u

4
(ℓ

4
, t)

= U4(t)

ū1(t)
= u

2
(0, t) = U1(t)

i
3
(l3, t) i

2
(l4, t)

i
2
(0, t)

i
3
(0, t) i

4
(0, t)

i
2
(l2, t)

ū2(t)
= u

2
(ℓ

2
, t)

= u
3
(0, t)

= u
4
(0, t)

P3 P4P2

L
3

L
4

L
2

Fig. 9. Circuit-free network with three converters and the notation for the case

of P1 beeing chosen as initial node

IV. A SIMPLE EXAMPLE NETWORK

The results from section III shall now be clarified with the
help of a simple example network with nP = 4 nodes and nL = 3
transmission lines shown in Fig. 8. The network is specified by
the sets

P = {1, 2, 3, 4}, Pa = {1, 3, 4}, Pp = {2},
L = {(1, 2), (2, 3), (2, 4)},

N1 = N3 = N4 = {2}, N2 = {1, 3, 4}.
Hence, the control inputs of the system are the currents or the
voltages of the three converters.

It is assumed that the converter current I1 is required to
change from an initial value of 0 to a new constant desired value
Id while the converter voltage U1 remains at a constant value
Ud. Since the voltage and current values at converter C1 shall
be determined node P1 is chosen as initial node. This yields
the notation illustrated in Fig. 9 and the network specific values
α = 1, ρ(2) = 1, ρ(3) = 2 and ρ(4) = 2.

A. Flat output

The stepwise procedure from section III.A. adapts to this
example network as follows. According to (11) the first two

components of the flat output y are U1 and I1. The currents and
voltages at P1

u2(0, t) = U1(t), i2(0, t) = −I1(t) (16)

are obtained using (4) and (5). No CAP is introduced at P1

because only one transmission line is connected (m1 = 1).
Proceeding to the only neighbor of P1, which is P2, equations
(7) with µ = 2 and ρ(µ) = 1 allow to compute u

2
(ℓ

2
, t), i

2
(ℓ

2
, t)

from u
2
(0, t), i

2
(0, t). Because m2 = 3 lines are connected to the

passive node P2 one needs to introduce m2 − 1 = 2 CAPs σ3
2
,

σ4
2
to determine the currents and voltages

uk(0, t) = u2(ℓ2, t), ik(0, t) = σ
k
2(t)i2(ℓ2, t), k = 3, 4 (17)

according to (8a) and (10a). The trajectory for only m2 − 2 = 1
of the two CAPs σ3

2
, σ4

2
can be chosen freely. For this example

σ3
2
is selected and is therefore included in the flat output as the

third component. After that, the other CAP is determined by
(9):

σ42(t) = 1 − σ32(t). (18)

Now the last two nodes can be considered. Employing (7) with
µ = 3, ρ(µ) = 2 for line L

3
and again with µ = 4, ρ(µ) = 2

for line L
4
yields u

k
(ℓ

k
, t), i

k
(ℓ

k
, t), k = 3, 4. Finally the voltages

and currents at the convertersC3 and C4 follow from (8b):

Uk(t) = uk(ℓk, t), Ik(t) = ik(ℓk, t) k = 3, 4. (19)

At the nodes P3 and P4 again no new CAPs are introduced
since there is only one line per node (m3 = m4 = 1). Finally,
all system variables are calculated and the flat output of the
example network is

y =
(

U1, I1, σ
3
2

)

. (20)

B. Trajectory planning

Apart from the variables U1 and I1 the trajectory for the
third component σ3

2
of y can be prescribed freely as well. It

determines how the line current i
2
(ℓ

2
, t) is split between line

L
3
and line L

4
and can hence be exploited to set the power

distribution between the converters C3 and C4. For the sake of
simplicity, σ3

2
shall remain at a constant value of 0.3 during the

maneuver to be planned. The two states of rest corresponding to
the required current change at C1 with constant current voltage
U1 and CAP σ

3
2
are characterized by

ȳi1 = Ud, ȳi2 = 0, ȳi3 = 0.3,

ȳ
f

1
= Ud, ȳ

f

2
= Id, ȳ

f

3
= 0.3.

If the suggested polynomial trajectories (13) with an arbitrarily
fixed transition time ∆t are now assigned to the variables of the
flat output all remaining system trajectories can be computed by
the procedure described in section IV.A. In (19) this yields the
particularly desired converter current and voltage trajectories.
One may chose for each of the three converters either its current
or its voltage as control input according to the technical realities
of the converter stations. If the calculated converter trajectories
are applied to the system it will show the behaviour predefined
by the trajectories of the flat output.

To illustrate the results the system trajectories have been
computed using a set of numerical parameter values given in
TABLE I. The resulting trajectories in Fig. 10 clarify that the
transition of the complete system between the two states of rest
takes longer than only the prescribed transition time ∆t = 5 ms.
The maneuver, which was planned to change I1 within ti ≤ t ≤
t f , is required to start already at t = ti − τmax = −20.76 ms
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Fig. 10. Current and voltage trajectories for the three lines and converters

during the transition between two states of rest for a change of the converter

current I1 at converter C1 from the initial value ȳi
2
= 0 to ȳ

f

2
= Id via a

polynomial trajectory on 0 ≤ t ≤ ∆t = 5ms

at converter C4 and ends not before t = t f + τmax = 25.76 ms

at C4.
2 The impact of the CAP σ3

2
is clarified by the dashed

graphs in Fig. 10(a). It can be seen that the currents i
3
(0, t) and

i
4
(0, t) are proportional to i

2
(ℓ

2
, t) according to the prescribed

constant value σ3
2
(t) = 0.3.

TABLE I. Numerical parameter values

Parameter Value

R 1 · 10−5 Ωm−1

G 3 · 10−10 Sm−1

L 5 · 10−7 Hm−1

C 2 · 10−10 Fm−1

ℓ
2

1000 km

ℓ
3

500 km

ℓ
4

700 km

Parameter Value

τ2 =
√
LCℓ

2
12.25 ms

τ3 =
√
LCℓ

3
6.12 ms

τ4 =
√
LCℓ

4
8.51 ms

τmax = τ2 + τ4 20.76 ms

ti 0 ms

∆t 5 ms

t f = ti + ∆t 5 ms

V. FURTHER REMARKS AND FUTURE WORK

If an initial node and a certain trajectory form, e.g. (13),
is fixed the resulting system trajectories for different trajectory
planning procedures will differ only in a few parameters but not
in their form. Thus, the complete calculations of section III.A.
need to be performed only once for the first planning procedure.
For following maneuvers only the trajectory parameters have to
be updated. This reduces the computational effort rapidly.

The control scheme suggested in this contribution is partic-
ularly useful for HVDC networks with long tranmission lines
since wave propagation processes and related delays are taken
into account. However, it can be also applied to systems with

2 The maximum delay time τmax given in TABLE I is the maximum of the two

sums τ2 + τ3 and τ2 + τ4, which refer to the travel time of a voltage and current

wave from P1 to P3 and to P4 respectively.

transmission lines short enough to neglect delays. In this case
L and C are set to zero in the line equations (1) which changes
them to ordinary differential equations in z. Their solution

uµ(ℓµ, t) = A
µ

11
uµ(0, t) + A

µ

12
iµ(0, t) (21a)

iµ(ℓµ, t) = A
µ

21
uµ(0, t) + A

µ

22
iµ(0, t) (21b)

with A
µ

11
= A

µ

22
= cosh(

√
RGℓµ), A

µ

12
=
√
R/G sinh(

√
RGℓµ)

and A
µ

21
= (G/R)A

µ

12
replaces (7) in the calculation procedure of

section III.A. Because the changed line equations do not model
wave propagation anymore no delays and predictions occure
in (21). As a result, the duration of a planned meneuver will
reduce to ∆t.

To face the problem of model uncertainties and disturbances
the feed-forward control scheme could be extended by local
feed-back controllers at each converter. This is a potential topic
for future work.
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