
PseudoApp: Performance Prediction for Application

Migration to Cloud

Byung Chul Tak Chunqiang Tang Hai Huang Long Wang

IBM T. J. Watson Research Center

Hawthorne, NY 10532, USA

Abstract—To migrate an existing application to cloud, a user
needs to estimate and compare the performance and resource
consumption of the application running in different clouds, in
order to select the best service provider and the right virtual
machine size. However, it is prohibitively expensive to install a
complex application in multiple new environments solely for the
purpose of performance benchmarking. Performance modeling
is more practical but the accuracy is limited by system factors
that are hard to model. We propose a new technique called
PseudoApp to address these challenges. Our solution creates a
pseudo-application to mimic the resource consumption of a real
application. A pseudo-application runs the same set of distributed
components and executes the same sequence of system calls as
those of the real application. By benchmarking a simple and easy-
to-install PseudoApp in different cloud environments, a user can
accurately obtain the performance and resource consumption of
the real application. We apply PseudoApp to Apache and TPC-W
and find that PseudoApp accurately predicts their performance
with 2-8% error in throughput.

I. INTRODUCTION

Cloud is no longer an option that organizations can afford

to overlook regardless of their sizes or business area. Broadly

speaking, migration into a cloud can be done in two ways. One

approach is to develop new applications tailored specifically

to the available cloud features, e.g., auto scaling and high

availability in Platform-as-a-Service (PaaS) [5], [6], [9], [18].

This approach, however, has high up-front costs and long time-

to-value cycles. Another approach is to migrate existing legacy

applications into the cloud, which is the focus of this paper.

Legacy application migration is often time consuming and

error prone. There is a significant risk of encountering un-

known issues and missing the project deadline, especially for

distributed applications that involve multiple heterogeneous

components. It was reported that even migrating the relatively

simple and supposedly well-documented Java PetStore bench-

mark to a cloud took more than 22 and 36 hours for preparation

and migration, respectively [17]. From our own experience in

a previous project, it took about a month to set up a solution

that involved half a dozen different products. Another even

bigger challenge is that a legacy application may have gone

through many undocumented changes over a long period of

time. It is impossible to quickly reproduce these changes on

a fresh installation.

We further observe that the migration effort is often dom-

inated by the pre-migration assessment rather than the actual

migration. Tran et al. [17] reports that selecting proper cloud

providers and server types requires significant effort during

preparation for migration. Suppose an organization wants to

assess which cloud out of three candidate clouds is the best

fit (e.g., in terms of performance and/or cost) for each of its n
applications, it has to perform a total of 3n migrations in order

to complete the assessment. Suppose 50% of the applications

are eventually considered not a fit for any cloud (i.e., only

n/2 of the applications will be migrated), the number of pre-

migration assessments is 3n — a 500% overhead!

Our approach, PseudoApp, addresses this problem by pro-

viding a quick way of assessing an application’s performance

(e.g., throughput and response time) and cost (e.g., due to

VM size and disk/network traffic) in a potential target cloud,

without actually migrating the real application. Our approach

consists of the following steps:

1) Profile the application in its legacy environment to

extract its resource consumption behavior at the system

call level.

2) Automatically construct what we call the PseudoApp

components that mimic the real application’s resource

consumption behavior.

3) Install the PseudoApp components in a cloud. This is a

trivial task because the PseudoApp component is simple

and has no environment dependency. For example, even

if the real application requires a particular library version

or has an obscure parameter hidden in a configuration

file, the PseudoApp component has no dependency on

those.

4) Generate workloads for the PseudoApp components, and

benchmark their performance and resource consumption,

as if they were the real application.

Figure 1 shows the thread and system call level structure

of a distributed application discovered through profiling. The

PseudoApp component has the exact number of components

and topology as the real application does. When processing

a request, the PseudoApp component goes through exactly

the same request-processing path and produces the same

system call invocation sequence as that in Figure 1. The only

difference is that, the real application does real work, whereas

the PseudoApp component performs CPU spinning, writes

meaningless data to files, and sends network messages with

meaningless payloads.

The PseudoApp approach offers several advantages. First,

it allows for a quick performance and cost assessment in

a new environment, without going through the painful pro-

303978-3-901882-50-0 c©2013 IFIP

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357336821?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

������

����������

Thread1

����

����

	
��

����� ����

��	
��

������

����������

Thread
����

����

����

����

����

Thread2

����

�����

����

����

����
	�
���

����������

Thread

����

����

	�
���

����������

Thread

����

����

Communication over
TCP connection z

Communication
over TCP

connection y

Communication
over TCP

connection x

�����

����� ����

incoming
request

messages

Fig. 1. Anatomy of a distributed application from the PseudoApp perspective. Component1 receives multiple external requests at the same time and this
figure shows only the end-to-end execution flow of one request. Other requests are processed in parallel. Component1 depicts an example case where the
request processing involve different threads at different time. Component2 shows one example case where a single thread handles one request. System calls
are invoked along the request-processing path, e.g., file read/write and network send/recv.

cess of application installation and configuration. Second, its

performance result automatically reflects the idiosyncrasies

of the new environment, which are often hard to capture

in a pure model-based approach. For example, factors such

as contention in shared network/storage and the scheduling

policy automatically plays in when running the PseudoApp

components. Finally, it provides performance insights for

scenarios that are hard to evaluate even if we are able migrate

the real application. For instance, the effect of changing the

application topology can be evaluated by easily restructuring

the PseudoApp component’s topology, e.g., adding one more

virtual machine to the middle tier.

The rest of this paper is organized as follows. In Section II

we describe the key ideas of PseudoApp as well as details

of current prototype implementation. Next, in Section III we

present the evaluation results of PseudoApp when applied

to various applications and environments. Related works are

described in Section IV. Finally we make concluding remarks

in Section V.

II. OUR APPROACH: PSEUDOAPP

We hypothesize that resource consumption and synchroniza-

tion delays are the deciding factors of application performance.

In Figure 1, PseudoApp components (which comprises one

‘pseudo-application’ together) precisely reproduces these fac-

tors along the end-to-end processing path of each individual

request for different types of requests exhibited by the appli-

cation.

When benchmarking (i.e. measuring the performance of) the

pseudo-application, the workload generator sends requests to

Component1 with the desired concurrency level. Each request

message begins with a request type ID, which instructs the

components to replay a particular processing path. A precise

replay of the system call sequence is also important. For

example, the following two sequences may seem to consume

the same amount of total resources, but their performance

results can be very different:

1) Consume CPU for 100 ms and then perform 10 disk

reads back to back.

2) Consume CPU for 10 ms and then perform one disk

read. Repeat this pattern 10 times.

A. Overview

We adopt the vPath [16] technique to extract the application

structure and path information as depicted in Figure 1. vPath

reconstructs request-processing paths by observing system

call events in a black-box manner and reasoning about their

causality. A key observation is that an incoming message is

typically assigned to a thread (e.g., Thread1 of Component1 in

Figure 1) from a thread pool. The thread processes the request

until it triggers another outgoing message.1 This implies that,

within one component, we can use the IDs of threads that

invoke system calls to link together system calls on the same

request-processing path.

vPath extends the request-processing path across compo-

nents by pairing up a send system call of one component

with a recv system call of another component on the same

TCP/UDP connection. This task is equivalent to finding all

the dotted arrows between components in the Figure 1. A

TCP/UDP connection is uniquely identified by the endpoints

(src ip, src port, dest ip, dest port). In summary, vPath re-

constructs end-to-end request-processing paths by combining

two causality reasoning techniques that leverage thread IDs

and network endpoints.

vPath only monitors network-related system calls. We ex-

tend it to 1) monitor file-related system calls (for replaying

disk I/Os), 2) record context-switch events and timestamp of

system calls (for replaying CPU busy time), and 3) track

synchronization events such as pthread_mutex_lock (for

replaying synchronization delay). The recorded events form

the application’s profile.

A pseudo-application is a distributed execution engine that

replays events according to the profile of the real application.

Consider the example in Figure 2. We deploy two pseudo

components, C1 and C2. A workload generator (not shown

1This is a simplified example. We extend vPath to handle more sophisticated
program patterns, including event-driven programs. Details are omitted here.

304 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013)

���������
�
	�

�

Thread
recv

write

write

send

send

recv

recv

recv

pread64

send

recv

pread64

pread64

���������
�
	�

�

(210 bytes)
(107 bytes)

(205 bytes)

(63 bytes)

(4 bytes)
(59 bytes)

(16 Kbytes)

(16 Kbytes)

(16 Kbytes)

(110 bytes)
(4 bytes)

(106 bytes)

(2357bytes)

Fig. 2. A simplified request-processing path example taken from a real
application. The CPU busy time between system calls are traced but not shown
in the figure for the sake of brevity.

in the figure) sends a 210-byte message to C1. The message

contains a request type ID. C1 finds in the profile the trace

that matches with the request type ID, and invokes the system

call sequence: write, write and send. Between these events,

it inserts CPU busy-loops to match the CPU consumptions

recorded in the profile. C2 receives a 63-byte message from

C1 in two recv, replays events recorded in the profile, and

finally returns a message back to C1. C1 finishes the rest of

the processing and returns a 2,357-byte message, filled with

random data.

It should be emphasized that the pseudo-application only

replays the amount of resource consumption and the sequence

of events, but does not enforce any specific timing or schedul-

ing constraints. The time it takes to consume a specific amount

of resource or how two concurrent threads are scheduled are

dependent on the characteristics of the target environment.

PseudoApp induces this behavior naturally because that is how

the real application would run if it were deployed to the new

environment.

B. Handling of Different Resources

This section presents a detailed discussion on how to handle

different types of resources.

1) CPU Profiling and Replay: PseudoApp uses a busy-

loop with integer computation to emulate the real application’s

consumption of δ CPU cycles. In order to determine the correct

number of loops to spin in the target environment, we perform

a CPU profiling with a small program that loops n times. It

also records the number d of elapse CPU cycles. To consume

δ CPU cycles, PseudoApp repeats the integer loop δ/(d/n)
times. This method may introduce inaccuracy. The CPI (Cycle

per Instruction) of the real application can vary depending on

L1/L2/L3 cache, memory, and other microarchitecture factors.

It is a subject of future work to more faithfully replay a certain

instruction mix.

2) Network and Disk I/O: PseudoApp replays the real

application’s I/O activities by invoking the same sequence of

system calls with the same I/O sizes for each request, but

writing random data to disk or network. For a disk I/O, the

data location significantly impacts the performance. During

profiling, PseudoApp tracks the file offset of disk I/Os. During

replay, PseudoApp can either repeat the exact same file offset

history, or generate file offsets from a probability distribution

that is modeled after the real trace. There are pros and cons

of each approach. Our current implementation uses the second

approach. A comparison of the two approaches is a subject of

future work.

3) Memory Access: The number of active memory pages

(i.e. Resident Set Size) affects the performance in the fol-

lowing way. OS kernel usually utilizes all available memory

pages that are not assigned to processes as page cache. To

induce a faithful page cache size, which significantly affects

disk I/O performance, a PseudoApp component periodically

touches the same number of active memory pages as that

observed during profiling, which helps prevent them from be-

ing swapped out. Besides the size of active memory, memory

access pattern also affects performance, e.g., due to hit/miss

in L1/L2/L3 cache. Currently PseudoApp does not trace or

replay memory access patterns because of the high overhead in

doing that. It is left as a future work to study how to efficiently

summarize and reply memory access patterns, e.g., leveraging

reuse distance analysis [3].

4) Thread Synchronization: Synchronization can have sig-

nificant impact on application performance, reducing through-

put and increasing response time. Currently, PseudoApp pro-

filing is implemented in the kernel. It monitors the invoca-

tions of futex system calls during profiling and recreates

the same effect by inserting pthread_mutex_lock and

pthread_mutex_unlock in the pseudo-application. One

potential problem is that not every application-level syn-

chronization operation can be observed in the kernel dur-

ing profiling, because on Linux, pthread_mutex_lock

is implemented in such a way that only a real contention

results in a futex system call. If there is no contention, it

is simply a library call, which is invisible to the kernel. This

is an implementation issue of PseudoApp. We are actively

converting PseudoApp to perform profiling at the user level, by

using LD PRELOAD to intercept library calls, which would

resolve this problem. In practice, we do not observe the

current limitation dramatically impacts the performance. See

Section III-B for more details.

C. Some Implementation Details

Most of our engineering efforts in PseudoApp are put into

the application profiling, which can be done in several different

ways, depending on the environment constraints such as OS

types, virtualized or physical environment, and the software

level (e.g., libc, guest kernel, or hypervisor) to instrument pro-

filing. Our current implementation assumes a Xen-based envi-

ronment, where applications run in VMs. We modify the guest

kernel to monitor system calls and context switches. At the en-

try and exit point of a system call we monitor, the system call

parameters and return values are captured and transferred to

the Xen hypervisor through hypercalls. The hypercall handler

in the Xen hypervisor invokes xentrace to store the infor-

mation in log files. Although our prototype uses xentrace,

it is for convenience rather than mandatory, and can be

replaced by any available kernel logging mechanism. The

2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013) 305

system calls traced by PseudoApp include read, write,

recv, send, bind, connect, listen, accept,

time, futex, etc.

Our profile analyzer reads the log files created by

xentrace, and follows the principles described in Sec-

tion II-A to extract the request-processing paths and save

them in a profile. We then deploy the pseudo-application

in a cloud together with the profile. The profile controls

the behavior of the pseudo-application. During benchmarking,

our PseudoApp workload generator submits requests at a

controlled concurrency level to the front-end component of

the pseudo-application. The workload generator and the front-

end component communicate through a pre-defined message

format. Upon receiving a message, a pseudo-application com-

ponent executes the corresponding system call sequences and

CPU busy time between system calls, both of which are

available from the stored profiles. During the execution, one

component of the pseudo-application may send a message

to another component. The receiving component replays the

corresponding system call sequence and CPU busy time from

the profile. As the request-processing travels through the dis-

tributed PseudoApp components, every component performs

replay faithfully according to the profile.

III. EVALUATION

We use PseudoApp to predict the performance of real ap-

plications in multiple clouds: our Xen-based in-house private

cloud and the Amazon EC2 public cloud [1]. We compare

the response time and throughput predicted by PseudoApp

with those measured from the real applications running in

the clouds, in order to evaluate the prediction accuracy. The

applications include the Apache web server and the TPC-

W benchmark developed at New York University [12]. TPC-

W is a fully J2EE compliant application. We use a two-

tier configuration for TPC-W: a front-end JBoss tier (JBoss

3.2.8SP1) and a MySQL database tier (MySQL 4.1).

Experiments with Apache allow us to control various re-

source conditions so that we can see how well PseudoApp is in

mimicking the application performance with consumption of

individual resource types such as CPU, network I/O, and disk

I/O, separately. Experiments with the TPC-W demonstrate the

PseudoApp performance in predicting a typical e-commerce

application.

In summary, the experiments validate that the PseudoApp

approach is effective.

• PseudoApp accurately predicts the performance of

Apache in the presence of various resource conditions

(saturation of network, CPU, and disk I/O) and system

parameters such as file sizes.

• PseudoApp closely follows the performance of TPC-

W over varying workload intensity and various system

settings with an average of 3.0-3.8% prediction error for

throughput and 5.3-8.5% error for response time.

Response Time Throughput
Settings Error Error

(Case1) Network
Saturation

12.9% 1.4%

(Case2) Similar to
Case1, but smaller web

page size
18.3% 3.0%

(Case3) CPU Saturation 19.6% 7.6%

(Case4) Disk I/O
bandwidth Saturation

6.8% 6.1%

TPC-W Setting 1
(In-house server,

virtualized)
8.5% 3.8%

TPC-W Setting 2
(Amazon EC2 2 VMs)

5.3% 3.0%

TABLE I
AVERAGE ERROR OF PERFORMANCE PREDICTION.

A. Evaluation Using Apache Web Server

In our experiments, each server machine used in the evalu-

ation has dual Intel Xeon 3.4GHz (2048KB cache) processors

with hyperthreading. Memory size is 1GB and the network

bandwidth is 1Gbps. Profiling of the Apache web server is

done within a VM that runs in a virtualized environment of

Xen 3.1.4 on a physically different set of hardware (Intel Xeon

3.06GHz, 512MB cache, different networking H/Ws etc.) from

where we conduct the following evaluations. Obtained pro-

files are, then, used to construct the PseudoApp components

for Apache. These PseudoApp component and Apache are

deployed to the same hardware (previously mentioned Intel

Xeon 3.4GHz, 2048KB cache servers) that is also virtualized,

for gathering performance comparison results.

Our experiments generated the following four different

resource conditions.

• [Case1] Network Bandwidth Saturation: One VM is

given one physical CPU. The network bandwidth between

the workload generator and the Apache VM is 1 Gbps.

The Apache web server serves a static web page of 300

KB size. The workload generator repeatedly accesses the

same web page to consume CPU and network resources,

excluding the effect of storage access in this configura-

tion.

• [Case2] Network Saturation with Different Web Page

Size: All the conditions are identical to the Case1 except

that the web page size is reduced to 200KB. This case is

intended to show what happens to the network bottleneck

if the web page size is reduced (thereby reducing the

network usage which may shift the bottleneck from

network to CPU).

• [Case3] CPU Saturation: In this setting, we launch two

VMs that share a single physical core. One VM runs

an infinite integer loop that uses up all the allocated

CPU. Another VM runs the Apache web server. The CPU

allocation ratio of the integer-loop VM to the Apache

VM is 2:1. This configuration makes CPU the bottleneck

resource. If the CPU is given entirely to the Apache VM,

306 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 60 80 100 120 140 160 180 200

50

100

150

200

250

300

350

400

450

R
e

s
p

o
n

s
e

 T
im

e
 (

m
ill

is
e

c
)

T
h

ro
u

g
h

p
u

t(
re

q
/s

)

Number of Client Threads

Throughput

Response Time

Response Time (Apache)
Response Time (PseudoApp)

Throughput (Apache)
Throughput (PseudoApp)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 100 120 140 160 180 200

100

200

300

400

500

600

700

800

R
e

s
p

o
n

s
e

 T
im

e
 (

m
ill

is
e

c
)

T
h

ro
u

g
h

p
u

t(
re

q
/s

)

Number of Client Threads

Throughput

Response Time

Response Time (Apache)
Response Time (PseudoApp)

Throughput (Apache)
Throughput (PseudoApp)

(a) Network Saturation - Case1 (b) Using Smaller Web Page - Case2

(with 300KB web page size) (with 200KB web page size)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 60 80 100 120 140 160 180 200

50

100

150

200

250

300

350

400

450

R
e

s
p

o
n

s
e

 T
im

e
 (

m
ill

is
e

c
)

T
h

ro
u

g
h

p
u

t(
re

q
/s

)

Number of Client Threads

Throughput

Response Time

Response Time (Apache)
Response Time (PseudoApp)

Throughput (Apache)
Throughput (PseudoApp)

 0

 200

 400

 600

 800

 1000

 0 30 60 90 120 150 180

20

40

60

80

100

120

140

R
e

s
p

o
n

s
e

 T
im

e
 (

s
e

c
)

T
h

ro
u

g
h

p
u

t(
re

q
/s

)

Number of Client Threads

Throughput

Response Time

Response Time (Apache)
Response Time (PseudoApp)

Throughput (Apache)
Throughput (PseudoApp)

(c) CPU Saturation - Case3 (d) Disk I/O constrained Setting - Case4

Fig. 3. Performance comparison of Apache and PseudoApp for cases Case1, 2, 3 and Case4. Each graph is averages of between 5 to 10 runs.

the network would become the bottleneck. Apache serves

a 300KB static web page, as in the previous setup. Two

VMs’ CPU allocation ratio is 2:1 (1 for the Apache VM).

This CPU sharing configuration is devised in order to

make the CPU the bottleneck resource. If full single CPU

is given to the Apache VM, network bandwidth becomes

the bottleneck in our hardware configurations. Again, the

Apache web server serves 300KB-sized static web page.

• [Case4] Disk Bandwidth Saturation: This setting is

designed to evaluate PseudoApp’s capability of reproduc-

ing the application behavior under a disk-I/O intensive

workload. We prepared a set of 500 web pages for

Apache, closely following the reported properties of real

web sites [2]. The average web page size is set to 800KB,

with a lognormal distribution. The total size of the web

pages (460MB) is made close to the Apache VM’s total

memory size (512MB) in order to force page cache

miss and trigger actual disk I/Os. For each web request,

the workload generator randomly selects a web page to

access.

The PseudoApp component for Apache is created with

profiling information obtained under low workload intensity.

We did not perform the profiling under heavy workload in

order to fine-tune the PseudoApp component. All the workload

intensities shown in the result graphs are not seen during

the profiling phase. This demonstrates PseudoApp’s advantage

in making accurate prediction for previously unseen, new

workloads.

Figure 4 shows how Apache works internally when pro-

cessing a web request. Fetching a web page from the apache

web server generates the sequence of system calls as shown

in Figure 4 (b). The number of sendfile64 depends on the

total web page size and the graph in Figure 4 (a). The number

of bytes each sendfile64 sends are not equal. It has a

ramping-up period and never exceeds 1.5 MB per invocation.

Our PseudoApp components for apache are built to follow all

of these properties.

The results for the settings Case1, Case2, Case3 and Case4

are presented in Figure 3. The average error of PseudoApp

on the Apache is summarized in Table I. In Figure 3 (a),

which is the case of network saturation, Apache’s response

time starts to increase linearly as the number of concurrent

clients goes beyond 120. At that point, the network is fully

saturated. The throughput curve tops at 381 reqs/sec, which is

close to the theoretical upper bound of the 1 Gbps network:

300KB×381req/s×8bits=0.93Gbps. Although not shown in

the figure, the CPU utilization is consistently below 50%. Fig-

ure 3a) shows that PseudoApp’s response time and throughput

2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013) 307

closely match those of the real Apache server.

Network saturation of Case1 is the consequence of the web

page size being 300KB. What would happen to the bottleneck

if the web page size is reduced? We can expect that the

network bandwidth capacity would allow higher throughput.

But, would CPU become the bottleneck before the network

bandwidth limit is reached as we increase the throughput?

Case2 is designed to find out the answer to this by reducing

the file size to 200KB. According to Figure 3(b), it turns

out that the bottleneck does not shift from network to CPU.

The throughput tops at about 580 req/s reflecting the effect

of smaller web page size, and the response time is also

significantly smaller than Case1. PseudoApp’s result follows

all of these behaviors well. Part of the reason why the network

remains as the bottleneck is because the CPU consumption

is reduced together as the web page size gets smaller. The

answer to the posed question is not immediately clear and also

difficult to answer based on intuitions. However, PseudoApp

successfully demonstrate that it delivers accurate answers to

these what-if questions.

The setting Case3 is designed to observe how effectively

PseudoApp can reproduce the performance under the CPU

saturation condition. CPU saturation is achieved by having

two VMs share a core and, at the same time, by lowering

the CPU scheduling weight of the Apache VM. Comparing

with Case1’s results, the response time graph shows nonlinear

curvy increasing trend and falls under the response time graph

of Case1. Plateau of the throughput graph lies below that of

Case1 indicating network is not a bottleneck. We can see that

the CPU saturation has less impact to the response time than

the network saturation does, but it degrades the throughput

more. Jaggedness of both the response time and throughput is

partly due to the VM scheduler’s characteristics. PseudoApp

is able to reproduce all of these performance characteristics.

We also conducted experiments to study the PseudoApp’s

capability in reproducing the performance under disk I/O

intensive workloads using the setting Case4. Figure 3 (d)

compares the performances of Apache web server and the

corresponding PseudoApp component. Note that the scale of

response times is one order higher than others due to the

latencies of actual disk I/Os. As a preparation step before

the actual run, the PseudoApp component created the same

number and size of dummy web pages as described earlier.

We can see that PseudoApp technique is able to portray the

actual performance in case of heavy disk I/O workloads as

well.

From these evaluations using Apache web server we verify

the PseudoApp technique’s efficacy in reproducing the per-

formance for individual resource types. The results support

our hypothesis that mimicking the resource consumption (and

without enforcing any other execution rules such as specific

timing or orders) is a promising way of reproducing the

performance. We have also seen that profiling information at

one workload level is sufficient for creating a solid PseudoApp

component.

�

���

�

���

�

� � �� �� �� 	
 �	 �� ��

M
B

yt
e

s

sendfile64 invocation counts
(a) sendfile64 return byte change

Receive http GET request����

����

	�
���

����
����

����
����

Open requested file

Send HTTP header for response

Send f ile contents

30K CPU cycles

1.7M CPU cycles

0.5M CPU cycles

65K CPU cycles

65K CPU cycles
repeat

(b) System call sequence of HTTP GET

Fig. 4. Apache’s behavior of static file fetching requests. The return byte sizes
of repeated sendfile64 are not uniform. The size increases with the pattern
shown in (b) until it reaches 1.4 MB per invocation.

B. Evaluation Using TPC-W E-commerce Benchmark

In this experiment, we compare the measured performance

of the real TPC-W with the prediction given by PseudoApp.

We created two PseudoApp components: one for JBoss and the

other for MySQL. Our evaluation was done in two different

cloud environments:

• Setting 1: In-house private cloud, where two VMs are

created on one physical server. One VM runs JBoss and

the other runs MySQL. The hardware configuration is

identical to that of the Apache experiments. Each VM

has its own dedicated core.

• Setting 2: Amazon EC2, where two small instances are

created. One VM runs JBoss and the other runs MySQL.

Each VM is configured with 1.7 GB memory and 1 EC2

compute unit.

PseudoApp was able to produce similar performance results

as the real TPC-W, over varying workload intensities. Fig-

ure 5 (a) compares the performance of TPC-W and PseudoApp

in our private cloud. Although the CPU utilization changes are

not presented here, the CPU utilization of MySQL reaches 70-

80% as the number of client threads exceeds 15. Even under

such an overloaded condition, the performance of PseudoApp

closely follows that of the real TPC-W.

Figure 5 (b) shows the results in Amazon EC2. We pur-

chased three small EC2 instances and used two of them

for hosting TPC-W (JBoss and MySQL), and used the third

one for workload generation. The performance of TPC-W

and PseudoApp matches closely even under a heavy load, as

evidenced by the flattened throughput and the steep rise of

response time.

308 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5 10 15 20 25 30 35 40

3

6

9

12

R
e

s
p

o
n

s
e

 T
im

e
 (

m
ill

is
e

c
)

T
h

ro
u

g
h

p
u

t(
re

q
/s

)

Number of Client Threads

Throughput

Response Time

Response Time (TPC-W)
Response Time (PseudoApp)

Throughput (TPC-W)
Throughput (PseudoApp)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 3 6 9 12 15 18 21 24 27

1

2

3

4

5

6

R
e
s
p
o
n
s
e
 T

im
e
 (

m
ill

is
e
c
)

T
h
ro

u
g
h
p
u
t(

re
q
/s

)

Number of Client Threads

Throughput

Response Time

Response Time (TPC-W)
Response Time (PseudoApp)

Throughput (TPC-W)
Throughput (PseudoApp)

(a) Setting1: In-house private cloud (b) Setting2: Amazon EC2

Fig. 5. Response time and throughput comparison of TPC-W and PseudoApp in two different environment.

System Call Frequency Total Cycles Consumed ms per system call

time 511256 495M 0.00028 ms

pread64 73780 11999M 0.047 ms

read 51694 558585M 3.12 ms

rt sigprocmask 27120 82M 0.0008 ms

futex 23349 1969065M 24.37 ms

llseek 15759 15M 0.0002 ms

fcntl64 13434 21M 0.0004 ms

sched setscheduler 12488 42M 0.0009 ms

write 6305 507M 0.023 ms

TABLE II
TURN-AROUND TIME OF TOP 9 SYSTEM CALLS DURING THE BUSIEST

TIME OF MYSQL EXECUTION IN TPC-W.

Our prediction error metric is defined as E = (Rtpcw −

Rpseudoapp)/Rtpcw, where R is either throughout or response

time. For both our private cloud and the EC2 public cloud,

the errors were 1-17% and 1.4-5.3% for response time and

throughput, respectively.

One important factor that affects the performance in the

overloaded region is the thread synchronization operations via

futex system call. We confirm this by counting each system

call’s occurrences and measuring the latencies when running

the real TPC-W. Table II lists top-9 most frequently invoked

system calls during a highly overloaded 15-second period of

MySQL. The forth column is the time (in millisec) spent by the

system calls in the kernel mode starting from the entry point

of the system calls to the exit point. Although time system

call is invoked most frequently, it is not the major contributing

system call to the overall response time since the turn-around

time of the individual call is very small (.00028ms).

The largest contributor turns out to be the futex system

call, with an average latency of 23.47 ms for each invocation.

This latency is the duration of time between when a thread

is put into the wait queue due to mutex conflict and the time

when it is awaken and exits the futex call. Without emulating

futex, PseudoApp’s response time is too optimistic, only

about half of the real TPC-W’s response time. Therefore, ac-

curately capturing thread contention is critical for PseudoApp.

We collected information in Table II only for the purpose

of understanding the impact of different system calls. It is

not needed for constructing PseudoApp, as our tool fully

automates the process of PsedudoApp construction, by using

the augmented vPath to profile TPC-W under a light workload.

IV. RELATED WORK

Although there exist numerous research works on perfor-

mance modeling [4], [11], [13], [15], many of them are not

directly applicable to the problem of performance prediction

for a disparate environment. This is because many performance

models are often tightly coupled to the environment properties

that the application is currently running. If the environment

changes, the models have to be refined and tuned again using

the parameters of the new environment which may not always

be possible.

Cross-platform performance prediction has been studied in

the context of processor architecture designs. The motivation is

to build a platform-independent performance model so that it

can quickly explore the processor design space. Some of them

propose to use machine learning techniques [8] or statistical

regression [10]. In the work of Hoste et al. [7], performance

of an application is predicted by first collecting performance

scores of known benchmark, and second, profiling the new

application, and finally, selecting the closest performance from

the space based on the similarity measures. The inherent

problem is that the accuracy is limited if new application is

not similar to any of the benchmarks. Also, their technique

requires instrumenting the application. In the context of pro-

cessor architecture, Ipek et al. [8] have used artificial neural

networks to build the performance model.

Stewart et al. used so-called trait models [14] in perfor-

mance prediction. Each trait model describes one aspect of

the system, e.g., cache miss rate for a given processor cache

size, or the total number of instructions for a given workload.

Multiple trait models are combined into one formula to form

the final performance model. This approach requires intimate

2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013) 309

knowledge of the application’s internals in order to compose

the final performance model from the trait models.

Justrunit [19] learns the performance of application com-

ponents by actual experiments rather than from the models. It

assumes a virtualized environment where components reside

in separate VMs. In order to learn the relationship between

VM’s resource allocation and performance in a live production

system, they propose to create a clone of target components

and sandbox them. Actual traffic is duplicated and fed into

the sandboxed VMs that have different resource allocations.

All the input and output traffics are controlled by the in&out

proxies to ensure correctness of the execution. However, there

are applications whose correctness cannot be guaranteed by

the in&out proxies. Hence Justrunit is not a general method.

V. CONCLUSION

As cloud becomes indispensable, migrating legacy appli-

cations from a traditional hosting environment to a cloud

has become a critical concern for IT departments. In order

to lower the barrier of pre-migration assessment, we have

developed PseudoApp, a technique that can accurately predict

the performance of applications in a cloud without actually

installing the real application in the cloud.

The main idea of PseudoApp is to create a set of light-

weight pseudo-application components that, at the individual

request level, faithfully mimic the resource consumption be-

haviors of the real application’s components. Our profiling tool

collects the system call trace of the real application to auto-

matically construct the corresponding pseudo-application. By

benchmarking the simple pseudo-application in the cloud, we

can accurately predict the performance of the real application.

Our current implementation of PseudoApp has several limi-

tations. It does not accurately capture the instruction mix (e.g.,

integer, floating point, etc.) of the real application, and it does

not accurately capture the real application’s memory access

pattern and the impact of L1/L2/L3 caches. These are major

directions for future research.

REFERENCES

[1] Amazon EC2. http://aws.amazon.com/ec2/.

[2] Average Web Page Size. http://www.websiteoptimization.com/speed/
tweak/average-web-page/.

[3] K. Beyls and E. H. DHollander. Reuse distance as a metric for cache
behavior. In Proceedings of the IASTED Conference on Parallel and

Distributed Computing and Systems, 2001.

[4] R. P. Doyle, J. S. Chase, O. M. Asad, W. Jin, and A. M. Vahdat. Model-
based resource provisioning in a web service utility. In Proceedings of

the 4th conference on USENIX Symposium on Internet Technologies and

Systems - Volume 4, USITS’03, Berkeley, CA, USA, 2003.

[5] force.com. The Force.com Multitenant Architecture: Understanding
the Design of Salesforce.com’s Internet Application Development Plat-
form. In Force.com Whitepaper http://wiki.developerforce.com/ index.

php/Multi Tenant Architecture, 2008.

[6] Google AppEngine. http://code.google.com/appengine/.

[7] K. Hoste, A. Phansalkar, L. Eeckhout, A. Georges, L. K. John, and
K. De Bosschere. Performance prediction based on inherent program
similarity. In Proceedings of the 15th international conference on

Parallel architectures and compilation techniques, PACT ’06, pages
114–122, New York, NY, USA, 2006. ACM.

[8] E. Ïpek, S. A. McKee, R. Caruana, B. R. de Supinski, and M. Schulz.
Efficiently exploring architectural design spaces via predictive modeling.
In Proceedings of the 12th international conference on Architectural

support for programming languages and operating systems, ASPLOS-
XII, pages 195–206, New York, NY, USA, 2006. ACM.

[9] LongJump. http://longjump.com/.
[10] G. Marin and J. Mellor-Crummey. Cross-architecture performance

predictions for scientific applications using parameterized models. In
Proceedings of the joint international conference on Measurement and

modeling of computer systems, SIGMETRICS ’04/Performance ’04,
pages 2–13, New York, NY, USA, 2004. ACM.

[11] M. P. Mesnier, M. Wachs, R. R. Sambasivan, A. X. Zheng, and G. R.
Ganger. Modeling the relative fitness of storage. In Proceedings of the

2007 ACM SIGMETRICS international conference on Measurement and

modeling of computer systems, SIGMETRICS ’07, pages 37–48, New
York, NY, USA, 2007. ACM.

[12] NYU TPC-W. http://www.cs.nyu.edu/pdsg/.
[13] L. P. Slothouber and P. D. A model of web server performance. In In

Proceedings of the 5th International World Wide Web Conference, 1996.
[14] C. Stewart, T. Kelly, A. Zhang, and K. Shen. A dollar from 15 cents:

cross-platform management for internet services. In USENIX 2008

Annual Technical Conference on Annual Technical Conference, ATC’08,
pages 199–212, Berkeley, CA, USA, 2008. USENIX Association.

[15] C. Stewart and K. Shen. Performance modeling and system management
for multi-component online services. In Proceedings of the 2nd confer-

ence on Symposium on Networked Systems Design & Implementation -

Volume 2, NSDI’05, Berkeley, CA, USA, 2005. USENIX Association.
[16] B. C. Tak, C. Tang, C. Zhang, S. Govindan, B. Urgaonkar, and R. N.

Chang. vpath: precise discovery of request processing paths from black-
box observations of thread and network activities. In Proceedings of the

2009 conference on USENIX Annual technical conference, USENIX’09,
pages 19–19, Berkeley, CA, USA, 2009.

[17] V. Tran, J. Keung, A. Liu, and A. Fekete. Application migration to cloud:
a taxonomy of critical factors. In Proceedings of the 2nd International

Workshop on Software Engineering for Cloud Computing, SECLOUD
’11, New York, NY, USA, 2011. ACM.

[18] Windows Azure. http://www.microsoft.com/windowsazure/
windowsazure/.

[19] W. Zheng, R. Bianchini, G. J. Janakiraman, J. R. Santos, and Y. Turner.
Justrunit: experiment-based management of virtualized data centers. In
Proceedings of the 2009 conference on USENIX Annual technical con-

ference, USENIX’09, Berkeley, CA, USA, 2009. USENIX Association.

310 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

