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Gait variability, that is, fluctuations in movement during walking, is an indicator of walking function and has been associated
with various adverse outcomes such as falls. In this paper, current research concerning gait variability in persons with multiple
sclerosis (MS) is discussed. It is well established that persons with MS have greater gait variability compared to age and gender
matched controls without MS. The reasons for the increase in gait variability are not completely understood. Evidence indicates
that disability level, assistive device use, attentional requirement, and fatigue are related to gait variability in personswithMS. Future
research should address the time-evolving structure (i.e., temporal characteristics) of gait variability, the clinical importance of gait
variability, and underlying mechanisms that drive gait variability in individuals with MS.

1. Gait Variability

When one moves repeatedly, there are slight alterations in
each individual movement. Traditionally, this variability in
movement was viewed as random noise-providing minimal
important information [1, 2]. With the introduction of chaos
and complexity theory into the life sciences in the 1990s, this
negative view of variability was challenged [3–5]. It is now
maintained thatmovement variability is an important clinical
phenomenon [6].

Gait (i.e., walking) is a complicated process involving co-
ordination of multiple systems within the body (e.g., central
nervous, musculoskeletal, and cardiovascular system) [7]. To
walk, a person’s nervous system must send signals to control
a large number of muscles while simultaneously processing
sensory information in order to monitor and refine move-
ments, all while maintaining an upright stance [7]. Given
the multitude of muscles, and neural processes involved, gait
variability likely arises from a combination of factors [8].

There is increasing evidence that gait variability is a quan-
tifiable indicator of walking function [1, 2, 9]. In the past, gait
variability was viewed as experimental artifact that should be
filtered out to reveal average behavior [10]. However, more

recently, evidence has demonstrated meaningful character-
istics of gait variability, associated with neural control of
walking [1, 2, 9, 10]. Increases in gait variability have been
observed in individuals with advanced age [11–14] as well
as various neurologically impaired populations, including
spinal cord injury [15] and neurological conditions, such as
Parkinson’s disease [16], dementia [17], and multiple sclerosis
[18]. Gait variability has further been associated with motor
control function [9, 19], energetic cost of walking [20], and
falls [12–14] in various populations.

Currently, there is no gold standard to quantify gait var-
iability, and a number of different analysis techniques have
been used [1, 2]. Most commonly, gait variability is quantified
using distributional metrics, such as the standard deviation
(SD) and coefficient of variation (CV) of kinematic and
spatiotemporal gait parameters [1, 2]. It is maintained that SD
provides a measure of absolute variability, while CV provides
a measure of relative variability [3]. Other nonlinear metrics,
such as detrended fluctuation analysis and approximate
entropy, have been used to examine the temporal sequential
structure of gait variability (i.e., the time-evolving structure
of variability) [19]. Since different metrics quantify different
aspects of gait variability and operate on different timescales,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357336875?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Multiple Sclerosis International

selection of the appropriate metric(s) for answering a par-
ticular research question is critical in investigations of gait
variability [2].

2. Multiple Sclerosis

Multiple sclerosis (MS) is a degenerative neurological disease
affecting approximately 350,000 people in the USA [21] and
upwards of 2 millions worldwide [22]. MS is a progressive
disease in which damage to the central nervous system
causes widespread dysfunction [23]. Symptoms are highly
variable among persons with MS, but typically include sen-
sory, cognitive, and motor impairment [23]. MS results in
progressive disability, which is indexed clinically by the
Expanded Disability Status Scale (EDSS) [24], a 0–10 scale in
which 0.0 represents no impairment due to MS, 4.0 indicates
the onset of significant walking impairment, 7.5 indicates
wheelchair dependence, and 10.0 represents death due toMS.

Walking impairment is one of the most commonly
reported symptoms of MS and has been reported as one of
themost impactful symptomson the quality of life [25].Given
that walking difficulty is a major symptom of MS, documen-
tation of gait impairment is important for indexing disease
progression and rehabilitation inMS. To date, the majority of
research focusing on gait dysfunction in persons withMS has
focused on subjective clinical assessments [26] and average
spatiotemporal parameters. Performance walking tests such
as the timed 25-foot walk, 2-minute walk, and 6-minute walk
are commonly used to measure gait function in MS [26]
and routinely demonstrate that persons with MS walk slower
than their peers withoutMS. Examinations of spatiotemporal
parameters have revealed that individuals with MS walk
slower, taking shorter, slower steps, and spending more of
their gait cycle in double-support than healthy controls and
these impairments scale with disability [27–30]. Importantly,
deficits in gait have been observed in persons with MS
compared to controls even at fixed walking speeds [31, 32].

In addition to average gait parameters and timed walking
tests, there has been increasing research to characterize vari-
ability of gait parameters and to determine the clinical signif-
icance of gait variability in MS. The purpose of this report
is to review the current state of the literature concerning
gait variability in individuals with multiple sclerosis. Results
were collected from a literature search for “gait variability
+ multiple sclerosis” using PubMed. Fourteen publications
were found, and after review, 12 of the articleswere considered
relevant to the topic. Four other published papers located
through the authors’ personal knowledge that were not
listed on PubMed were included. The following discussion
separates observations about gait variability in MS into 2
sections, focusing first on variability during short duration
walks (≤10 meters) and second, on gait variability during
longer duration walks. Future directions for research on gait
variability in MS are also proposed.

3. Gait Variability in MS

3.1. Gait Variability during Short Walks. The majority of re-
search concerning gait variability in individuals with MS

characterizes variability of gait parameters over relatively
short distance walks (≤10 meters). Understanding walking
behavior, including gait variability, during shorter walks
may be applicable to many activities of daily life such as
maneuvering about the home or crossing the street. Another
potential explanation for why investigations focus on shorter
walks is the limitations of data collection equipment. Pressure
sensitive electronic walkways are commonly used to measure
gait parameters but are typically less than 10 meters long.
Additionally, data collection using optical motion capture for
overground walking is limited by the capture size. However,
the development and refinement of accelerometer-based
mobility monitoring has been implemented successfully in
persons with MS [33–36] and may potentially provide means
to measure gait variability over larger distances.

One of the first investigations to report on variability
of walking function examined variability in the timed 25-
foot walk. Importantly, variability in walking performance
was viewed as random fluctuations (e.g., noise) that must be
filtered to reveal significant changes in walking function [37].
The goal of the investigation (𝑁 = 133, EDSS ranging from
1.0 to 3.5) was to quantify natural variability in timed 25-foot
walk performance in persons with MS over a 1-year period
in order to determine a threshold for “meaningful change” in
performance. Results demonstrated that timed 25-foot walk
performance may naturally vary up to 20% over a 1-year
period in persons withMS [37].Therefore, it is suggested that
changes in timed 25-foot walk time of 20% or more indicate
meaningful change inwalking function. It was also found that
those with greater disability had the greater variability in 25-
foot walk performance than those with less variability. This
observation indicates that variability in performance-based
test is related to disability.

There have been multiple reports documenting increased
variability of kinematic and spatiotemporal gait parameters
in individuals with MS compared to healthy controls during
walks of up to 10meters [18, 27, 38, 39]. In one relatively small
report, individuals with MS (𝑁 = 20, age = 43 ± 10, median
EDSS = 3.0) demonstrated significantly greater standard
deviation of hip, knee, and ankle angles (SDhip = 2.0

∘,
SDknee = 2.7

∘, SDank = 1.5
∘) during overgroundwalking than

healthy controls (𝑁 = 8, age = 41 ± 9, SDhip = 1.8
∘, SDknee =

2.3
∘, SDank = 1.4

∘) [18]. Another investigation reported that
43 individuals with MS with minimal disability (𝑁 = 43,
age = 47 ± 9, median EDSS = 2.0) demonstrated greater
coefficients of variation for step time (CVST = 2.6%) and
single-support time (CVSST = 3.2%) than age and gender
matched controls without MS (𝑁 = 43, age = 47 ± 10,
CVST,SST = 1.9%, 2.3%) [27]. Meanwhile, others reported a
greater CV of step length in persons with MS with minimal
impairment (𝑁 = 9, age = 42± 9,median EDSS = 2.0, CVSL =
1.3%) compared to controls (𝑁 = 9, age = 42 ± 10, CVSL =
1.1%) [38]. Overall, these studies highlight that persons with
MS with minimal disability have elevated gait variability
compared to control participants.

In order to examine whether gait variability is influenced
by disability in persons with MS, Socie and colleagues [39]
quantified gait variability in 88 persons with MS with a
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wide range of disability (EDSS range = 2.0–6.5; median =
4.5). Participants walked at a comfortable pace along a 26-
foot pressure sensitive walkway that recorded spatiotemporal
parameters. Congruent with the field, persons with MS
demonstrated greater CV of both step time (CVST = 4.7%)
and step length (CVSL = 5.1%) compared to healthy controls
(𝑁 = 20, age = 51 ± 9, CVST,SL = 1.8%, 2.0%) [39]. Addition-
ally, a positive correlation between EDSS and CV and SD of
step time and step length and a negative correlation between
EDSS and CV and SD of step width was observed [39]. That
is to say, variability of step length and step time is greater in
individuals with MS with greater disability, while variability
of step width is smaller in persons with MS with greater
disability. Similarly, another study with a smaller sample
(𝑁 = 10) which examined walking on a motorized treadmill
demonstrated that individuals with MS with EDSS scores
≥4.0 had greater stride lengthCV (5.0%) compared to a group
of individuals with MS with EDSS scores <4.0 (CVSTL =
3.2%) [40].

Together the findings of these studies suggest that
increases in gait variability occur early on in the disease
process and apparently worsen as disability increases. The
association between disability and gait variability has only
been examined cross-sectionally, so no causal relation should
be assumed. It is interesting to note that none of these
investigations found a significant difference in persons with
MS and step width variability. The differential effect of MS
on gait variability of propulsion metrics (e.g., step length,
step time, etc.) and gait variability of stability metrics (e.g.,
step width) is congruent with the notion that stability gait
parameters (e.g., step width) and propulsion gait parameters
(e.g., step length, step time) are controlled by separate neural
circuits that could be differently influenced by disability [41,
42].

3.2. Gait Variability during Longer Duration Walks. While
most research in MS has focused on gait variability within
walks of up to 10 meters, there are some investigations of
gait variability in MS during longer walks (>10 meters). The
6-minute walk test is a common clinical gait test in which
gait variability has been characterized in individuals withMS.
Preliminary evidence suggests that individuals with MS who
use assistive devices (𝑁 = 9) have greater variability of step
time (CVST = 11.0%) and step length (CVSL = 11.6%) than
individuals with MS who walk independently (𝑁 = 9,
CVST = 2.8%, CVSL = 2.3%) and healthy controls (𝑁 = 10,
CVST = 2.1%, CVSL = 1.8%) throughout the 6-minute walk
test [43]. Furthermore, individuals with MS who used assis-
tive devices experienced significantly greater increases in
variability of step time, length, width, and double-support
time in the last 2 minutes of the test compared to the first
2 minutes compared with the independently ambulatory MS
group and controls. The authors suggest that changes in gait
variability could be related to changes in stability and fatigue
over the course of the 6-minute walk test [43].

In another study, nonlinear dynamics were used to
examine variability structure over the course of 3 minutes of
walking in individuals withMS (𝑁 = 10, age = 35± 9,median

EDSS = 4.0) and healthy controls (𝑁 = 10, age = 35± 10) [40].
Participants with and without MS walked on a motorized
treadmill at a comfortable self-selected speed. The long
duration of walking allowed for the examination of the time
sequential structure of fluctuations in gait. Individuals with
MS demonstrated lower approximate entropy of stride length
(ApEn = 0.55) and stride width (ApEn = 0.51) than healthy
controls (ApEn = 0.70, 0.68 for stride length, width, resp.).
Lower approximate entropy values are suggested to indicate
more repeatable fluctuations in MS gait and theorized to
result in reduced capacity to overcome perturbations [40].
However, the same data showed no differences in detrended
fluctuation analysis, another nonlinearmeasure of variability,
of stride length, and width variability between persons with
MS and controls [40]. It is important to note that the use of
a treadmill could potentially change walking behavior [44],
including gait variability. Future work should examine the
structure of gait variability in persons withMS in overground
walking.

4. Mechanisms of Gait Variability

Although it is clear that persons with MS have greater
amounts of gait variability in short and long walking tasks,
the mechanisms underlying this change in gait are not
clear. Based on the notion that the control of gait involves
numerous neural processes and coordination of the trunk
and limbs, it most likely is not a single individual mechanism,
but rather a combination of deficits that contribute to gait
variability. Apotential factor for the increase in gait variability
among persons with MS is an increase in noise within
the neuromuscular system. Simulations of walking have
demonstrated that an increase in neuromuscular signal noise
leads to increased gait variability [45]. Indeed, elevated neu-
romuscular noise has been previously suggested to contribute
to impairment inMS [46]. However, specific evidence linking
gait variability to neuromuscular signal activity in MS has
not been reported. Additionally, empirical evidence of noise
within the neuromuscular system is lacking [47] and has been
theoretically challenged [5].

Another facet of MS that has been studied in connection
to gait variability is fatigue, which is a common symptom of
MS [23] and is related to MS gait impairment [48]. However,
there is limited evidence of associations between fatigue and
gait variability. Two studies report that, despite changes in
self-reported fatigue, there were no significant changes in
gait variability throughout a 24–48 hour period in persons
with MS [18, 49]. Preliminary data from our laboratory
demonstrates that step time variability and double support
variability increase in the persons with MS who use assistive
devices while walking during the course of a 6MW [43]. It
was proposed that this increase in gait variability results from
an increase in fatigue. Overall, it appears that fatigue may
indeed be associated with gait variability in MS; however, the
current evidence does not support this assertion in walks of
less than 10 meters.

Muscle strength may be another contributing factor to
gait variability in persons with MS. Muscle quality (ratio of
muscle strength to lean muscle mass, i.e., functional muscle
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strength) has been associated with gait variability in healthy
older adults [11]. Additionally, decreased muscle strength as
well as deficits in balance and proprioception are related to
gait variability in elderly individuals [8]. Given that persons
with MS have decreased muscle strength, proprioception,
and balance and that these characteristics is related to gait
impairment [50, 51], these factors may contribute to gait
variability in MS.

An additional factor that maybe related to elevated gait
variability in persons with MS is spasticity. Spasticity, the
hyperexaggerated stretch reflex, is very common in persons
with MS and has been found to be related to gait dysfunction
in personswithMS [52, 53].Moreover, it is logical to speculate
that the presence of spasticity in the lower limbs leads to an
alteration in the outcome of the descending motor command
driving walking. Regardless of the logic of this speculation,
there is no data in support of this proposition.

It is also possible that ataxic movement disorders that
are often characterized by hypermetric and dysmetric move-
ments are associated with gait variability in persons with
MS. This is a very logical and seemingly clinically evident
association. There is evidence that persons with cerebellar
ataxia have greater gait variability than healthy controls and
that the amount of gait variability is related to walking speed
[54, 55]. However, there is no evidence linking ataxia and gait
variability in persons with MS.

Lastly, there is some evidence to suggest that attentional
resources are related to gait variability in persons with MS.
One investigation demonstrated that individuals with MS
(𝑁 = 18, age = 39 ± 8, median EDSS = 2.5) exhibited less
variability of swing time (CVSWT = 3.0%) in normal walking
than while walking and simultaneously performing a cogni-
tive task involving serial addition (CVSWT = 4.0%) [56]. The
additional neurological demand of performing a cognitive
task likely decreases the amount of control over gait, leading
to increased gait variability.

5. Clinical Significance of Gait Variability

To date the clinical significance of gait variability in per-
sons with MS is unknown. However, gait variability has
been found to have clinical import in various other special
populations. For instance, gait variability is associated with
falls in the elderly [8, 12, 13]. There is limited evidence
linking gait variability and falls in MS. One investigation [57]
demonstrated that recurrent fallers (i.e., 1+ falls/year) with
MS exhibit greater variability of spatial footfall placement
than nonfallers withMS. Spatial footfall placement variability
was quantified in that investigation using a novel method
involving fitting footfall patterns with Fourier series [57].
Importantly, traditional gait variability metrics (CV of step
length, time, and width) did not distinguish between recur-
rent and nonfallers withMS. To our knowledge, no other data
specifically linking gait variability and falls in MS has been
published.

It is also possible that elevated gait variability in persons
with MS is related to the amount of energy required to walk.
Recently, researchers have shown that experimental increases
in gait variability are related to increased energetic cost of

walking in healthy young adults [20]. The authors propose
that individuals with greater gait variability need to spend
energy not only on propelling the center of mass, but also
on movements to correct for the erratic foot placement.
Although it is well established that that persons with MS do
indeed have higher energetic cost of walking [58–60], there is
no data that this is associated with gait variability.

It is logical to speculate that since energetic cost of
walking is related to fatigue, gait variability is also related
to fatigue. To date evidence in support of any association
between gait variability and fatigue is ambiguous. Some
reports of gait variability during short walks report minimal
association between gait variability and fatigue [18, 49].
However, one study on fatigue in MS (𝑁 = 14, age = 42 ±
8, median EDSS = 3.5) showed significant associations be-
tween gait variability and fatigue in MS during walks to
exhaustion [61]. In this investigation, participants with MS
walked until they felt complete exhaustion. During walks
to exhaustion, gait variability was significantly correlated
with the motor sections of the Fatigue Scale for Motor and
Cognition (FSMC) [61]. Correlations between gait variability
and the cognitive portion of the FSMC were not significant,
suggesting that physical fatigue is more closely related to gait
variability than cognitive fatigue during walks to exhaustion
in MS [61].

6. Future Directions

Additional research is still needed to further characterize gait
variability inMS. For instance, only one relatively small (𝑁 =
10MS) study has analyzed time-evolving structure of gait
variability in MS [40]. Nonlinear variability measures yield
different information than distributionalmeasures (e.g., coef-
ficient of variation) and are indicative of motor function and
health and are believed to be more sensitive to dysfunction
than traditional measures [6, 9, 19]. Further investigations
are needed to characterize the temporal characteristics of
gait variability in MS to supplement the growing body of
distributional gait variability data that has been reported.

As well as expanding the scope of metrics used to analyze
gait variability in MS, research is warranted to explore
possible associations between gait variability and falls in
persons with MS. Gait variability has been associated with
falls in other clinical populations such as the elderly [12–14];
however, there is limited evidence linking gait variability and
falls inMS [57]. Given that 50% of individuals withMS fall in
a given year [62, 63], an association between gait variability
and falls in MS is clinically relevant.

The mechanisms underlying elevated gait variability in
persons with MS need further investigation. There are other
factors that have been associated with gait variability in other
populations. Determination of these mechanisms would in-
form interventions designed to maximize mobility including
gait variability. Specifically, gait variability could potentially
be altered through therapeutic intervention, although specific
observations have not been reported. Interventions have
demonstrated the ability to improve physical and cognitive
performance, disability level, and quality of life in MS [21].
Future interventions in MS, particularly those targeting
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mobility and gait, should document gait variability as a
unique indicator of gait function. Additionally, by docu-
menting gait variability during therapeutic interventions,
researchers may also be able to identify specific mechanisms
that modulate gait variability in MS.

7. Conclusion

Overall, the existing body of research demonstrates that gait
variability is elevated in individuals with MS [18, 27, 38–40]
and potentially clinically significant. Additionally, a number
of factors have been linked to gait variability inMS, including
disability level [39], assistive device use [39, 63], dual-task
performance [56], and fatigue [61]. However, further research
is needed to more fully characterize and to understand the
clinical impact of gait variability in individuals with MS.
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