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ABSTRACT

veloping analytically defined parametric motions by bring to-

In recent years, there is an increasing interest in developing gether the fields of kinematics and Computer Aided Geometric

geometric algorithms for kinematic computations. The aim of

this paper is to present the notion of projective convexity as a
key element for a new framework for kinematic geometry, that
allows for the development of more elegant and efficient algo-
rithms for geometric computations with kinematic applications.

The resulting framework, called computational kinematic geom-
etry, is developed by combining the oriented projective geometry
with the kinematic geometry of rigid body motions.

Introduction

Geometric analysis has much of its roots in kinematics and
has long been the foundation for many methods in kinematic
analysis and synthesis. Much of the existing work on kinematic
geometry, however, deals primarily with rigid-body motions gen-

Design (CAGD). These parametric motions are typically definec
by combining Bzier or B-spline representation in CAGD with
representations of rigid-body displacements in kinematics suc
as quaternions, dual quaternions, Lie groups and Lie algebra (C
and Ravani, 1994a and 1994b; Park and Ravani, 1995; Kim an
Nam, 1995; Ge and Kang, 1995; Etzel and McCarthy, 1996
Juttler and Wagner, 1996; Zefran and Kumar, 1996; Srinivasal
and Ge, 1996 and 1998). Applications of these freeform motion:
include motion animation in computer graphics, spatial naviga
tion in virtual reality as well as path planning in robotics and
5-axis CNC machining.

Another area of research that has strong connection to kine
matic geometry is the geometric analysis of swept volumes o
an object under a rigid-body motion. This research topic ha:
attracted intense research effort in Robotics and CNC machir

erated by mechanisms and robot manipulators (see, for example,i”g research commmunity due to its obvious applications in mo
Hunt, 1978, Bottema and Roth, 1979; McCarthy, 1990; Erdman tion planning in robotics and CNC machining (see, for exam-
and Sandor, 1997). Research in kinematics over the last decade?le, Abdel-Malek et al., 1998 and 2001; Blackmore et al., 1997
has been oriented towards on an area calleshputational Kine- ~ and 1999; Lee, 1997 and 1998). In difference to the classice
matics Although its definition and scope is still a subject for de- kinematics, which deals with movements of unbounded infinite
bate, computational kinematics deals with the development and SPaces (including linear elements such as points, infinite lines
application of general computational algorithms and numerical and infinite planes embedded in them), the problem of swep
methods for solving a broad class of problems that arise from the Volume analysis focuses on trajectories and swept volumes ¢
analysis and synthesis of mechanisms and manipulators (Ange-& bounded object which may have curved boundaries.
les et al., 1993; Merlet and Ravani, 1995; Park and lurascu, 2001 The aim of this paper is to present the notion of projective
)- convexity in computational kinematic geometry. It is developed
In more recent years, there is an increasing interest in de- by combining the classical projective geometry with the kine-
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matic geometry of rigid body motions. Geometric algorithms

become more general and elegant when developed from the per-

spective of projective geometry.

The organization of the paper is as follows. Section 1 sum-

1.3 Convexity in Affine Geometry

The fundamental operation for points in affine geometry
is the barycentric combination. Given a set of poibiqi =
0,1,2,...,n) in Euclidean three-spade?, the following linear

marizes the homogeneous coordinates of points, planes, and linesombination,

as well as the notion of convexity in affine geometry. Section 2

studies the notion of convexity of a set of spherical displacements
in an oriented image space of spherical kinematics. Section 3
studies the notion of convexity of a set of spatial displacements
in an oriented image space of spatial kinematics. In both sec-

tion 2 and 3, special attention is given to clarify the meaning of
"line-segments”, which is essential for studying convexity in the
image spaces.

1 Geometric Fundamentals
1.1 Homogeneous Coordinates of Points

It is well known that a poinP in Euclidean three-spade®
with Cartesian coordinates, xz,X3) can be identified with a
point in projective three-spade® using homogeneous coordi-
nates:

P = (wxq, WX, WX3, W),

wherew # 0 is a real-number weight. Regardless of the value for
w, the homogeneous vectBrrepresents one and the same point.
Whenw = 1, the homogeneous coordinafes, x2, X3, 1) are said

to be normalized.

1.2 Homogeneous Coordinates of Lines
Aline in E2 passing through a poimtand with unit direction
vectoru can be described by so-callediBker line coordinates:
L = (wu,wu®), @)
whereu® = x x u andw # 0 is a positive weight. The pair of
Plicker vectors satisfy the itkerian condition:
u-u®=o. 2
Regardless of the value far> 0, L represents one and the same
oriented line. Whemv = 1, the Plicker coordinates are said to be
normalized.
With the introduction of a dual number umisuch thag? =

0, a pair of vectorgl,1°) can be combined into the following
compact form:

T=1+8%=(I1,3,13), ®)
wherelj = | +£Ii°. The resulting entity is called a dual vector
(Bottema and Roth, 1979).

2

n

b= i;aibi

is called abarycentric combinatioiif

(4)

n

i;ai =1

The coefficientsr; are callecbarycentric coordinates
For example, a barycentric combination of two poisgsand
b; is given by

b=oagbp+aibs, ag+a1=1

(5)

Barycentric coordinates defines unambiguously the location o
the pointb on a line relative to the pointsy andb;. If ag >0
andaj > 0, then the poinb belongs to the open segment (not
including the end points) frofg to by; if one of the coordinates

is negative, then the poiltis outside of the closed segment (in-
cluding the end points) frorhg to b;.

When alla; are nonnegative, the combination (4) is called a
convex combinatianAll convex combinations of a point sef
define theconvex hulbf the set. The resulting set icanvex set
which is characterized by the following: for any two points in
the set, the straight line joining them is also contained in the sef
This definition is invariant with respect to affine transformations
and does not depend on the choice of the coordinate system. /
affine transformation leaves barycentric combinations invarian
(see Farin 1993).

2 Projective Convexity in Spherical Kinematic Geom-

etry

In this section, we develop the concept of projective con-
vexity in the image space of spherical kinematics. The study o
kinematics using kinematic mappings and the associated imac
spaces dates back to Study (1903), Blaschke (1960), aniéM
(1962). A comprehensive review of the work in this area can be
found in Bottema and Roth (1979). Ravani and Roth (1984) re
fined the concept of image spaces for spherical and spatial kine
matics and applied to mechanism synthesis. McCarthy (199C
provided another treatment of the image space. Ge and Rava
(1994a, 1994b) applied the notion of image space to freeforn
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motion synthesis. A survey of rational motion design can be
found in Rdschel (1998). Dooley and B. Ravani (1994) intro-
duced a definition of the convex hull of a set of lines in the con-
text of multiple friction contacts of rigid-body dynamics. Buss
and Fillmore (2001) discussed convexity on spheres.

2.1 The Oriented Image Space of Spherical Kinemat-
ics
It is well know in kinematics that a spherical displacement,
which is a rotation of angl8 about a fixed axis, can be described
the so-called Euler parametegs= (1,02, 03, d4), Where

g = (ssin(6/2),co96/2), (6)

ands = (s1,%,s3) denotes the unit direction vector along the
axis.
o2 + 035+ g3+ 093 = 1. A homogeneous representation of the Eu-
ler parameters is given by

wherew # 0 is the weight. Regardless of the valuefgmwg and

The Euler parameters so defined are normalized, i.e.,

of freeform parametric motions such as rationaki&r motions

as has been shown in Ge and Ravani (1994a, 1994b). In th
paper, this distinction facilitates the unambiguous definition of
a motion segment, which is the basis for applying the notion o
convexity to kinematic geometry.

Thus, we associate each spherical displacement with a sen
of rotation. This is done algebraically by requireing that the
weightw in the quaternion coordinaté€gto be positive, i.e., we
considerQ assigned homogeneous coordinatefsa projective
three space. This allows to consider two antipodal paihend
—Q to be distinct as opposed to identical. In this way, we can
attach a sense of direction or orientation to a geometric featur
such as a line-segment or a plane in the projective space. For tl
lack of a better term, we refer to the resulting projective space
as “oriented”. This notion of oriented space is not entirely new.
For example, a directed line-segment is known as a “spear” i
classical geometry text. It is emphasized here because it pre
vides a consistent computational framework for handling geo
metric computations in the Image Space. However, the notiol
of oriented projective space advocated here should not to be col
fused with the notion of “orientability” in topology, which means
that there are no orientation reversing paths on a manifold.

g represent one and the same spherical displacement. The ho2-2 Quaternions and Spherical Displacements

mogeneous coordinate®, = (Q1,Q2,Q3,Qa), can also be used
to define a point in the projective three-spa®e Ravani and
Roth (1984) referred to this space as thege Space of Spher-
ical Kinematics They have shown that a change in the refer-

Quaternion is an elegant tool in spherical kinematics. Let
i,j,k, 1 denote the quaternion units with properties suclf as
—1 andij = k. Then the Euler parameters can be used to defin
a quaternionQ = Qi + Q2j + gsk+ Q4. Let P and P denote,

ence frames attached the moving and fixed spaces would leaverespectively, the homogeneous coordinates of a point of a rigi

the quadratic fornw? = Qf + Q3+ Q3+ Qj invariant. This im-
plies that the metric geometry &€ is elliptic, or equivalently,

body before and after a rotati@dp. Then the rotational transfor-
mation of the point coordinates is given by the following quater-

spherical. A point in the Image Space is called an image point of nion equation:

spherical displacement. With the spherical model of the Image

Space, two antipodal image poin@,and—Q are considered to
be identical that represent the same spherical displacement.

In kinematics, the word “displacement” is used in a rather
special way. It implies that we have no interest in how a motion

P=QPQ (8)

where %" denotes the conjugate of a quaternion, i@}, =

actually proceeds: we consider only the object position before —Q,i — Q,j — Qsk+ Qu. It is clear from the quadratic equa-
and after the motion. In the case of a spherical displacement, thistion thatQ and —Q would result in the same point coordinate
concept of displacement does not capture the “sense” of a rota-transformation.

tion. By this | mean that starting from the same initial position,

Quaternion algebra is also used for composing two succes

the same final position can be achieved with two rotational mo- sjye rotations. LeQg, Q1 denote two rotations. The composition
tions with opposite sense of rotation: the forward rotation has the of the two rotations is given by the quaternion prod@gQ:.

rotation angléd and is about the axsand the backward rotation
has the rotational angla2- 8 and is about the axis s, which is
geometrically the same abut oppositely directed. Another way

to look at is that the instantaneous angular velocities of the two

2.3 Line-Segments in the Oriented Image Space
We study the projective convexity associated with sets of

rotational motions are oppositely directed. The Euler parameters spherical displacements in the oriented Image Space, which is ¢
associated with the two geometrically equivalent but oppositely oriented projective three-spa@8. The projective convexity in

oriented rotations are given 6y and—Q, respectively. This dis-

P2 is essentially the same as the affine definition of convexity. A

tinction of the sense of rotation is important in the development set is said to be convex if it contains every line-segment whos

3
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end points lie on the set. The key here is to clarify the meaning
of “line-segment”, especially in the case of antipodal points.

Given two oriented image poin®; (i = 0,1) in P3, any
pointQ on the line-segmer®yQ; is given by the following lin-
ear combination:

Q(0p,a1) = 0pQo +01Q1 9)
where we restrict the sui®(0p,a1) to be nonzero and we re-
quire the real coefficientg; to be non-negative. The “nonzero
sum” restriction implies thafag,a1) # (0,0) when the two
points are not antipodal and that the ratip: 0 is not inverse
proportional to the weight weightyy : w; associated withQ;
when the two points are antipodal.

Now consider a spherical model Bf. If the two points Qg
andQ1, are distinct and not antipodal, th€pQ; is the shorter
of the two great circular arcs connecting them. If the two points
are identical, then we get a single point; if the two points are
antipodal, we get the two antipodal points.

With Eq.(9), we can also talk about open line-segment as

opposed to closed line-segment as defined above by removing

the end points. This is done by requiring that the coefficients
0 to be strictly positive. An open line-segment of two identical
points is an empty set. An open line-segment of two antipodal
points is also an empty set.

To investigate the kinematic meaning of the line-segment,
we assume, without loss of generality, that initially the moving
and fixed frames are coincident so tkat= (0,0,0,1). In addi-
tion, we letQ; = (tan(61/2)s1,1). In this way, Eq. (9) becomes,

Q = (a1tan(B1/2)s1, a0+ 1),

which is equivalent to

Q = (tan(B/2)s1, 1), (10)
where
- altar‘(el/Z)
tan(3/2) = oot oL (11)

It is clear from (10) and (11) that as we vary the values of
(0p,a1), the axis of rotation remains fixed and that the angle
of rotationf3 varies in the range & < 6;. Therefore, a line-
segment inP3 corresponds to a motion segment, caltetvex
hull of the two spherical displacementighich contains all spher-

When the two oriented points are identical, the convex hull
reduces to a single displacement; when the two oriented point
are antipodal, the convex hull consists of two displacement
that geometrically identical but with opposite sense of orienta:
tion. The presence of the non-point in between the two antipode
points may be interpreted as that the two oppositely oriented dis
placements are related not by a Euclidean displacemeBg in
but by a reflection irE* that changes the sense of direction for
the vector normal to the hyperplage€ but leaves hyperplare?
itself invariant.

2.4 Convex Sets of Spherical Displacements

Since this paper deals only with kinematic geometr§df
from now on, when defining a set of oriented displacements, w
exclude those that are geometrically equivalent but oppositel
oriented. This leads to the following definition:

Definition 1. A setZ of oriented spherical displacements is con-
vex if itis not empty, has no geometrically equivalent but op-
positely oriented displacements, and for any Q&irQ; € Z,
the convex hull ofQy andQ; is also inZ.

Let a set of oriented spherical displacements be represente
by a set of point®; (i = 0,1,2,...,n) in P3. These points form
a simplexSin P2 with Q; as their vertices. Similar to the affine
definition of convex combination, we define the following as a
convex combination of the set of pointsh:

Q= i=iO(iQi

wherea; > 0 for all i but (ap,01,...,0,) # (0,0,...,0). The
pointQ lies inside of the simple®. All convex combinations of
the set of point®); span a convex set called the convex hull of
the point set. Kinematically, every point of the convex hulPh
defines a spherical displacement that belong to the convex hu
of the set of oriented spherical displacements represent€l by
(i=0,1,2,...,n).

We note that Woo (1994) studied the problem of convex hull
on a sphere for visiability analysis.

(12)

2.5 Triangular Segments
The boundaries of a convex hull of a point sePtinclude
vertices, line-segments, and triangular segments. We know that

ical displacements that belong to a pure rotation from the starting vertex represents a spherical displacement, a line-segment repi

position (or displacement) to the end position (or displacenhent)

Lin this paper, we use the term “position” and “displacement” inerchangeably.

4

sents a rotational motion segment connecting one spherical di:
placement to another. What about a triangular segment?

Let Q; (i = 0,1,2) be homogeneous vectors of the image
points of three spherical displacemefs A point on a triangu-
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lar segment is given by by recursive application of the linear combination (9). A com-
prehensive treatment ofRier curves ifE2 can be found in Farin

Q = apQo + a1Q1 + 02Q>. (13) (1993).
The pole of the plane containing the triangle is given by Projective De Castelau Algorithm: Let
bo,b1,---,by, € P® denote a set of oriented image points
R="(QoAQ1AQ2), (14) that represent a set of spherical displacements. diet O

(i=0,1) but(ap,a1) # (0,0). Set

where “A” denotes the wedge product of vectors aritl de-

notes the dual operator in multi-linear algebra (see Flanders, b{(c,01) :aob{*1+a1b{;11 r=21,---,n, i=0,---,n—r.
1989). The result of the wedge product of the three vedfprs (18)
(i=0,1,2) is the trivectoiQp A Q1 A Q2 whose coordinates are  Please note we follow the convention commonly used in CAGD
given by the determinants of the four minors of the 8 array text, i.e., the superscript is an index, not an exponent. Whe
formed byQ; (i = 0,1,2). The dual operator converts the result- r =0, biO = bj. Whenr = n, bjj(ao,a1) traces out a Bzier curve
ing tri-vectorQop A Q1 A Q2 into a conventional vector. in P3 (denoted byb") as(0p,01) varies. Every image point on
Regardless of the choice fag, we have the Bézier curve corresponds to a spherical displacement that b
long to a Bezier spherical motion i&2. The points; are called
Q-R=Q1R1+ QR +Q3R3 + QsRs = 0. (15) Bézier pointsor control pointsof the Bezier curve. The spheri-

cal displacements that they represent are cdkezier spherical

displacementslt is clear that the Bzier spherical motion must

lie in the convex hull of the Bzier spherical displacements.
Now let us impose an additional requirement thgt- o1 =

1. This implies that we treat the&ier points as points in affine

geometry. After lettingn; =t andog = 1—t, Then Eq.(18)

becomes the following well-known linear interpolation:

Since the metric geometry of the Image Space is elliptic, it fol-
lows from (15) that the angular distance between any pQint
on the triangular segment to the polar pokdtis alwaystt/2.

This means that the spherical displacements defing@ &ydR,
respectively, are related by a half turn. In other words, all spher-
ical displacements belonging to the triangular segment are line-
symmetric displacements with respect to the symmetric position
defined byR. Letl; (i = 0,1, 2) denote the three-dimensional vec- bi (t) = (1—t)b] () +tb{(t). (19)
tors representing lines of symmetry associated with three spher-
ical displacements. They can be obtained from the quaternion

product In view of (8), every point of a rigid body under the rotational

motion defined by (19) traces out a circular arc in quadratic ra
tional form. The Eezier curved”(t) in this case defines a rational
li=QiR", (16) Bézier spherical motion of degrea,Zor every point of the mov-
ing body traces out a rational curve of degree Rlore details
whereR* is the conjugate oR. Thus the line of symmetry asso-  about rational Bzier spherical motions can be found in Ge and
ciated with a spherical displaceme@tas defined by (13) is on Larochelle (1999).
the line congruence As opposed to treat&ier image points as points in affine
geometry, we can treat them as points in elliptic geometry. Thi:
| = gl + aqlq + 0alp, (17) means that, for unit vectol " andb]_{, the coefficientsio and
a; should be selected such that{ag, a1) is also a unit vector.

_ . ' : In this case, the coefficients can be shown to be
which is a triangular cone defined by three lines of symmetry. We

conclude that the convex hull of three spherical displacen@nts ) )

(i =0,1,2) is a two-parameter line-symmetric spherical motion o = sin((1-t)¢) oy — sin(tg) (20)
bounded by three one-parameter pure rotations @nto Qs, sinp sing ’

Q1 to Q2, andQ2 to Qp, respectively.

where @ is the angular distance from{* to b{;, which is
2.6 Projective Representation of Spherical B ézier Mo- half of the rotation angle between the two spherical displace
tions ments that they represent. Shoemake (1985) was the first to a
As an application of the projective convexity, we now ply “spherical linear interpolation” of the form (20) to defining

present a projective representation of sphericazi8 motions Bézier spherical motions. The resultingBer spherical motion
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is not a rational motion but it has also the convex hull property,
i.e., all spherical displacements belonging to treziBr motion
are within the convex hull of the &ier spherical displacements.

3 Projective Convexity in Spatial Kinematic Geometry
3.1 The Oriented Image Space of Spatial Kinematics

It is well known that a spatial displacement in Euclidean
three-spaceE® is equivalent to a screw displacement about a
fixed axis. Lets denote a unit dual vector representing the screw
axis and le® = 6+ €h denote the dual angle representing a ro-
tation of angled about and a translation of distane@long the

screw axis. They can be used to define the so-called dual Euler

parameters:

8 = (3sin(8/2),cog6/2). (21)

screw d|splacemenQ is about the screw ax@with dual angle

6 and the backward screw dlsplacemenQ is about he screw
axis—Swith dual angle 2rt— 6). Thus, we associate each spatial
displacement with a sense of orientation and consider the Imac
Space of spatial kinematics as an oriented projective dual thre
spaceP3 by considering two antipodal poin and —Q to be
distinct as opposed to identical. In order to maintain the sign o
Q, we also require that the real weighto be positive.

Itis noted here again that in this paper, the term "orientation”
is used to indicate the sense of direction for a displacement or
geometric feature. It is not to be confused with the notion of
orientation in topology.

3.2 Quaternions and Spatial Displacements

Let P, P denote quaternions whose components are homc
geneous point coordinates. Then point coordinate transformatic
can be expressed in terms of quaternion algebra as:

The dual Euler parameters can be separated into a real part

g, which is the normalized Eulers parameters of rotation, and
a dual partg?, i.e.,§ = q+¢q° The real and dual parts sat-
isfy the Plickerian conditiorg- g% = 0. It follows thatd - § =
q-9+29-9° =1, which means thdj are normalized dual Euler

parameters. Furthermore, if a quaternion representation is used

thenq is a unit dual quaternion. It can be shown that the dual

part, which is associated with the translational component of the

spatial displacement, can be alternatively defined by the follow-
ing quaternion product

= (1/2)da, (22)

whered is a vector quaternion associated with the translation
vector.

Let W= w(1+ €0) denote a dual number weight. Then a
general four-dimensional dual vectQris related to the unit dual
vectorg by

O = wa. (23)

The homogeneous vector (23) can be considered as defining a
point in a projective dual three-spaB&. This space is referred

to as the Image Space of Spatial Kinematics by Ravani and Roth : e ) L A
¢ matics, which is an oriented projective dual three-sgaitceThe

(1984). They have shown that a change of the moving and fixe

reference frame in Euclidean three-space corresponds to dual-

orthogonal transformation k3 that leaves dual weighv or
equivalently the quadratic forrtD2 + Q2 + Q3 + Q4 invariant.
Thus the metric geometry &8 is elliptic.

Similar to the case of spherical displacements, we may say

that a spatial displacement is equivalent to two oppositely ori-
ented screw displacements given Qyand —Q. The forward

P=QPQ +Q%Q" - Q(Q%" (24)
where *%” denotes the conjugate of a quaternion.

Let | andi denote dual vectors of a line before and after a

sspatial displacement. Then the displacement of the line is give

—)1

=QIQ". (25)

We note that the above equations for point and line transforma
tions are completely homogeneous in dual-quaternion compc
nents. Thus ifQ is defined asi" degree polynomial functions
of timet, then Eqgs. (24) and (25) define a rational motion of de-
gree Ziwhose point and line trajectories are rational functions of
time.

Similar to the spherical case, quaternion algebra is also use
for composing two successive spatial displacementsQge®1
denote two spatial displacements. The composition of the twi
spatial displacements is given by the quaternion pro@@(ﬁl.

a3-3 Line-Segments in the Oriented Image Space
We study the projective convexity associated with sets of
spatial displacements in the oriented Image Space of spatial kin

projective convexity irP° is essentially the same as that in the
real projective three-spaé®.

First, we clarify the meaning of “line-segments” e,
Given two oriented point®; (i = 0,1) in P3, we define the fol-
lowing linear combination by dualizing (9):

Q(G0,81) = GoQo+61Q1, (26)
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whered; = ai(1+svi0) are dual-number coefficients such that
aj > 0 and the real part of the sum is nonzero, i@Qo +
a1Q1 # 0.

The real part of Eq.(26) is the same as Eq.(9), which de-
scribes a rotational motion-segment; the dual part of (26) is given

by

Q%(80,G1) = 00(Qf +YoQo) + a1 (QY +y1Q1), (27)

which specifies whether and how the translational component of

a spatial motion couples with the rotational component.

To investigate the kinematic meaning of the line-segment,
we assume, without loss of generality, tiias = (0,0,0,1) and
let Q1 = (tan(61/2)51,1). It can be shown that (26) leads to

Q = (tan(B/2)31,1), (28)
where
~ . Gitan81/2)
tan(B/2) = “arar (29)

It can be seen that d8ig,61) varies, the dual angIB varies in
the range (X ﬁ < Gl but the axis$; remains fixed. Therefore,

a line-segment (26) defines the set of all displacements about

Op-+01 =1, then the resulting screw motion has the property tha
every point of the moving body traces out a quadratic curve (se
Ge and Ravani, 1994a; Li and Ge, 1999). It can be shown the
the pitch of the screw motion is defined by a harmonic function.
The motion has been referred to aseatical Darboux motion
(Bottema and Roth, 1979, pp. 321-322). Another approach i
to defined; (i = 0,1) based on the elliptic metric, i.e., requiring
that®? 4 Q3+ Q%+ Q3 = 1. This would result in a unifold linear
interpolation in the dual ellpitic three-space. The resulting screw
motion has constant pitch (see Ge and Ravani, 1994b).

Analogous to the spherical case, when the two oriented im
age points are identical, the line-segment, whether unifold o
two-fold, reduces to a point; when the two oriented points are an
tipodal, the line-segment consists of two antipodal points. Wher
the real parts of the image points are indentical but their dua
parts are not, then the line-segment is a special unifold line
segment representing a translation. When the dual parts of tt
image points are identical but their real parts are not, then th
line-segment is another special unifold line-segment represen
ing a pure rotation.

3.4 Convex Sets of Spatial Displacements

Excluding the antipodal points that represent are geometri
cally equivalent but oppositely oriented screw displacements, w
have the following definition for the convex set of spatial dis-
placements.

a fixed axis such that the associated dual angles are within the Definition 2. A setZ of oriented spatial displacements is two-

range |0, 91] Whereel is the dual angle for the relative screw
displacement between two spatial positions represente@oby
andQ;. Mechanically, this is the set of displacements allowed
by a cylindrical joint.

For the linear combination (26), only the ratio&f(i = 0, 1)
is significant. With the help of dual-number algebra (see Bottema
and Roth, 1979), the ratio is reduced to

G1/do = (a1/00)(1+€(y1—Yo))-

In other words, only two parameters, namely oo and(y; —
are not redundant.

Yo)
Thus, we say (26) defindwafold line-

segmentlt defines a two-parameter set of displacements about a

screw axis, which is referred to agwo-fold convex hulbf two
spatial displacements.

Another form of line-segment can be defined by restricting
the non-redundant parameters to one. This resultsunifald
line-segmentvhich corresponds to anifold convex hulbf two

fold (or unifold) convex if it is not empty, has no geometri-
cally equivalent but oppositely oriented displacements, anc
for any pairQp, Q1 € Z, the two-fold (or unifold) convex hull

of Qup andQ; is also inZ.

From now on , we restrict our study on unifold case only. Let
a set of oriented spatial displacements be represented by a set
image pomtsQ, (i=012,...,n)in P3. These points form a
simplexSin P with Qi as thelr vertices. A convex combination
of the set of points is given by

Q = iiaiéi

wherea; > 0 for all i but (ao,ay,...,an) # (0,0,...,0). The
pointQ lies inside of the simple$. All convex combinations of
the set of point€); span a convex set, which is the convex hull

(30)

displacements. The resulting motion is a one-parameter screwof the point set. Kinematically, every point of the convex hull

motion in the usual sense. The simplest way to obtain a unifold
line-segmentisto leg =0 (i = 0,1), i.e., we use only real coef-
ficientsa; in linear combination. Furthermore, if we require that

7

in P? defines a spatial displacement that belong to the conve
hull of the set of oriented spatial displacements represented kb
Qi (i=0,12...,n).

Copyright 0 2002 by ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



3.5 Triangular Segments

Now let us consider a unifold triangular segmenfthde-
fined by the image poin®; (i =0,1,2). A point on the triangu-
lar segment is given by

Q = a0Qo + 01Q1 + 02Q>. (31)
The pole of the unifold plane containing the triangle is given by
R="(QoAQ1A Q). (32)

Regardless of the choice far, we have@ -R = 0, which means

that all spatial displacements belonging to the unifold triangu-
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