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ABSTRACT
In recent years, there is an increasing interest in develo

geometric algorithms for kinematic computations. The aim
this paper is to present the notion of projective convexity a
key element for a new framework for kinematic geometry, t
allows for the development of more elegant and efficient al
rithms for geometric computations with kinematic applicatio
The resulting framework, called computational kinematic geo
etry, is developed by combining the oriented projective geom
with the kinematic geometry of rigid body motions.

Introduction
Geometric analysis has much of its roots in kinematics

has long been the foundation for many methods in kinem
analysis and synthesis. Much of the existing work on kinem
geometry, however, deals primarily with rigid-body motions ge
erated by mechanisms and robot manipulators (see, for exam
Hunt, 1978, Bottema and Roth, 1979; McCarthy, 1990; Erdm
and Sandor, 1997). Research in kinematics over the last de
has been oriented towards on an area calledComputational Kine-
matics. Although its definition and scope is still a subject for d
bate, computational kinematics deals with the development
application of general computational algorithms and numer
methods for solving a broad class of problems that arise from
analysis and synthesis of mechanisms and manipulators (A
les et al., 1993; Merlet and Ravani, 1995; Park and Iurascu, 2
).

In more recent years, there is an increasing interest in
1
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veloping analytically defined parametric motions by bring t
gether the fields of kinematics and Computer Aided Geome
Design (CAGD). These parametric motions are typically defin
by combining B́ezier or B-spline representation in CAGD wit
representations of rigid-body displacements in kinematics s
as quaternions, dual quaternions, Lie groups and Lie algebra
and Ravani, 1994a and 1994b; Park and Ravani, 1995; Kim
Nam, 1995; Ge and Kang, 1995; Etzel and McCarthy, 19
Jüttler and Wagner, 1996; Zefran and Kumar, 1996; Sriniva
and Ge, 1996 and 1998). Applications of these freeform moti
include motion animation in computer graphics, spatial navi
tion in virtual reality as well as path planning in robotics an
5-axis CNC machining.

Another area of research that has strong connection to k
matic geometry is the geometric analysis of swept volumes
an object under a rigid-body motion. This research topic h
attracted intense research effort in Robotics and CNC mac
ing research commmunity due to its obvious applications in m
tion planning in robotics and CNC machining (see, for exa
ple, Abdel-Malek et al., 1998 and 2001; Blackmore et al., 19
and 1999; Lee, 1997 and 1998). In difference to the class
kinematics, which deals with movements of unbounded infin
spaces (including linear elements such as points, infinite lin
and infinite planes embedded in them), the problem of sw
volume analysis focuses on trajectories and swept volume
a bounded object which may have curved boundaries.

The aim of this paper is to present the notion of project
convexity in computational kinematic geometry. It is develop
by combining the classical projective geometry with the kin
Copyright  2002 by ASME
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matic geometry of rigid body motions. Geometric algorithm
become more general and elegant when developed from the
spective of projective geometry.

The organization of the paper is as follows. Section 1 su
marizes the homogeneous coordinates of points, planes, and
as well as the notion of convexity in affine geometry. Section
studies the notion of convexity of a set of spherical displaceme
in an oriented image space of spherical kinematics. Sectio
studies the notion of convexity of a set of spatial displaceme
in an oriented image space of spatial kinematics. In both s
tion 2 and 3, special attention is given to clarify the meaning
”line-segments”, which is essential for studying convexity in th
image spaces.

1 Geometric Fundamentals
1.1 Homogeneous Coordinates of Points

It is well known that a pointP in Euclidean three-spaceE3

with Cartesian coordinates(x1,x2,x3) can be identified with a
point in projective three-spaceP3 using homogeneous coordi
nates:

P = (wx1,wx2,wx3,w),

wherew 6= 0 is a real-number weight. Regardless of the value
w, the homogeneous vectorP represents one and the same poin
Whenw= 1, the homogeneous coordinates(x1,x2,x3,1) are said
to be normalized.

1.2 Homogeneous Coordinates of Lines
A line in E3 passing through a pointx and with unit direction

vectoru can be described by so-called Plücker line coordinates:

L = (wu,wu0), (1)

whereu0 = x× u andw 6= 0 is a positive weight. The pair of
Plücker vectors satisfy the Plückerian condition:

u ·u0 = 0. (2)

Regardless of the value forw> 0, L represents one and the sam
oriented line. Whenw= 1, the Pl̈ucker coordinates are said to b
normalized.

With the introduction of a dual number unitε such thatε2 =
0, a pair of vectors(l, l0) can be combined into the following
compact form:

l̂ = l + εl0 = (l̂1, l̂2, l̂3), (3)

where l̂ i = l i + εl0
i . The resulting entity is called a dual vecto

(Bottema and Roth, 1979).
2
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1.3 Convexity in Affine Geometry
The fundamental operation for points in affine geome

is the barycentric combination. Given a set of pointsbi (i =
0,1,2, . . . ,n) in Euclidean three-spaceE3, the following linear
combination,

b =
n

∑
i=0

αibi (4)

is called abarycentric combinationif

n

∑
i=0

αi = 1.

The coefficientsαi are calledbarycentric coordinates.
For example, a barycentric combination of two pointsb0 and

b1 is given by

b = α0b0 +α1b1, α0 +α1 = 1. (5)

Barycentric coordinates defines unambiguously the locatio
the pointb on a line relative to the pointsb0 andb1. If α0 > 0
andα1 > 0, then the pointb belongs to the open segment (n
including the end points) fromb0 to b1; if one of the coordinates
is negative, then the pointb is outside of the closed segment (i
cluding the end points) fromb0 to b1.

When allαi are nonnegative, the combination (4) is called
convex combination. All convex combinations of a point setbi

define theconvex hullof the set. The resulting set is aconvex set,
which is characterized by the following: for any two points
the set, the straight line joining them is also contained in the
This definition is invariant with respect to affine transformatio
and does not depend on the choice of the coordinate system
affine transformation leaves barycentric combinations invar
(see Farin 1993).

2 Projective Convexity in Spherical Kinematic Geom-
etry
In this section, we develop the concept of projective c

vexity in the image space of spherical kinematics. The stud
kinematics using kinematic mappings and the associated im
spaces dates back to Study (1903), Blaschke (1960), and Müller
(1962). A comprehensive review of the work in this area can
found in Bottema and Roth (1979). Ravani and Roth (1984)
fined the concept of image spaces for spherical and spatial k
matics and applied to mechanism synthesis. McCarthy (19
provided another treatment of the image space. Ge and Ra
(1994a, 1994b) applied the notion of image space to freef
Copyright  2002 by ASME
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motion synthesis. A survey of rational motion design can
found in R̈oschel (1998). Dooley and B. Ravani (1994) intr
duced a definition of the convex hull of a set of lines in the co
text of multiple friction contacts of rigid-body dynamics. Bu
and Fillmore (2001) discussed convexity on spheres.

2.1 The Oriented Image Space of Spherical Kinemat-
ics

It is well know in kinematics that a spherical displaceme
which is a rotation of angleθ about a fixed axis, can be describ
the so-called Euler parameters,q = (q1,q2,q3,q4), where

q = (ssin(θ/2),cos(θ/2), (6)

and s = (s1,s2,s3) denotes the unit direction vector along th
axis. The Euler parameters so defined are normalized,
q2

1 +q2
2 +q2

3 +q2
4 = 1. A homogeneous representation of the E

ler parameters is given by

Q = wq, (7)

wherew 6= 0 is the weight. Regardless of the value forw, wq and
q represent one and the same spherical displacement. Th
mogeneous coordinates,Q = (Q1,Q2,Q3,Q4), can also be used
to define a point in the projective three-spaceP3. Ravani and
Roth (1984) referred to this space as theImage Space of Sphe
ical Kinematics. They have shown that a change in the ref
ence frames attached the moving and fixed spaces would l
the quadratic formw2 = Q2

1 +Q2
2 +Q2

3 +Q2
4 invariant. This im-

plies that the metric geometry ofP3 is elliptic, or equivalently,
spherical. A point in the Image Space is called an image poin
spherical displacement. With the spherical model of the Im
Space, two antipodal image points,Q and−Q are considered to
be identical that represent the same spherical displacement.

In kinematics, the word “displacement” is used in a rath
special way. It implies that we have no interest in how a mot
actually proceeds: we consider only the object position be
and after the motion. In the case of a spherical displacement
concept of displacement does not capture the “sense” of a
tion. By this I mean that starting from the same initial positio
the same final position can be achieved with two rotational m
tions with opposite sense of rotation: the forward rotation has
rotation angleθ and is about the axissand the backward rotation
has the rotational angle 2π−θ and is about the axis−s, which is
geometrically the same assbut oppositely directed. Another wa
to look at is that the instantaneous angular velocities of the
rotational motions are oppositely directed. The Euler parame
associated with the two geometrically equivalent but opposi
oriented rotations are given byQ and−Q, respectively. This dis-
tinction of the sense of rotation is important in the developm
3
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of freeform parametric motions such as rational Bézier motions
as has been shown in Ge and Ravani (1994a, 1994b). In
paper, this distinction facilitates the unambiguous definition
a motion segment, which is the basis for applying the notio
convexity to kinematic geometry.

Thus, we associate each spherical displacement with a s
of rotation. This is done algebraically by requireing that
weightw in the quaternion coordinatesQ to be positive, i.e., we
considerQ assigned homogeneous coordinatesof a projective
three space. This allows to consider two antipodal pointsQ and
−Q to be distinct as opposed to identical. In this way, we
attach a sense of direction or orientation to a geometric fea
such as a line-segment or a plane in the projective space. Fo
lack of a better term, we refer to the resulting projective sp
as “oriented”. This notion of oriented space is not entirely n
For example, a directed line-segment is known as a “spea
classical geometry text. It is emphasized here because it
vides a consistent computational framework for handling g
metric computations in the Image Space. However, the no
of oriented projective space advocated here should not to be
fused with the notion of “orientability” in topology, which mean
that there are no orientation reversing paths on a manifold.

2.2 Quaternions and Spherical Displacements
Quaternion is an elegant tool in spherical kinematics.

i, j,k,1 denote the quaternion units with properties such asi2 =
−1 andi j = k. Then the Euler parameters can be used to de
a quaternion,Q = Q1i + Q2 j + q3k+ Q4. Let P and P̃ denote,
respectively, the homogeneous coordinates of a point of a
body before and after a rotationQ. Then the rotational transfo
mation of the point coordinates is given by the following qua
nion equation:

P̃ = QPQ∗ (8)

where “∗” denotes the conjugate of a quaternion, i.e.,Q∗ =
−Q1i −Q2 j −Q3k + Q4. It is clear from the quadratic equa
tion thatQ and−Q would result in the same point coordina
transformation.

Quaternion algebra is also used for composing two suc
sive rotations. LetQ0,Q1 denote two rotations. The compositio
of the two rotations is given by the quaternion prodcutQ0Q1.

2.3 Line-Segments in the Oriented Image Space
We study the projective convexity associated with sets

spherical displacements in the oriented Image Space, which
oriented projective three-spaceP3. The projective convexity in
P3 is essentially the same as the affine definition of convexity
set is said to be convex if it contains every line-segment wh
Copyright  2002 by ASME
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end points lie on the set. The key here is to clarify the mean
of “line-segment”, especially in the case of antipodal points.

Given two oriented image pointsQi (i = 0,1) in P3, any
point Q on the line-segmentQ0Q1 is given by the following lin-
ear combination:

Q(α0,α1) = α0Q0 +α1Q1 (9)

where we restrict the sumQ(α0,α1) to be nonzero and we re
quire the real coefficientsαi to be non-negative. The “nonzer
sum” restriction implies that(α0,α1) 6= (0,0) when the two
points are not antipodal and that the ratioα1 : α0 is not inverse
proportional to the weight weightw0 : w1 associated withQi

when the two points are antipodal.
Now consider a spherical model ofP3. If the two points,Q0

andQ1, are distinct and not antipodal, thenQ0Q1 is the shorter
of the two great circular arcs connecting them. If the two poi
are identical, then we get a single point; if the two points
antipodal, we get the two antipodal points.

With Eq.(9), we can also talk about open line-segmen
opposed to closed line-segment as defined above by remo
the end points. This is done by requiring that the coefficie
αi to be strictly positive. An open line-segment of two identic
points is an empty set. An open line-segment of two antipo
points is also an empty set.

To investigate the kinematic meaning of the line-segme
we assume, without loss of generality, that initially the movi
and fixed frames are coincident so thatQ0 = (0,0,0,1). In addi-
tion, we letQ1 = (tan(θ1/2)s1,1). In this way, Eq. (9) becomes

Q = (α1 tan(θ1/2)s1,α0 +α1),

which is equivalent to

Q = (tan(β/2)s1,1), (10)

where

tan(β/2) =
α1 tan(θ1/2)

α0 +α1
. (11)

It is clear from (10) and (11) that as we vary the values
(α0,α1), the axis of rotation remains fixed and that the an
of rotationβ varies in the range 0≤ β ≤ θ1. Therefore, a line-
segment inP3 corresponds to a motion segment, calledconvex
hull of the two spherical displacements, which contains all spher
ical displacements that belong to a pure rotation from the star
position (or displacement) to the end position (or displacemen1.
1In this paper, we use the term “position” and “displacement” inerchangeably.

ge
-

4
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When the two oriented points are identical, the convex
reduces to a single displacement; when the two oriented p
are antipodal, the convex hull consists of two displacem
that geometrically identical but with opposite sense of orie
tion. The presence of the non-point in between the two antip
points may be interpreted as that the two oppositely oriented
placements are related not by a Euclidean displacementE3

but by a reflection inE4 that changes the sense of direction
the vector normal to the hyperplaneE3 but leaves hyperplaneE3

itself invariant.

2.4 Convex Sets of Spherical Displacements
Since this paper deals only with kinematic geometry ofE3,

from now on, when defining a set of oriented displacements
exclude those that are geometrically equivalent but oppos
oriented. This leads to the following definition:

Definition 1. A setZ of oriented spherical displacements is c
vex if it is not empty, has no geometrically equivalent but
positely oriented displacements, and for any pairQ0,Q1∈Z,
the convex hull ofQ0 andQ1 is also inZ.

Let a set of oriented spherical displacements be repres
by a set of pointsQi (i = 0,1,2, . . . ,n) in P3. These points form
a simplexS in P3 with Qi as their vertices. Similar to the affin
definition of convex combination, we define the following a
convex combination of the set of points inP3:

Q =
n

∑
i=0

αiQi (12)

whereαi ≥ 0 for all i but (α0,α1, . . . ,αn) 6= (0,0, . . . ,0). The
point Q lies inside of the simplexS. All convex combinations o
the set of pointsQi span a convex set called the convex hul
the point set. Kinematically, every point of the convex hull inP3

defines a spherical displacement that belong to the convex
of the set of oriented spherical displacements representedQi

(i = 0,1,2, . . . ,n).
We note that Woo (1994) studied the problem of convex

on a sphere for visiability analysis.

2.5 Triangular Segments
The boundaries of a convex hull of a point set inP3 include

vertices, line-segments, and triangular segments. We know
vertex represents a spherical displacement, a line-segment
sents a rotational motion segment connecting one spherica
placement to another. What about a triangular segment?

Let Qi (i = 0,1,2) be homogeneous vectors of the ima
points of three spherical displacementsQi . A point on a triangu
Copyright  2002 by ASME
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lar segment is given by

Q = α0Q0 +α1Q1 +α2Q2. (13)

The pole of the plane containing the triangle is given by

R =∗ (Q0∧Q1∧Q2), (14)

where “∧” denotes the wedge product of vectors and “∗” de-
notes the dual operator in multi-linear algebra (see Fland
1989). The result of the wedge product of the three vectorsQi

(i = 0,1,2) is the trivectorQ0∧Q1∧Q2 whose coordinates are
given by the determinants of the four minors of the 3×4 array
formed byQi (i = 0,1,2). The dual operator converts the resu
ing tri-vectorQ0∧Q1∧Q2 into a conventional vector.

Regardless of the choice forαi , we have

Q ·R = Q1R1 +Q2R2 +Q3R3 +Q4R4 = 0. (15)

Since the metric geometry of the Image Space is elliptic, it f
lows from (15) that the angular distance between any poinQ
on the triangular segment to the polar pointR is alwaysπ/2.
This means that the spherical displacements defined byQ andR,
respectively, are related by a half turn. In other words, all sph
ical displacements belonging to the triangular segment are l
symmetric displacements with respect to the symmetric posi
defined byR. Let l i (i = 0,1,2) denote the three-dimensional ve
tors representing lines of symmetry associated with three sp
ical displacements. They can be obtained from the quatern
product

l i = QiR∗, (16)

whereR∗ is the conjugate ofR. Thus the line of symmetry asso
ciated with a spherical displacementQ as defined by (13) is on
the line congruence

l = α0l0 +α1l1 +α2l2, (17)

which is a triangular cone defined by three lines of symmetry.
conclude that the convex hull of three spherical displacementQi

(i = 0,1,2) is a two-parameter line-symmetric spherical moti
bounded by three one-parameter pure rotations fromQ0 to Q1,
Q1 to Q2, andQ2 to Q0, respectively.

2.6 Projective Representation of Spherical B ézier Mo-
tions

As an application of the projective convexity, we no
present a projective representation of spherical Bézier motions
5
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by recursive application of the linear combination (9). A co
prehensive treatment of Bézier curves inE3 can be found in Farin
(1993).

Projective De Castelau Algorithm: Let
b0,b1, · · · ,bn ∈ P3 denote a set of oriented image poin
that represent a set of spherical displacements. Letαi ≥ 0
(i = 0,1) but(α0,α1) 6= (0,0). Set

br
i (α0,α1) = α0br−1

i +α1br−1
i+1 r = 1, · · · ,n, i = 0, · · · ,n− r.

(18)
Please note we follow the convention commonly used in CA
text, i.e., the superscript is an index, not an exponent. W
r = 0, b0

i = bi . Whenr = n, bn
0(α0,α1) traces out a B́ezier curve

in P3 (denoted bybn) as(α0,α1) varies. Every image point o
the B́ezier curve corresponds to a spherical displacement tha
long to a B́ezier spherical motion inE3. The pointsbi are called
Bézier pointsor control pointsof the B́ezier curve. The spher
cal displacements that they represent are calledBézier spherical
displacements. It is clear that the B́ezier spherical motion mus
lie in the convex hull of the B́ezier spherical displacements.

Now let us impose an additional requirement thatα0+α1 =
1. This implies that we treat the Bézier points as points in affin
geometry. After lettingα1 = t and α0 = 1− t, Then Eq.(18)
becomes the following well-known linear interpolation:

br
i (t) = (1− t)br−1

i (t)+ tbr−1
i+1(t). (19)

In view of (8), every point of a rigid body under the rotation
motion defined by (19) traces out a circular arc in quadratic
tional form. The B́ezier curvêbn(t) in this case defines a ration
Bézier spherical motion of degree 2n, for every point of the mov-
ing body traces out a rational curve of degree 2n. More details
about rational B́ezier spherical motions can be found in Ge a
Larochelle (1999).

As opposed to treat B́ezier image points as points in affin
geometry, we can treat them as points in elliptic geometry. T
means that, for unit vectorsbr−1

i andbr−1
i+1 , the coefficientsα0 and

α1 should be selected such thatbr
i (α0,α1) is also a unit vector

In this case, the coefficients can be shown to be

α0 =
sin((1− t)φ)

sinφ
, α1 =

sin(tφ)
sinφ

, (20)

where φ is the angular distance frombr−1
i to br−1

i+1 , which is
half of the rotation angle between the two spherical displa
ments that they represent. Shoemake (1985) was the first t
ply “spherical linear interpolation” of the form (20) to definin
Bézier spherical motions. The resulting Bézier spherical motion
Copyright  2002 by ASME
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is not a rational motion but it has also the convex hull prope
i.e., all spherical displacements belonging to the Bézier motion
are within the convex hull of the B́ezier spherical displacements

3 Projective Convexity in Spatial Kinematic Geometry
3.1 The Oriented Image Space of Spatial Kinematics

It is well known that a spatial displacement in Euclide
three-spaceE3 is equivalent to a screw displacement abou
fixed axis. Let̂s denote a unit dual vector representing the scr
axis and let̂θ = θ + εh denote the dual angle representing a r
tation of angleθ about and a translation of distanceh along the
screw axis. They can be used to define the so-called dual E
parameters:

q̂ = (ŝsin(θ̂/2),cos(θ̂/2). (21)

The dual Euler parameters can be separated into a real
q, which is the normalized Eulers parameters of rotation, a
a dual part,q0, i.e., q̂ = q + εq0. The real and dual parts sa
isfy the Pl̈uckerian conditionq · q0 = 0. It follows thatq̂ · q̂ =
q ·q+2q ·q0 = 1, which means that̂q are normalized dual Eule
parameters. Furthermore, if a quaternion representation is u
then q̂ is a unit dual quaternion. It can be shown that the d
part, which is associated with the translational component of
spatial displacement, can be alternatively defined by the follo
ing quaternion product

q0 = (1/2)dq, (22)

whered is a vector quaternion associated with the translat
vector.

Let ŵ = w(1+ εσ) denote a dual number weight. Then
general four-dimensional dual vectorQ̂ is related to the unit dua
vectorq̂ by

Q̂ = ŵq̂. (23)

The homogeneous vector (23) can be considered as defini
point in a projective dual three-spaceP̂3. This space is referred
to as the Image Space of Spatial Kinematics by Ravani and R
(1984). They have shown that a change of the moving and fi
reference frame in Euclidean three-space corresponds to d
orthogonal transformation in̂P3 that leaves dual weight ˆw or
equivalently the quadratic form̂Q2

1 + Q̂2
2 + Q̂2

3 + Q̂4 invariant.
Thus the metric geometry of̂P3 is elliptic.

Similar to the case of spherical displacements, we may
that a spatial displacement is equivalent to two oppositely
ented screw displacements given byQ̂ and−Q̂. The forward
6
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screw displacement,̂Q, is about the screw axiŝs with dual angle
θ̂ and the backward screw displacement,−Q̂, is about he screw
axis−ŝwith dual angle 2(π− θ̂). Thus, we associate each spa
displacement with a sense of orientation and consider the Im
Space of spatial kinematics as an oriented projective dual th
spaceP̂3 by considering two antipodal pointŝQ and−Q̂ to be
distinct as opposed to identical. In order to maintain the sig
Q̂, we also require that the real weightw to be positive.

It is noted here again that in this paper, the term ”orientati
is used to indicate the sense of direction for a displacement
geometric feature. It is not to be confused with the notion
orientation in topology.

3.2 Quaternions and Spatial Displacements
Let P, P̃ denote quaternions whose components are ho

geneous point coordinates. Then point coordinate transform
can be expressed in terms of quaternion algebra as:

P̃ = QPQ∗+Q0Q∗−Q(Q0)∗ (24)

where “∗” denotes the conjugate of a quaternion.
Let l̂ and˜̂l denote dual vectors of a line before and afte

spatial displacement. Then the displacement of the line is g
by

˜̂l = Q̂l̂Q̂∗. (25)

We note that the above equations for point and line transfor
tions are completely homogeneous in dual-quaternion com
nents. Thus ifQ̂ is defined asnth degree polynomial function
of time t, then Eqs. (24) and (25) define a rational motion of
gree 2n whose point and line trajectories are rational function
time.

Similar to the spherical case, quaternion algebra is also
for composing two successive spatial displacements. LetQ̂0,Q̂1

denote two spatial displacements. The composition of the
spatial displacements is given by the quaternion prodcutQ̂0Q̂1.

3.3 Line-Segments in the Oriented Image Space
We study the projective convexity associated with sets

spatial displacements in the oriented Image Space of spatial
matics, which is an oriented projective dual three-spaceP̂3. The
projective convexity inP̂3 is essentially the same as that in t
real projective three-spaceP3.

First, we clarify the meaning of “line-segments” in̂P3.
Given two oriented pointŝQi (i = 0,1) in P̂3, we define the fol-
lowing linear combination by dualizing (9):

Q̂(α̂0, α̂1) = α̂0Q̂0 + α̂1Q̂1, (26)
Copyright  2002 by ASME
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whereα̂i = αi(1+ εγ0
i ) are dual-number coefficients such th

αi ≥ 0 and the real part of the sum is nonzero, i.e.,α0Q0 +
α1Q1 6= 0.

The real part of Eq.(26) is the same as Eq.(9), which
scribes a rotational motion-segment; the dual part of (26) is gi
by

Q0(α̂0, α̂1) = α0(Q0
0 + γ0Q0)+α1(Q0

1 + γ1Q1), (27)

which specifies whether and how the translational componen
a spatial motion couples with the rotational component.

To investigate the kinematic meaning of the line-segme
we assume, without loss of generality, thatQ0 = (0,0,0,1) and
let Q̂1 = (tan(θ̂1/2)ŝ1,1). It can be shown that (26) leads to

Q̂ = (tan(β̂/2)ŝ1,1), (28)

where

tan(β̂/2) =
α̂1 tan(θ̂1/2)

α̂0 + α̂1
. (29)

It can be seen that as(α̂0, α̂1) varies, the dual anglêβ varies in
the range 0≤ β̂ ≤ θ̂1 but the axiŝs1 remains fixed. Therefore
a line-segment (26) defines the set of all displacements a
a fixed axis such that the associated dual angles are within
range[0, θ̂1], whereθ̂1 is the dual angle for the relative scre
displacement between two spatial positions represented byQ̂0

andQ̂1. Mechanically, this is the set of displacements allow
by a cylindrical joint.

For the linear combination (26), only the ratio ofα̂i (i = 0,1)
is significant. With the help of dual-number algebra (see Botte
and Roth, 1979), the ratio is reduced to

α̂1/α̂0 = (α1/α0)(1+ ε(γ1− γ0)).

In other words, only two parameters, namelyα1/α0 and(γ1−γ0)
are not redundant. Thus, we say (26) defines atwo-fold line-
segment. It defines a two-parameter set of displacements abo
screw axis, which is referred to as atwo-fold convex hullof two
spatial displacements.

Another form of line-segment can be defined by restricti
the non-redundant parameters to one. This results in aunifold
line-segmentwhich corresponds to aunifold convex hullof two
displacements. The resulting motion is a one-parameter sc
motion in the usual sense. The simplest way to obtain a unif
line-segment is to letγi = 0 (i = 0,1), i.e., we use only real coef
ficientsαi in linear combination. Furthermore, if we require th
7
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α0+α1 = 1, then the resulting screw motion has the property t
every point of the moving body traces out a quadratic curve (
Ge and Ravani, 1994a; Li and Ge, 1999). It can be shown
the pitch of the screw motion is defined by a harmonic functi
The motion has been referred to as avertical Darboux motion
(Bottema and Roth, 1979, pp. 321-322). Another approac
to defineα̂i (i = 0,1) based on the elliptic metric, i.e., requirin
thatQ̂2

1+Q̂2
2+Q̂2

3+Q̂2
4 = 1. This would result in a unifold linea

interpolation in the dual ellpitic three-space. The resulting sc
motion has constant pitch (see Ge and Ravani, 1994b).

Analogous to the spherical case, when the two oriented
age points are identical, the line-segment, whether unifold
two-fold, reduces to a point; when the two oriented points are
tipodal, the line-segment consists of two antipodal points. W
the real parts of the image points are indentical but their d
parts are not, then the line-segment is a special unifold l
segment representing a translation. When the dual parts o
image points are identical but their real parts are not, then
line-segment is another special unifold line-segment repres
ing a pure rotation.

3.4 Convex Sets of Spatial Displacements
Excluding the antipodal points that represent are geom

cally equivalent but oppositely oriented screw displacements
have the following definition for the convex set of spatial d
placements.

Definition 2. A set Z of oriented spatial displacements is tw
fold (or unifold) convex if it is not empty, has no geomet
cally equivalent but oppositely oriented displacements,
for any pairQ0,Q1∈Z, the two-fold (or unifold) convex hull
of Q0 andQ1 is also inZ.

From now on , we restrict our study on unifold case only. L
a set of oriented spatial displacements be represented by a
image pointsQ̂i (i = 0,1,2, . . . ,n) in P̂3. These points form a
simplexS in P̂3 with Q̂i as their vertices. A convex combinatio
of the set of points is given by

Q̂ =
n

∑
i=0

αiQ̂i (30)

whereαi ≥ 0 for all i but (α0,α1, . . . ,αn) 6= (0,0, . . . ,0). The
point Q̂ lies inside of the simplexS. All convex combinations of
the set of pointŝQi span a convex set, which is the convex h
of the point set. Kinematically, every point of the convex h
in P̂3 defines a spatial displacement that belong to the con
hull of the set of oriented spatial displacements represente
Q̂i (i = 0,1,2, . . . ,n).
Copyright  2002 by ASME

http://www.asme.org/about-asme/terms-of-use



by

gu-
the

hree
nion

-
e

ace
o

Ra-
lude

by

tive
ese

erica
pro

of a
am-
ap-
ach
pro-

ion
he

98,

n

93,
-

p-
to

9,

ges

sis
-
m-

mic

ed

r-
-

th

tric
l

uc-

Downloa
3.5 Triangular Segments
Now let us consider a unifold triangular segment inP̂3 de-

fined by the image pointŝQi (i = 0,1,2). A point on the triangu-
lar segment is given by

Q̂ = α0Q̂0 +α1Q̂1 +α2Q̂2. (31)

The pole of the unifold plane containing the triangle is given

R̂ =∗ (Q̂0∧ Q̂1∧ Q̂2). (32)

Regardless of the choice forαi , we haveQ̂ · R̂ = 0, which means
that all spatial displacements belonging to the unifold trian
lar segment are line-symmetric displacements with respect to
symmetric position defined bŷR. Let l̂ i (i = 0,1,2) denote the
dual vectors representing lines of symmetry associated with t
spatial displacements. They can be obtained from the quater
product

l̂ i = Q̂iR̂∗, (33)

whereR̂∗ is the conjugate of̂R. Thus the line of symmetry asso
ciated with a spatial displacementQ̂ as defined by (31) is on th
line congruence

l̂ = α0l̂0 +α1l̂1 +α2l̂2. (34)

The line congruence is bounded by three cylindroidal surf
patches connecting the three linesl̂ i . Line geometric approach t
define ruled surfaces and line congruences can be found in
vani and Wang (1991) and Ge and Ravani (1998). We conc
that the convex hull of three spatial displacementsQi (i = 0,1,2)
is a two-parameter line-symmetric spatial motion bounded
three one-parameter screw motions fromQ0 to Q1, Q1 to Q2,
andQ2 to Q0, respectively.

Conclusions and Discussions
In this paper, we have presented the concepts of projec

convexity for sets of spherical and spatial displacements. Th
concepts have been developed in the image spaces of sph
and spatial kinematics. These image spaces are oriented
jective spaces. Special attention is given to the orientation
displacement so that the notion of “line-segments” can be un
biguously defined. We have also shown with two different
proaches for motion interpolation, namely the rational appro
and the spherical approach, can be unified in the language of
jective geometry.
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