Hybrid Differentiation Strategies
for Simulation and Analysis
of Applications in C++

ROSCOE A. BARTLETT and BART G. VAN BLOEMEN WAANDERS
Sandia National Laboratories

and

MARTIN BERGGREN

Uppsala University, Sweden

Computationally efficient and accurate derivatives are important to the success of many different
types of numerical methods. Automatic differentation (AD) approaches compute truncation-free
derivatives and can be efficient in many cases. Although present AD tools can provide a convenient
implementation mechanism, the computational efficiency rarely compares to analytically derived
versions that have been carefully implemented. The focus of this work is to combine the strength of
these methods into a hybrid strategy that attempts to achieve an optimal balance of implementation
and computational efficiency by selecting the appropriate components of the target algorithms for
AD and analytical derivation. Although several AD approaches can be considered, our focus is
on the use of template overloading forward AD tools in C++ applications. We demonstrate this
hybrid strategy for a system of partial differential equations in gas dynamics. These methods
apply however to other systems of differentiable equations, including DAEs and ODEs.

Categories and Subject Descriptors: G.1.0 [Numerical Analysis]: General; G.1.4 [Numerical
Analysis]: Quadratic and Numerical Differentiation—Automatic differentiation; D.1.0 [Program-
ming Techniques]: General; G.4 [Mathematical Software]: Efficiency

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Hybrid differentiation methods, Euler equations, automatic
differentiation, finite volume methods, template overloading

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company,
for the United States Department of Energy under Contract DE-AC04-94A1.85000.

© 2008 Association for Computing Machinery. ACM acknowledges that this contribution was
authored or coauthored by a contractor or affiliate of the U.S. Government. As such, the Government
retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to
do so, for Government purposes only.

Authors’ Addresses: R. A. Bartlett, B. G. Van Bloemen Waanders, Sandia National Laboratories,
Albuquerque, NM 87185; M. Berggren, Department of Information Technology, Uppsala University,
Sweden.

Permission to make digital or hard copies of part or all of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit or direct
commercial advantage and that copies show this notice on the first page or initial screen of a
display along with the full citation. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to
post on servers, to redistribute to lists, or to use any component of this work in other works requires
prior specific permission and/or a fee. Permissions may be requested from the Publications Dept.,
ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or
permissions@acm.org.

© 2008 ACM 0098-3500/2008/07-ART1 $5.00 DOI 10.1145/1377603.1377604 http://doi.acm.org/
10.1145/1377603.1377604

ACM Transactions on Mathematical Software, Vol. 35, No. 1, Article 1, Publication date: July 2008.

1:2 . R. A. Bartlett et al.

ACM Reference Format:
Bartlett, R. A., Van Bloemen Waanders, B. G., and Berggren, M. 2008. Hybrid differentia-
tion strategies for simulation and analysis of applications in C++. ACM Trans. Math. Softw.
35, 1, Article1l (July 2008), 29 pages. DOI = 10.1145/1377603.1377604 http://doi.acm.org/
10.1145/1377603.1377604

1. INTRODUCTION

The derivative calculation represents a fundamental component in simula-
tion and analysis codes. Although the differentiation of elementary opera-
tions is straightforward, multivariate derivative calculations in complicated
algorithms can be time consuming to analytically derive and error-prone to
implement. There are many approaches available to implement derivative
calculations, including symbolic methods, finite differences, complex step, and
automatic differentiation (AD). An appropriate calculation strategy depends on
implementation issues, accuracy requirements, and the importance of compu-
tational efficiency.

Symbolically derived analytical code can provide the most efficient results,
but can be time-consuming to derive, especially for codes simulating complex
physics. Furthermore, the implementation can be difficult and error prone.
Finite-difference approximations are simpler to implement but result in less
accurate derivative values. The selection of the perturbation step size is one of
the fundamental problems associated with finite differencing and is difficult to
perform a priori. The complex step approach is a potentially implementation-
efficient approach with results accurate to machine precision in most cases.
Even though the implementation is relatively straightforward, the disadvan-
tage of adding a complex data type is in the redundancy of certain computations.

Automatic differentiation can potentially provide the optimal combination of
accuracy, implementation simplicity, and computational efficiency. Significant
work has been done on tools that use source transformation [Bischof'et al. 1997;
Bischofet al. 1992; Giering and Kaminski 1998; Faure 2005; Hascoet 2004] and
these tools can be very effective as a general or initial approach to calculating
derivatives. The standard source transformation tools are somewhat sensitive
to simulation code implementations and can make for a cumbersome develop-
ment environment because of separate recompilations to calculate the appropri-
ate derivative values of new functions. An alternative strategy for applying AD
in C++ based codes is to template the functions on the scalar type which can be
instantiated on double or Fad<double> for instance. The template instantiation
strategy provides a mechanism to implement AD at various levels of complex-
ity. This removes certain code maintenance issues, provides machine precision
derivative calculations, and most importantly provides an easy mechanism to
control the level of intrusiveness of the AD calculation, which has implications
to implementation effort and computational efficiency.

Even the most efficient AD implementations can not be faster than codes
using optimized symbolically derived expressions. For large and complex sim-
ulation software a balance must be achieved among implementation, computa-
tional efficiency, and accuracy. Our strategy is to consider a hybrid methodology

ACM Transactions on Mathematical Software, Vol. 35, No. 1, Article 1, Publication date: July 2008.

Strategies for Simulation and Analysis of Applications in C++ . 1:3

driven by the complexities associated with symbolic derivations. The subject of
this paper is the use of hybrid strategies involving the application of AD at
various levels of functional complexity. We present the application of hybrid
approaches to a relatively complicated function evaluation that discretizes sys-
tems of partial differentiable equations (PDEs). However, other models can also
be considered, such as solving differential-algebraic equations (DAEs) based
network simulators. Although we demonstrate certain derivative calculation
strategies using a specific example from compressible fluid dynamics, most of
the statements and conclusions presented in this work are general and can be
applied to arange of functions and numerical algorithms. The primary contribu-
tion of this work is the development of hybrid strategies that combine automatic
and symbolic differentiation for complex functions to optimize the trade-off be-
tween implementation effort and the need for computational efficiency.

The remainder of this article is organized as follows. Background informa-
tion for various methods to differentiate ANSI C++ code is provided in Section
2. Section 3 presents an overview of a large class of application areas where
large-scale functions are assembled from a set of mostly independent “element”
computations. This section uses the term “element” in the broadest sense and
can be applied to PDE simulators as well as other types of models. A series of
different levels of hybrid symbolic/AD methods for differentiation is defined.
Section 4 provides a particular example using compressible flow equations and
presents numerical results that compare and contrast many of the different dif-
ferentiation approaches. Finally, in Section 5 we offer a number of conclusions
and observations.

2. BACKGROUND

We focus on the differentiation of vector functions of the form
fx)e R" - R", (1)

where it is assumed that f(x) is at least once continuously differentiable.
Many different types of numerical algorithms, such as linear solvers, nonlin-
ear solvers, and optimization methods, require the application of the Jacobian-
vector product

0
5f = —féx
0x

evaluated at a point x where §x € R" is an arbitrary vector. The application
of the linear operator in (2) is required, for instance, in an iterative Krylov-
Newton method for the solution of nonlinear equations of the form f(x) = 0
where n = m. The basiclinear operator in (2) can be used directly as the operator
application in a Krylov linear solver, such as GMRES, or can be used to generate
an explicit matrix given the structure of the function f(x). We generalize (2)
to a form that involves the multiple simultaneous application of this linear
operator,

(2)

of

U=-—-8,
0x

3

ACM Transactions on Mathematical Software, Vol. 35, No. 1, Article 1, Publication date: July 2008.

1:4 . R. A. Bartlett et al.

where S ¢ R and U € R"™*?. Note that (3) can be used to generate the
entire Jacobian matrix df/0x itself when S is the n-by-n identity matrix.

There are a variety of methods that can be used to compute the lin-
ear operator in (2) for vector functions implemented in ANSI C++: 1) hand-
coded symbolic derivatives (SD), 2) approximation by finite differences (FD),
3) complex-step (CS) [Martins et al. 2003], and 4) automatic (or algorith-
mic) differentiation (AD) [Griewank 2000]. The main focus of this work will
be on the use of operator overloading methods for AD, but first other meth-
ods are reviewed so that the advantages of hybrid approaches can be fully
appreciated.

The first method is referred to as symbolic differentiation (SD) and is based
on analytically deriving (2). The derivative expressions can either be derived
and simplified by hand or by using tools such as Maple! or Mathematica.? This
approach can yield very accurate and efficient derivative computations but can
require a tremendous amount of manual labor and can lead to implementation
errors that can degrade or destroy numerical performance [Vanden and Orkwis
1996]. Even derivatives of moderately complicated functions can be difficult to
implement so that good computer performance is achieved. However, because
SD results in accurate derivatives and potentially may be implemented in a
computational efficient manner, this approach can be used in combination with
automatic differentiation methods to produce excellent results, as discussed in
later sections.

The second (and perhaps the most popular) method to compute an approx-
imation to (2) is the use of finite differencing (FD) of x — f(x). A one-sided
first-order finite difference approximation to (2) at a point x is given by

flx +edx) — f(x)

€

8f ~ (4)
where ¢ € R is the finite difference step length that should be selected to
approximately minimize the sum of O(¢) truncation errors and roundoff can-
cellation errors. This approach requires minimal implementation effort because
it depends only on the original function x — f(x), the evaluation code, a sin-
gle vector function evaluation f (x +€éx), and several additional simple floating
point operations. As a consequence of this simplicity, it is also a computationally
efficient calculation. Higher-order finite-difference approximations can be used
to reduce the truncation error. This allows larger finite difference step sizes ¢
to decrease roundoff error and thereby reduces the overall approximation error
but at greater computational expense. For example, the fourth-order central
finite difference approximation

flx —2e8x) — 8f(x —edx) + 8f(x +€dx) — fx + 2¢6x))
12¢

can be applied, yielding O(e*) truncation errors but at the cost of four evalua-
tions of x — f(x). The disadvantages of finite-difference approaches are that

8f ~ (5)

IMaple: http: //www.maplesoft.com
2Mathematica: http://www.wolfram.com

ACM Transactions on Mathematical Software, Vol. 35, No. 1, Article 1, Publication date: July 2008.

Strategies for Simulation and Analysis of Applications in C++ . 1:5

it is difficult to select a priori the optimal finite difference step length ¢ such
that the sum of truncation and roundoff errors are adequately minimized and
more accurate approximations, such as (5), significantly increase the computa-
tional cost. In general, the unavoidable errors associated with finite-difference
approaches can result in poorly performing numerical methods.

A third approach to differentiate x — f(x) is the complex-step (CS)
method [Squire and Trapp 1998]. This method relies on the concept of ana-
lytic extensions, through which the initial real f is extended into the complex
plane in a neighborhood of x. The properties of analytic functions allows the
approximation

(Sf%Im[f(ijLeSx)], ©)

€

where f stands for the extended function and Im denotes the imaginary value.
Note that there is no subtraction involved in this numerical approximation
and thus the calculation suffers no loss of significant digits in finite precision
arithmetics. Approximation (6) requires f to be real analytic in the complex
plane at (x, 0), which is the case for most floating-point operations with a few
important exceptions, as discussed below.

By replacing the floating-point real data type double with a floating-point
complex data type using a type similar to std::complex<double> and using
a very small € (e.g. ¢ = 1072°) in Equation (6), accurate derivatives can be
calculated, free from the classical cancellation effects. However, there are dis-
advantages associated with the use of the complex step method. First, complex
arithmetics are significantly more expensive than real arithmetics as the result
of the additional operations needed in complex computations. Second, the tech-
nique requires all operations involved in calculating f(x) to be real analytic.
For instance, the absolute value function |z| = v/a2 + b2 for a complex number
z = a + 1b is not analytic nor the analytic extension of the real absolute value.
The analytic extension is Vz2, using the principal branch of the square root.
Another complex extension of the real absolute value that is not the analytic
one but that also gives the correct result using formula (6), is abs(a +ib) = a +ib
ifa > 0 and abs(a +ib) = —(a+ib)ifa < 0. Third, the relational operators, such
as < and >, are typically not defined for complex numbers. For these reasons
an existing C++ complex data type designed for complex arithmetic, such as
the standard C++ data type std: : complex<>, cannot be directly used for the CS
method without making modifications to the underlying C++ code. The alterna-
tive, as advocated in Martins et al. [2003], is to define a new C++ complex data
type that properly defines the relational operators < and > and the absolute
value function. The disadvantages of this approach is that an existing, possibly
optimized, C++ complex data type cannot be used for the purpose of differenti-
ation. The CS method, however, is conceptually similar to operator-overloading
based automatic differentiation and regardless of the above described limi-
tations, can be utilized as a simple verification of automatic differentiation
calculations.

The fourth method for evaluating (2) is automatic differentiation (AD)
[Griewank 2000], also referred to as algorithmic differentiation. Considerable

ACM Transactions on Mathematical Software, Vol. 35, No. 1, Article 1, Publication date: July 2008.

1.6 . R. A. Bartlett et al.

advancements have been made since the initial development of code lists in the
late 1950s and the early 1960s [Beda et al. 1959; Moore 1979; Wengert 1964].
Source transformation tools such as ADIFOR [Bischof et al. 1992] and ADIC
[Bischof et al. 1997] have been the primary focus for FORTRAN and C based
codes. More recently, operator overloading methods using expression templates
have been effectively applied to C++ codes [Cesare and Pironneau 2000]. The
AD methodology mechanically applies the chain rule to all arithmetic opera-
tions used within a function and exploits the fact that computer code is based
on a sequence of elementary arithmetic operations. By mechanically applying
the chain rule to these basic operations within a function and applying the
primitive rules for differentiation (e.g. (@ +6) = a’' + b, (a —b) = a’ — b,
(ab) =a'b+ab, (a/b) = (a’'b—ab’)/(b?), sin(a) = cos(a)a’ etc.) accurate deriva-
tives can be calculated. Consequently, these methods are free of truncation and
roundoff errors that plague FD methods. Only standard floating point roundoff
errors are present in AD. In fact, it can be shown that the roundoff errors in
the AD derivative computations are bounded by the roundoff errors involved
in computing x — f(x) [Griewank 2000]. Therefore, a simple way to ensure
that the AD derivatives are accurate is to ensure that the function evaluation
is accurate.

AD can be performed in forward or reverse mode. The forward mode is the
easiest to understand and is the most efficient for computing derivatives of
the form (2). The general process consists of decomposing the function into el-
emental steps, applying simple derivative rules to individual operations and
then using the chain rule to provide a final derivative calculation of the overall
function. The reverse mode of automatic differentiation was introduced by Lin-
nainmaa [1976] and later further exploited by Speelpenning [1980] and Courty
et al. [2003]. Our efforts have focused on the forward mode of AD and therefore
we do not consider reverse mode AD any further here. The forward mode of
AD computes both the function value and Jacobian-vector products of the form
(3) for one or more input or seed vectors. More specifically, forward-mode AD
performs

(x,S) —> (f(x), £S>, (7
ax

where S € R"*? is known as the seed matrix. This form of AD only computes
the function value f(x) once and uses it to propagate p different columns of
sensitivities through the forward differentiation operator. The output is the Ja-
cobian matrix df /dx when the seed matrix S is set to /. Commonly, the Jacobian
df /0x exhibits significant sparsity when n and m are large. A considerable body
of work [Griewank 2000, Chapter 7] has been devoted to developing methods
that take advantage of the sparsity structure. Here we will only consider the
direct use of the forward-mode of AD to explicitly form dense Jacobians when
n and m are small. However, even in these smaller dimensional applications of
forward-mode AD, it may still be beneficial to take advantage of the structure
of f(x) when the seed matrix S = I is used to avoid derivative computations
involving zeros.

ACM Transactions on Mathematical Software, Vol. 35, No. 1, Article 1, Publication date: July 2008.

Strategies for Simulation and Analysis of Applications in C++ . 1:7

There are two major approaches for implementing AD: source transforma-
tion and operator overloading. The source-transformation approach differenti-
ates a function by parsing the code, performing various analyzes and writing
a set of source files with new definitions to implement AD expressions. While
the source transformation approach has been very successful and well imple-
mented for languages such as Fortran 77/90 [Bischof et al. 1992; Faure 2005;
Hascoet 2004; Courty et al. 2003], as of the time of this writing, there are no such
tools for differentiating ANSI/ISO C++. Therefore, we will not consider source
transformation tools any further in this article. The operator overloading ap-
proach for forward AD uses an abstract data-type to define all of the operators
of a floating point scalar and to carry along one or more derivative components.
More specifically, one derivative component is maintained for each column of
the seed matrix S in (7). The operator overloading approach performs elemen-
tary derivative computations in addition to the elementary function evaluation
computations. A straightforward implementation of forward-mode AD using op-
erator overloading handles piecewise defined functions by navigating through
conditional branches (e.g., if statements), and when combined with C++ func-
tion overloading, this approach can also be used to define rules to differentiate
through non-C++ or third-party function calls.

Several different C++ classes use operator overloading to implement the for-
ward mode of AD.? Although these classes use different approaches, we focus
on the forward AD (Fad) suite of C++ classes [Cesare and Pironneau 2000].
These methods are templated on the scalar type and therefore allow great flex-
ibility to compute, for example, second and higher-order derivatives by nesting
AD types. The Fad classes use a C++ template programming technique called
expression templates which results in assembler code that eliminates many of
the temporary objects commonly created by operator overloading in C++. One
of the classes (TFad) is also templated on the number of derivative components
and therefore does not impose any runtime dynamic memory allocation. For
the remainder of this paper, when we refer to AD approaches in C++ we will
always be referring to operator overloading C++ AD classes and never will we
consider possible source transformation approaches, again since they currently
do not exist.

As pointed out in Martins et al. [2003], the CS and operator-overloading AD
approaches share common features with respect to computing the single vec-
tor right-hand side form of (2). Both use operator overloading, maintain two
floating-point values (the function value and the single derivative component)
for each scalar variable, and can produce essentially analytic derivative values.
However, AD methods are more computationally efficient for a number of rea-
sons. First, the CS method performs unnecessary floating point operations, as
in the case of a multiplication operation

(@ +ia)b+ib) = (ab—a'b) +ilad +a'd).
The i(ab’ + a’b) term maintains a derivative component but the elementary
multiplication and subtraction of a’d’ are unnecessary; ab ~ ab — a'b’ is
Shttp://www.autodiff.org

ACM Transactions on Mathematical Software, Vol. 35, No. 1, Article 1, Publication date: July 2008.

1:8 . R. A. Bartlett et al.

essentially the value ab because ab > a'b’ and in floating point the extra com-
putation term will be entirely lost when |a’d’| > ¢|ab| (where ¢ is machine
precision). AD avoids these types of extraneous calculations. Second, specially
designed AD types, such as TFad, can carry multiple derivative components in-
stead of just one which makes the computation of (3) for p > 1 right-hand sides
more efficient since the function value f(x) is only computed once and amor-
tized over the p multiple derivative components. In the case of the CS method,
the function value must be computed repeatedly for each of the p columns of
S. Third, the use of multi-component AD types can result in better memory
performance (i.e. cache) since the expressions for f(x) are accessed only once.
The CS method evaluates the function f(x) independently for each derivative
component p.

Although we have made a compelling case for AD as the preferred method,
there is opportunity for additional computational and implementational im-
provements by considering a hybrid strategy. If we recognize that most pro-
duction software codes consist of multiple levels of complexity, the ease of
implementation of AD and the computational efficiency of SD can be lever-
aged to strike a balance between implementation effort and computational per-
formance. Assuming an unlimited pool of skilled developer resources, SD ap-
proaches should always be more computationally efficient (memory and CPU
time) than AD. This is because SD can simply mimic what AD does by per-
forming exactly the same operations and discarding unnecessary computations.
Also, forward-mode operator overloading AD computes the function value in
addition to the derivatives as shown in (7) even though this function value is
usually not used (i.e., since it is already known). However, for general functions
f (x), specialized SD approaches can be very difficult to implement and main-
tain (as the function f(x) changes due to new requirements) even though in
some cases, such as discretization methods for PDE, the high-level structure
of f(x) can be exploited fairly easily. Assuming the target software code con-
sists of multiple levels of complexity, a hybrid approach consists of symbolically
deriving derivatives for those portions of code that present acceptable levels
of complexities and applying AD to those portions of the code that present too
much complexity. In this fashion, the hybrid strategy offers a trade-off between
developer time and computational performance.

3. HYBRID SYMBOLIC/AD APPROACHES FOR ELEMENT-BASED
ASSEMBLY MODELS

The goal of this section is to describe levels of intrusive symbolic differentia-
tion combined with automated methods that can be used to efficiently compute
Jacobian-vector products (2). We first describe a general model for the assembly
of vector functions of the form (1), which encompasses many different applica-
tion areas from various discretization methods for PDEs (e.g., finite-element,
finite-volume, discontinuous Galerkin, etc.) to network models (e.g., electrical
devices, utility networks, processing plants, etc.). We start with an abstract
model, Algorithm 3.1, to establish the general methodology before discussing
more complicated issues.

ACM Transactions on Mathematical Software, Vol. 35, No. 1, Article 1, Publication date: July 2008.

Strategies for Simulation and Analysis of Applications in C++ . 1:9

Algorithm 3.1. Generic element-based assembly model of the global function f(x)

x — f(x)
(1) Initialization
f=0
(2) Element assembly
fore=1...N,
Gather local variables
Xe = Pyox
Local computation
f e = f e (xe)
Global scatter and assembly

f=f+PLf.

The assembly model in Algorithm 3.1 shows a summation assembly of in-
dependent element computations. We use the term element in a general sense
that is not restricted to just finite-element methods. A relatively small number
of variables are gathered for each element by the operation x, = P, . x, which
we refer to as a “local” computation. Our term “local computation” or “element
computation” is also known as an interface contraction in the AD research com-
munity [Griewank 2000]. This vector of variables x, € R™ is then used in a
relatively compact, local computation x, — f(x.) to form f, € R™. In general
n. < n and m, < m. For each element, the local function f, is assembled for
the entire computational domain into f = f + P]? . fe, which is referred to as a
“global” function. This assembly model uses abstractions of mapping matrices
P, ., and P, to represent the indexing of local/global variables and functions
respectively. These matrices contain only columns of identity or zeros depend-
ing on the formulation of the problem. The non-transposed linear operator P
performs global-to-local mappings as

v = Pug (8)
and the transposed operator PT performs the local-to-global mappings as
ve = PTy,. 9)

The element functions f,.(x.) (¢ = 1...N,) may represent the physics com-
putation and the discretization method of a PDE in which each computation
can be processed independently and potentially in parallel. In the case of a
finite-element PDE based simulation, the element loop in Algorithm 3.1 would
involve both traditional internal element loops and one or more boundary loops.
Typically, more data than just x, is needed to define the functions f,(...) and
this abstract model assumes that this data is encapsulated in the mathematical
functions f,(...) themselves. The assembly in Algorithm 3.1 can be compactly
written as

N
f@) =Y PF, fo(Py o). (10)
e=1

ACM Transactions on Mathematical Software, Vol. 35, No. 1, Article 1, Publication date: July 2008.

1:10 o R. A. Bartlett et al.

This form will be useful in deriving the the various global derivative objects in
the following section.
3.1 Global Derivative Computations

In this section, we consider how local element-wise derivative computations
can be used with the element assembly model in Algorithm 3 to compute the
following global derivative objects:

(1) Sparse Jacobian matrix:

J = o (11)
ox
(2) Jacobian-vector product:
8f = %(Sx (12)
ox

These are the primary computations needed for a number of numerical algo-
rithms including linear and nonlinear equation solvers, stability analysis meth-
ods, uncertainty quantification, and optimization. From the assembly model in
(10), the Jacobian matrix is given by

of 5 pr 0fe
— = P; —P,.. 13
0x ; fegx,” © (13)

The assembly of the sparse Jacobian matrix J = df/dx follows directly from
(13) and is given in Algorithm 3.2.

Algorithm 3.2. Assembly of the global Jacobian matrix

) > dJ =12
(1) Initialization
J=0
(2) Element assembly
fore=1...N,
J=dJ+PFMp,

fre oxe

Algorithm 3.2 requires that the element Jacobians df,/dx. be explicitly com-
puted using TFad [Cesare and Pironneau 2000]. The mapping matrices P, , and
P;y simply define how the local element Jacobians 9f,/dx. are scattered and
added into the global sparse Jacobian matrix /. Interfaces supporting this type
of mapping are common in many different types of codes. For the remainder of
the paper it is assumed the element-level Jacobians df,/9x. are computed at
the current x,.

The assembly of a Jacobian-vector product (2) follows directly from (13) as

3f = %Sx
0x

N,
< d
=3P ep, 5. (14
= T oxe

and is restated in Algorithm 3.3.

ACM Transactions on Mathematical Software, Vol. 35, No. 1, Article 1, Publication date: July 2008.

Strategies for Simulation and Analysis of Applications in C++ . 1:11

Algorithm 3.3. Assembly of the global Jacobian-vector product

(x,8x) — 8f = %Sx
(1) Initialization
8f=0
(2) Element assembly

fore=1...N,
8x, = Py .6x
p— afe
8fe - E‘S-xe

5f = 8f + PL.sf.

3.2 Storage and Element Derivative Computations

The forward assembly Algorithm 3.3 can be used in one of two ways. The first
general class will be referred to as precomputed-storage approaches, which in-
volve computing the Jacobian matrices 9f,./dx, upfront in a single loop and
storing these element matrices in an element-wise data structure. The precom-
puted 9f,/dx. matrices can then be used to assemble Jacobian-vector products
in Algorithm 3.3 through local matrix-vector products. These repeated assem-
bly loops only utilize the precomputed 9f./dx, matrices and therefore do not
invoke the actual element functions f.(x.) themselves. The main advantage
of these approaches are that they can result in dramatic reductions in cost of
repeated Jacobian-vector products. The disadvantages include potentially ex-
pensive upfront AD computations and significant storage.

The second general class will be referred to as storage-free approaches and
their main advantage is that they do not involve any upfront computation
or storage. Instead applications of forward AD with f.(x.) are used to com-
pute Jacobian-vector products. The disadvantage of these approaches over
precomputed-storage approaches is that the formation of each product assembly
is more expensive since the element functions f,(x.) must be called repeatedly
using AD data types.

The global derivative assembly computations described in the preceding sec-
tions require the following types of element-wise derivative computations:

(1) Element Jacobian matrix: of
J, = 2 e R (15)
0%,
(2) Element Jacobian-vector product:
5f, = Me sy, e R™ (16)
ox,

e

Note that storage-free approaches only require directional derivatives (16)
for Algorithm 3.3. As mentioned previously, we assume that the dimensions
of each element computation n, and m, are relatively small (e.g., order 100 or
less) and that the mapping from the input element variables x, to the output
functions f, = f.(x.) is fairly dense (i.e., 9f./0x. has mostly nonzero entries).
This is generally true for many different types of applications but there are
some exceptions (e.g., chemically reacting flows with lots of species and sparse

ACM Transactions on Mathematical Software, Vol. 35, No. 1, Article 1, Publication date: July 2008.

1:12 o R. A. Bartlett et al.

reactions). Given that we are assuming that n, and m, are relatively small and
x, — fe(x.) is fairly dense, these element-wise derivatives can be computed
most efficiently and conveniently through AD.

3.3 C++ Implementation

In C++ the implementation of AD is especially easy if the functions f,(x.) (or the
classes that implement these functions) are templated on the scalar types for
the input arguments x, and the output vector arguments for f,. For example,
suppose the following non-member C++ function computes f.(x,.,d,.):

void eval_ele_func(

const double x_ell,
const ElementData &d_e,
double f_el]
);

where d_e is an object that defines the rest of the element-specific data (e.g.,
nodal coordinates etc. for a PDE discretization) for the element computation.
To facilitate the use of automatic differentiation, the above function can be
templated as follows:

template<class Scalar>
void eval_ele_func(

const Scalar x_el],
const ElementData &d_e,
Scalar f_ell
);

Dense Jacobians and forward Jacobian-vector products can be efficiently
computed using the forward mode of AD and easily implemented using the
templated class TFad<N,T>. This AD type is templated both on the underlying
scalar type T and the number of derivative components N. By templating on the
number of derivative components, all memory allocation can be performed on
the stack and therefore greatly improve performance by avoiding many small
dynamic memory allocations that often occur with operator overloaded AD tools.
The applied use of TFad consists of instantiating the code for f,(...) using TFad,
initializing the input independent TFad variables appropriately, executing the
TFad-enabled function, and extracting the desired derivatives from the output
arguments. By using only one derivative component (i.e., TFad<1,double>), a
Jacobian-vector product in (16) can be cheaply computed at a cost of less than
twice the storage and less than three times the flops of the function evaluation.
However, generating a Jacobian with respect to the N variables requires using
N derivative components (i.e., TFad<N,double>), and the resulting computation
will, in theory, require up to 3N more flops than the original function eval-
uation. However, certain operations, like square roots and exponentials, can
reduce the relative cost of each derivative component.

The following C++ functions give examples of the use of TFad for computing
Jacobian matrices (15) and Jacobian-vector products (16) for the templated
function eval_ele_func(...).

ACM Transactions on Mathematical Software, Vol. 35, No. 1, Article 1, Publication date: July 2008.

/!
/!
//

vo

}

//
//
/7

vo

{

}

Strategies for Simulation and Analysis of Applications in C++

Compute an ‘¢

element’’ (column-major) Jacobian matrix
id eval_ele_state_jac(

const double x_el],

const ElementData &d_e,

double J_el]

)

const int N_x_e = 10; // Number components in x_e[]
const int N_f_e = 5; // Number components in f_e[]
// Initialize AD argumets
TFad<N_x_e,double> ad_x_e[N_x_e];
TFad<N_x_e,double> ad_f_e[N_f_e];
for(int k¥ = 0; k < N_x_e; ++k) {
ad_x_el[k].val() = x_el[k];

}

// Run function in forward mode to compute the entire state Jacobian

eval_ele_func(ad_x_e, d_e, ad_f_e);
// Extract state Jacobian matrix in column-major format

for(int k1 = 0; k1 < N_f_e; ++kl1) for(int k2 = 0; k2 < N_x_e; ++k2)

J_y_e[k1+k2+N_f_e] = ad_f_el[k1].fastAccessDx(k2);

Compute an ‘‘element’’ Jacobian-vector product
id eval_ele_jac_vec(

const double x_el],

const ElementData &d_e,

const double delta_x_el],

double delta_f_el[]

)

const int N_x_e = 10; // Number components in x_e[]

const int N_f_e = 5; // Number components in f_e[]

// Initialize AD argumets

TFad<1,double> ad_x_e[N_x_e], ad_f_e[N_f_e];

for(int k = 0; k < N_x_e; ++k) {
ad_x_el[k].val() = x_el[k];

// Set independent var values
ad_x_e[k].diff (k); // Setup identity seed matrix

// Set indepenent var values

ad_x_e[k] .fastAccessDx(0) = delta_x_el[k]; // Load single seed vector

}

// Run function in forward mode

eval_ele_func(ad_x_e, d_e, ad_f_e);

// Extract state Jacobian-vector product

for(int k¥ = 0; k < N_f_e; ++k) {
delta_f_el[k] = ad_f_el[k].fastAccessDx(0);

}

ACM Transactions on Mathematical Software, Vol. 35, No. 1, Article 1, Publication date: July 2008.

1:14 o R. A. Bartlett et al.

As shown in these code examples, using TFad is straightforward provided
the number of independent variables is known at compile time. If the number
of independent variables is not known at compile time then the (slightly) less
efficient class Fad can be used instead. While the element derivative compu-
tations described above used only AD at the element level, these derivative
computations can also be performed using a hybrid symbolic/AD approach.

3.4 Levels of Hybrid Symbolic/AD Differentiation

Here we introduce a classification system for different levels of hybrid differ-
entiation strategies applied to functions exhibiting hierarchical dependencies.
Complicated models for f(x) will consist of higher level calculations that de-
pend on lower level calculations. Hybrid differentiation exploits this hierarchi-
cal structure by selecting the appropriate amount of symbolic differentiation
combined with AD for the remaining lower levels. Here we focus on the types
of element assembly models shown in Algorithm 3.1 and focus on the differ-
ent levels of symbolic/AD approaches for assembling §x — (3f/0x)8x. For each
level, higher-level expressions are symbolically differentiated and then all re-
maining lower-level expressions are differentiated using AD. These levels are
described next and provide a classification of our hybrid differentiation strategy
for systematic performance comparisons of our particular example.

Level 0 denotes the application of directional AD to the global C++ function
that computes x — [(x) without any concern to underlying structure. Level 0
requires the least amount of intrusive implementation, is therefore the easiest
to use, and requires little knowledge of the structure of f(x). The disadvantage
of this level is that the entire function x — f(x) needs to be templated on
the scalar type, which may not be practical for many codes. Only storage-free
methods are used with this most basic level.

Level 1 denotes the application of AD to the element level functions f,(x,).
Both the storage-free and precomputed-storage methods can be used for this
level. In the case of the storage-free approach, directional AD is applied at the
element assembly level to compute Sx, — (3f./0x.)dx., followed by an assembly
of the global Jacobian-vector product as shown in Algorithm 3.3. In the case
of precomputed-storage approaches, the seed matrix is set to identity S = I
and the element Jacobians df,/dx. are precomputed using the forward mode of
AD applied to f.(x.). These precomputed element Jacobian matrices are then
used to assemble subsequent Jacobian-vector products. The main advantage of
this level is that it requires little knowledge of the underlying structure of the
expressions or mathematical problem and only involves manipulating the basic
assembly process. In addition, only the element functions for f.(x.) and not the
entire C++ function x — f(x), need be templated on the scalar type.

Levels 2 and higher denotes symbolically differentiating into the element-
level expressions f.(x.) and applying AD on the remaining lower levels.
Higher levels may involve symbolically differentiating deeper into the expres-
sions for f.(x.). The number of meaningful levels depends on the nature of
the expressions for f.(x.). These higher-level hybrid symbolic/AD methods
may be applied using precomputed-storage or storage-free approaches. The

ACM Transactions on Mathematical Software, Vol. 35, No. 1, Article 1, Publication date: July 2008.

Strategies for Simulation and Analysis of Applications in C++ J 1:15

precomputed-storage approaches may avoid storing the element Jacobians
dfe./0x. and instead may only store contributions to these Jacobians potentially
resulting in reduced storage and better performance. The level-2 approach de-
scribed in Section 4 is an example of this. In general, for each increasing level
of hybrid symbolic/AD method, the amount of developer work will increase to
implement and maintain additional code. However, these more invasive meth-
ods offer reduced storage (i.e. for precomputed-storage methods) and improved
runtime (i.e., for precomputed-storage and storage-free).

Section 4 describes a concrete example for the use of several different levels
of precomputed-storage and storage-free symbolic/AD approaches and demon-
strates the potential improvements in storage cost and runtime performance
for increasing levels of hybrid symbolic/AD methods.

4. FINITE-VOLUME DISCRETIZATION EXAMPLE

We present a concrete case study of various differentiation techniques and the
application of different levels of hybrid symbolic/AD approaches. Specifically,
hybrid differentiation methods are demonstrated for a finite-volume discretiza-
tion method of gas dynamics (Euler equations) that represents an example of
a two-loop element assembly model. The single loop of independent elements
shown in Algorithm 3.1 accurately applies to a large number of application
areas such as finite-element methods and different types of network models.
However, a single independent loop over a set of elements is not sufficient for
certain discretization and application areas. One instance of this is the finite-
volume example described in this section where multiple coupled loops are
required.

We exploit the hierarchical structure by first assuming very little and thereby
exposing the entire function evaluation to AD, followed by systematically con-
sidering more details of the function for symbolic differentiation opportunities.
We start with level 0, but as additional levels of differentiation are consid-
ered, more details of the Euler equations will be revealed and discussed. This
approach will demonstrate the utility of the hybrid strategy and provide an
improved approach to balancing implementation effort against computational
efficiency. In addition, we gloss over many details of the discretization, and pro-
vide only enough algorithmic information to describe the use of the different
differentiation techniques. For additional details regarding computational fluid
dynamics we refer the interested reader to Blazek [2001].

4.1 Level 0—the Basic Residual Function

At the center of this finite-volume fluid flow code is the computation of the
residual function

W — r(w) € R(nd+2)nzv N R(nd+2)nN, 17

where ny is the spatial dimension (ng = 2 or ng = 3), ny is the number
of nodes in the computational mesh, and w ¢ R ig a vector of fluid
states (density, velocity, pressure), written is terms of the so-called conservative
variables. Our code implements the residual function (17), which is templated

ACM Transactions on Mathematical Software, Vol. 35, No. 1, Article 1, Publication date: July 2008.

1:16 o R. A. Bartlett et al.

on the scalar types of each of the input vectors. It should also be noted that more
data than just the vector of state variables w is passed into this function but in
the context of AD, this data is irrelevant. Templating this C++ function on the
scalar type for w facilitates the straightforward use of the AD type TFad at all
levels of computation. While several derivative calculations are needed for gas
dynamics, we focus on the computation of the state Jacobian-vector product

d
sr= X sw, (18)
0w

which is needed by various solution strategies for the nonlinear equation
r(w)=0.

We start with applying AD to the entire residual evaluation function and
thereby not requiring any lower level details. The residual evaluation code for
(17) is templated on the scalar type. Thus, if we can assume that the function
is first-order differentiable, then we do not need to know how the function (17)
is evaluated in order to compute (18) using the forward mode of AD.* The tem-
plated residual evaluation function only needs to be instantiated with the scalar
type TFad<1,double> for the input vector w and the output vector r in order to
compute (18) using the forward mode of AD. All of the other data types for the
passive input data (which are inconsequential for a level-0 method) are left as
double. This selective template instantiation prevents wasted derivative com-
putations for inactive input data.

In the following sections, we consider symbolically differentiating lower level
calculations of the residual evaluation (17). For each level of the symbolic dif-
ferentiation process, we describe the computations inside of (17) in only enough
detail to be able to apply AD strategically to the remaining lower levels.

4.2 Level 1—Two-Loop Edge-Based Residual Assembly

Implementing a basic level-1 hybrid symbolic/AD method requires knowledge
about the discretization method since this defines the element assembly process
in Algorithm 3. In our code, the residual assembly is accomplished through
two loops over all edges in the computational mesh. The kind of finite-volume
discretization that we use forms a control volume around each mesh node,
within which the fluid state is assumed to be constant. The physics consists of
balancing the flux of mass, momentum, and energy along the edges that connect
the control volumes. The edges may be considered as the basic “elements” of
this particular discretization. The finite-volume discretization described here
uses an unstructured meshing—with tetrahedra, hexahedra, or prisms—of the
flow domain Q2. We denote by V(2) the set of mesh nodes in the strict interior of
the domain and by V(9€2) the nodes on the boundary of the mesh. Thus, the set
of all nodes is V(Q) = V(Q)UV(dQ). Moreover, let \; denote the set of nodes that

4While it is true that operator overloading C++ AD classes will correctly differentiate most C++
numerical operations, there are cases, such as the poor use of conditionals, where it will yield the
wrong result. While many of these cases are well known to the AD community, the may not be as
well know to the general numerical computing community. For example, applying AD to the func-
tion Scalar func(Scalar x) { return (x==0.0 ? 0.0 : x); } will yield the wrong derivative
at x==0.0.

ACM Transactions on Mathematical Software, Vol. 35, No. 1, Article 1, Publication date: July 2008.

Strategies for Simulation and Analysis of Applications in C++ . 1:17

are nearest neighbors connected to node i by an edge. We associate a edge norm
vector n;; with each directed edge 2/, in the mesh. The normals are computed
from a dual mesh [Blazek 2001], and by construction,

The normals are not of unit length and therefore embody both direction and
magnitude. We define V; to be the volume of the control volume surrounding
each mesh vertex i. Also note that the normals n;; are computed strictly from
the geometry of the mesh and have no dependence on any state variables. The
residual in (17) is assembled in two edge-based loops as shown in Algorithm
4.1.

Algorithm 4.1. Two-Loop Edge-Based Residual Assembly

Compute the residual vector r given the input vectors w, x, nand V.

Spatial gradient assembly
(1) Set g; < 0 for each i € V(Q)
(2) For each edge ~5:
(@) g < g + &(Vi, wi, w;, +m;;)
(b) g; < g; +8&(V;, w;, wi, —m;)
(3) + Boundary contributions
Residual assembly
(1) Set r; < 0 for eachi € V(Q)
(2) For each edge ~5:
(a) & = (W, W;,x;, %, 8,8, 1))
©)r; <1 + 1
©r; «<r; —1iy
(3) + Boundary contributions

A single templated C++ function assemble grad(...) is called for each
edge in Algorithm 4.1 to simultaneously compute g(V;,w;, w;, +m;) and
g(V;, w;, w;, —n;;) in which some of the same computations are shared. A single
templated C++ function assemble resid(...) is called for each edge in Algo-
rithm 4.1 to compute ©(w;, W;, x;, x;, g;, g, ;). While the treatment of bound-
ary conditions is critical to any discretization method, the calculation usually
does not contribute significantly to the computational cost of the state resid-
ual (17). Therefore, for the purposes of this discussion, we will not discuss the
details of boundary conditions, since our goal is to address the bulk computa-
tional work. Enforcement of boundary conditions would represent one or more
element loops that would contribute to the residual assembly.

4.3 Level 1—State Jacobian-Vector Product Assembly

By inspecting the edge-based assembly in Algorithm 4.1 and using the mul-
tivariable chain rule, the edge-based assembly loops for the Jacobian-vector
product can be derived as shown in Algorithm 4.2.

ACM Transactions on Mathematical Software, Vol. 35, No. 1, Article 1, Publication date: July 2008.

1:18 o R. A. Bartlett et al.

In Algorithm 4.2, we use the notation

0gij _ 0 g _ 0 ,
oW, = mg(VL, W, W, 1) w=w,, W = ﬁg (Vvi,Wi,W,nij)|w:wj, (20)
T
aWi = mr(w’ Wj,xi,xj, gi;gj,rlij)|w=wi,
oty a
lej = ﬁr(wi:waxiyxj’ g, gj}mj)|W:Wja (21)
ol LY)
= —r\w;,,w;, x,Xx;, 8, LA =g;>
og; g Jr%isXj, 8, 8j, Mj)lg=g
ot 0,
= - r\w;,,w;, Xx;,x;, 8,8, 1% =g 22
og; 3g(i» Wj,X; ngg'hj)|gg, (22)

Algorithm 4.2. Level-1 Hybrid Symbolic/AD Jacobian-Vector Product Assembly

Compute §r = a—:’(Sw given input vector §w
Linearized spatial gradient assembly
(1) Set 8g; < 0 for each i € V(Q)
(2) For each edge iZe
98
ow; SwW; + ow; W
agji (SW,; —+
3Wi 8Wj
(3) + Boundary contributions
Linearized residual assembly
(1) Set 8r; < 0 for each i € V(Q)
(2) For each edge .

(a) 8g; < d0g; +

(b) 6g; < 8g; +

8f‘ij ai‘ij 8i'ij
Y Sw s 5g; Sg
8Wj Wi + 8gl g + BgJ g]

.
(a) 1y = g—‘:iSwi +
(b) SI'L' <~ (SI'L' + Sf'ij
(C) (SI‘J' < SI'J' — (Si‘ij

(3) + Boundary contributions

The Jacobian-vector product assembly in Algorithm 4.2 constitutes a level-1
hybrid symbolic/AD differentiation into the residual evaluation. At this level,
AD only needs to be applied to the functions g(...) and #(...) that operate on
objects associated with an edge and not the entire residual assembly function
for (17).

We consider two level-1 hybrid symbolic/AD strategies at the edge level
for assembling the Jacobian-vector product in expression (18). The first is the
precomputed-storage approach and the second is the storage-free approach. The
precomputed-storage approach assembles Jacobian-vector products by comput-
ing edge-based Jacobian sub-matrices and storing them. The storage-free level-
1 approach simply applies AD at the edge level to local edge-based functions

ACM Transactions on Mathematical Software, Vol. 35, No. 1, Article 1, Publication date: July 2008.

Strategies for Simulation and Analysis of Applications in C++ J 1:19

g(...)and#(...)using a single directional derivative. The precomputed-storage
level-1 approach initially applies AD at the edge-level to explicitly compute lo-
cal Jacobians, stores them, and then assembles the full Jacobian-vector product
by matrix-vector multiplication through loops over the edges, utilizing the pre-
stored local Jacobians.

When using the precomputed-storage level-1 approach, the local edge-based
gradient Jacobians

0 8ij c R(nd +2)ng x(ng+2) , agij c R(nd +2)nq x(ng+2))
8Wi 3Wj (23)
0gji c R(nd +2)ng x(nq +2), 0gji c R(nd +2)ng x(nq +2),

BWJ' 8W,’

are computed. Without additional knowledge about the structure of g (...), the
storage for these Jacobians requires 4((ng + 2)(ng)(ng + 2)) = 300 doubles per
edge in 3D. However, these matrices are actually diagonal, since the gradient
is computed separately for each component of the conservative variables. The
diagonal structure reduces the storage to 4((ng + 2)(ng)) = 4((3 + 2)(3)) = 60
doubles per edge in 3D. In addition, when using AD to generate these matri-
ces, all of the variables in either w; and w; can be perturbed simultaneously
requiring just two columns in the seed matrix S.

After the Jacobians (23) have been computed, the edge-based residual Jaco-
bians

or;; € RO H2xna+2) ory € R DX (a2
3Wi BWJ' (24)
3f‘ij 3f'ij

c R(nd +2)x(ng+2)nq c R(nd +2)x(ng+2)ng ’

J

0gi g

are computed and stored in a loop over all edges. Computing these edge-based
Jacobians requires invoking forward AD (e.g., using TFad<40,double>) using a
seed matrix with (ng + 2)(2 4+ 2n4) = 40 columns in 3D (one column of identity
for each component in w;, w;, g; and g;). These edge-based Jacobians require
the storage of 2(ng + 2)(ng + 2) + 2(ng + 2)(ng + 2)(ng) = 200 doubles per edge
in 3D. Therefore, the total storage for edge-based Jacobians is 60 + 200 = 260
doubles per edge in 3D. This is a significant amount of storage but, as shown
in Section 4.5, the use of pre-computed Jacobians results in much more rapid
evaluations of (18).

4.4 Level 2 - Jacobian-Vector Product

Symbolically differentiating deeper into the residual evaluation requires know-
ing more about the computations at the edge level. The next level of structure
of these computations is more complicated, but great gains in speed and mem-
ory savings can be accomplished by symbolically differentiating deeper. First
we describe the edge-based spatial gradient function g(...) and then the more
complicated edge-based Euler residual function #(...). The edge-based spatial

ACM Transactions on Mathematical Software, Vol. 35, No. 1, Article 1, Publication date: July 2008.

1:20 o R. A. Bartlett et al.

gradient function g(...) takes the form

BV, Wi, W), m)) = - (W, + W) @ 1y (25)
2|Vil
where ® is a tensor product. The function g (...) is linear in w; and w; so
simply passing in w; and §w; into the assemble_grad(...) function returns
the linearized spatial gradients §g; and §g;. Clearly AD is not needed for this
computation.
The edge-based residual function ¥ (...) uses a Roe dissipation scheme [Roe
1981] together with linear reconstruction and a smooth limiter as follows:

rij = r(Wl‘,Wj,xi,xj, g gJynL_])

1 i]. - i] —
= Q(f(wi;‘r) -m;j) + §(f(wijj) -mij) +d(w;[, W, ;) (26)
where:

o
w=|pul, (27

oE

ou

flw) = | pu®u+Ip|, where (28)

u(pE + p)

1

p=k-1 (,oE - §|u|2) , (29)
w;;’ = w*(wi,wj,pfj), (30)
WlJ‘17 = Wi(Wi,WJ', pljj)a (31)
pi] =g '(xj _xi) c R(nd+2)’ (32)
P = g (5 —x) e R (33)

Above, f(w) in (28) is the flux function of the Euler equations V - f (w) =
0. Moreover, p, u € Rd, p, and E are the density, velocity vector, pressure,
and total energy per unit volume, respectively. The vectors Wif and WL-JJ-_ are
the reconstructed left and right states. These reconstructions use the spatial
gradients g; and g; and are intended to increase the accuracy in regions where
the solution is smooth at little additional computational cost but at the expense
of effectively increasing the stencil, or footprint, of the operator. Embedded in
the reconstruction functions w*(...) and w(...) is a limiter that is needed
to handle the very steep gradients around shocks. Several different limiters
can be used and we used the van Albada limiter [van Albada et al. 1982] in
our method. For the purposes of this discussion the details of the limiter are
not important, except that we use limiters that are piecewise differentiable.
Finally, d(...) is a dissipation term (of Roe type) that provides stability and
dominates the computational cost of the method. This term is algebraically
complicated and would be time-consuming to symbolically differentiate and
implement.

ACM Transactions on Mathematical Software, Vol. 35, No. 1, Article 1, Publication date: July 2008.

Strategies for Simulation and Analysis of Applications in C++ . 1:21

From the form of ;; in (26), its linearization with respect to w;, w;, g; and
g; immediately follows as:

Sty = Jitowit + J swlo (34)
where
A) sl m)
J+ = = ‘ + : , (35)
5 T2 awl owir
i Lo(E my) ad(wl,wimy)
I = — + - ; (36)
2 awijj 8Wijj
: aw' T W't awit
SWit = YSWi Y oSw Yospt., 37
Wi p— w; + oW, W+ ip, p;; (37)
 awlT ow?!” owlT
Swi = —L-swi + —-8w, + —+5p};, (38)
Iw; oW apfj
5p};, = ogi - (x —x;)), (39)
v, = o8- —), 0

and where we have used a notation for the derivatives analogous to expressions
(20)—(22).

We now describe how this additional knowledge of the structure of (...) is
used to implement a level-2 hybrid symbolic/AD Jacobian-vector product more
efficiently. The storage-free level-2 approach stores nothing up front and com-
putes local Jacobian-vector products at the edge level symbolically for all terms
except for the dissipation term d(...). In all cases, we used AD with TFad<-
double> to perform all derivative computations with d(...). The precomputed-
storage level-2 approach initially computes and stores the sub-Jacobian
matrices

Jif c R(nd+2)><(nd+2) Jljj— c R(nd+2)><(nd+2)

j_

it
awij c R(nd+2)><(nd+2) awij c R(nd+2)><(nd+2>
3Wi BWJ‘

i+ J= 41
Iw;; c RMu+2x(na+2) IW;; e RM+2x(na+2) (41)
3Wj 3Wi

it i
Iw;; c RMa+2x(na+2) awij c RM+Dx(a+2)

Ip;; 9 pijj

and performs matrix-vector multiplication with these sub-matrices to assemble

subsequent Jacobian-vector products of the form (18). The sub-Jacobians for W§J+

and Wijj_ are diagonal since the reconstructions and the limiters are component-
wise operations. All of these Jacobian evaluations were manually derived and
coded in C++ except for the dissipation term d(...). This scheme requires the

ACM Transactions on Mathematical Software, Vol. 35, No. 1, Article 1, Publication date: July 2008.

1:22

o R. A. Bartlett et al.

storage of 2(ng +2)(ng +2) +4(ng +2)+2ng +2) =283+2)(8+2)+4(83+2) +
2(3+2) = 80 doubles per edge in 3D. Once these edge-based sub-Jacobians are
computed, they are utilized in the edge-based loops shown in Algorithm 4.3 to
assemble the Jacobian-vector product (18).

Algorithm 4.3. Level-2 Hybrid Symbolic/AD Jacobian-Vector Product Assembly

or
Compute ér = — 3w given input vector sw

Linearized spatial gradient assembly
(1)Set 8g; < 0 VieV(Q)
(2) For each edge ~5:
(a) 8g; < 8g; + 8(V;, dw;, 8w, +m;;)
(b) 5gj <« ng + g(Vj, (SWJ', SW;, —mj)
(3) + Boundary contributions
Linearized residual assembly
(1)Setdér; =0 Vi e V(Q)
(2) For each edge 2.
(a) or;; < I Fswi) + J{;-_Swj ", where and w!; and 8wfj_ are computed using (37)-

(40).

ij o

(b) ér; <« 8r; + 81y,
(C) (Sl‘j < 5I‘j — (Sl‘ij,
(3) + Boundary contributions

4.5 Results for Various Jacobian-Vector Product Assembly Methods

Strategies to assemble Jacobian-vector products of the form (18) were discussed
in the preceding sections and can be summarized as follows:

Level-0. Apply forward AD (i.e. using the seed matrix S = §w) at the global
residual function call level (i.e. AD the entire C++ function for (17)).

Level-1. AD is applied at the edge assembly level.

Precomputed-storage Level-1. AD is applied at the edge level to generate
the submatrices in (23) and (24); then the Jacobian-vector products are
assembled with these submatrices (Algorithm 4.2).

Storage-free Level-1. Directional AD is applied at the edge assembly
level on the functions g(...) and 7#(...).

Level-2. Hybrid symbolic/AD is applied at the edge level by symbolically
differentiating everything except the dissipation term d(...), which is dif-
ferentiated using AD.

Precomputed-storage Level-2. The submatrices in (41) are computed
symbolically up front with AD used only for the dissipation term
d(...). Once these edge-level submatrices are computed and stored,
then Jacobian-vector products are assembled (Algorithm 4.3).
Storage-free Level-2. Edge-level Jacobian-vector products are computed
using symbolically derived and hand-coded directional derivatives ex-
cept for the dissipation term d(...) where directional AD is used.

ACM Transactions on Mathematical Software, Vol. 35, No. 1, Article 1, Publication date: July 2008.

Strategies for Simulation and Analysis of Applications in C++ . 1:23

Table I. Storage of Edge-Based Jacobian
Contributions in Number of doubles per Edge

Method | Precomputed-storage | Storage-free
Level-0 - 0
Level-1 260 0
Level-2 80 0

Table II. Ratio of CPU Time for Residual Jacobian-Vector Product to Residual
Evaluation for a Small 3-D Example with 25 Mesh Points

Method | Precomputation | Precomputed-storage Jac-vec | Storage-free Jac-vec
Level-0 - - 3.14
Level-1 24.8 0.21 3.14
Level-2 4.73 0.19 1.93

In this section we characterize the performance of the different levels of
differentiation in addition to the consideration of different storage strate-
gies. Tables I and II give storage and computational results, respectively,
for precomputed-storage and storage-free level-0, level-1 and level-2 hybrid
symbolic/AD schemes used to compute Jacobian-vector products of the form
(18).

We used a small, nonphysical test mesh so that all of the computations eas-
ily fit in cache. All computations were run several times in a loop for a total of
1.0 CPU seconds in order to minimize the effects of random noise in the tim-
ing values. These tests therefore compare the floating point efficiency of the
implemented code and not the quality of the data structures with respect to
the memory-subsystem usage (e.g., cache misses). CPU times reported for all
derivative computation are relative to the time for the residual evaluation that
used the scalar type double. For all AD computations, the class TFad<double>
was used as the scalar type for the active variables. All of the results in this
section were generated by compiling code using GNU g++ version 3.1 and Red
Hat Linux 7.2 on a 1.7 GHz Intel Pentium IV processor machine.

First we compare and contrast approaches that assemble Jacobian-vector
products requiring no upfront storage or computation. These storage-free
strategies may be preferred when memory is at a premium. The storage-free
Level-0 method required more CPU time by a factor of 3.14 in comparison to a
residual evaluation. The storage-free Level-0 is therefore only about 50% more
expensive than a central FD approximation and the Jacobian-vector products
are accurate to machine precision. The storage-free Level-1 method gives ex-
actly the same relative CPU time of 3.14 as the storage-free Level-0 approach.
This should not be surprising since this approach performs almost exactly the
same computations as automatically differentiating the entire residual assem-
bly function. In fact, in our C++ implementation, the Jacobian-vector products
for the storage-free Level-0 and storage-free Level-1 approaches gave the same
resultant vectors (to the last binary bit). The primary advantage of the storage-
free Level-1 approach over the storage-free Level-0 approach is that the entire
residual evaluation function does not have to be templated on the scalar type.

ACM Transactions on Mathematical Software, Vol. 35, No. 1, Article 1, Publication date: July 2008.

1:24 o R. A. Bartlett et al.

The storage-free Level-2 approach exploits the gradient and residual compu-
tations and thereby reduces the relative CPU time from 3.14 to just 1.93. This
is faster than a central FD and gives exact Jacobian-vector products. However,
this hybrid SD/AD approach is still almost twice as expensive as one-sided fi-
nite differences. To obtain better performance we need to consider methods that
perform some initial computations up front. Consequently, we next compare
and contrast the various levels of precomputed-storage approaches that com-
pute and store Jacobian sub-matrices at the edge level and then uses them to
assemble repeated Jacobian-vector products. These methods require more stor-
age but can significantly improve the computational performance of repeated
Jacobian-vector product assemblies.

The precomputed-storage Level-1 approach requires 24.8 times the cost of
the residual assembly in order to precompute the edge-level matrices and stores
260 doubles per edge. Once these matrices are computed and stored, the rel-
ative CPU time for each subsequent Jacobian-vector product assembly is only
0.21 times the cost of a residual assembly. This is almost five times faster than
a one-side FD approximation. Note that the relative CPU time of 24.8 is actu-
ally quite impressive considering that TFad<40,double> is used on the function
1 (...) with 40 derivative components. Therefore, the cost for each derivative
component is less than the cost of the function evaluation. The relative CPU
time of 24.8 for the creation of these matrices, however, may still seem too
high but in many situations where Jacobian-vector products are performed at
a particular point w (such as in an iterative linear solver like GMRES in a
Krylov—Newton method) the overall reduction in runtime over even one-side
FDs can be significant. If the memory capacity is limited or the reduction in
CPU is insufficient, additional symbolic differentiation can be considered where
other Jacobian sub-matrices at the edge level are stored.

Now consider results for the precomputed-storage Level-2 approach. The Ja-
cobian submatrices for the dissipation term d(...) in (35) and (36) are computed
using TFad<10,double> (using 10 columns in the seed matrix). This approach re-
sults in dramatic reductions in relative CPU time for precomputing edge-based
Jacobian sub-matrices and storage of these sub-matrices over the precomputed-
storage Level-1 approach. The relative CPU time is reduced from 24.8 to 4.73
and the storage for the Jacobian sub-matrices is reduced from 260 to 80 doubles
per edge. However, we only see a minor reduction in relative CPU time from
0.21 to 0.19 for subsequent Jacobian-vector product assemblies. Even though
the reduction in Jacobian-vector product computations is not significantly re-
duced, the dramatic reductions in upfront cost and storage makes this scheme
more attractive.

4.6 Comparison of Differentiation Strategies for the Dissipation Term

We also experimented with several different approaches to automatically differ-
entiate the Roe-type dissipation term d(. ..) shown in (26) and also attempted to
derive the Jacobians symbolically. It required approximately a month to derive
expressions for the Jacobians of d(. ..) in (35) and (36) and after approximately
two weeks of implementation the resulting hand-derived and hand-coded Ja-
cobian evaluation C++ code was 2.5 times slower than the automatically

ACM Transactions on Mathematical Software, Vol. 35, No. 1, Article 1, Publication date: July 2008.

Strategies for Simulation and Analysis of Applications in C++ . 1:25

generated AD code (using TFad<double>) and was not giving the correct Jaco-
bians. The likely reason for the degradation in performance of the hand-coded
Jacobian evaluation function is that there are many common expressions in-
volved in the Jacobian entries that are automatically exploited in the AD code
that were not exploited in the hand-coded derivative function. The attempt to
symbolically derive and implement these Jacobians was therefore abandoned
to avoid expending large amounts of additional, open-ended developer effort.

Here, results are presented for the use of several different automated strate-
gies to compute the Jacobian of the dissipation term with respect to one of the
states dd/ow; € Rat2xa+2) 3 then the Jacobian is of size 5 x 5). Note
that the computation of both 9d/dw; and dd/dw; are used in the precomputed-
storage level-2 method described above. However, the computation of only
dd/ow; involves many of the same issues as computing both these Jacobians
together. Table III gives operation counts for the computation of dd/dw; using
one-sided finite difference (FD), automatic differentiation (AD) using TFad<5, -
double>, and the complex-step (CS) using std: : complex<double>. These opera-
tion counts were generated automatically using a templated abstract data type
called ScalarFlopCounter. Operation counts do not completely determine the
CPU compute time of a code as many other issues must be considered, even
for cache-resident data [Goedecker and Hoisie 2001]. However, these operation
counts provide a basis for comparison of the various differentiation methods and
for runtime performance using different compilers and different platforms. The
difference in the ratios of relative operation counts and relative CPU times give
a measure of how well a particular C++ compiler deals with abstract data types
(that is the basis for the AD and CS methods in C++) with respect to built-in
data types.

A number of interesting observations can be made in regard to the numerical
results in Table III:

(1) The dissipation term is 3.2 times more expensive than the two flux calcu-
lations required by the residual evaluation. We suspect the CPU times do
not reflect the same ratio because the dissipation terms involves five square
roots which are typically more expensive in comparison to other functions
of similar operation counts.

(2) The actual operation counts for dd/ow,; are less than predicted by a to-
tal operation count of the d;; evaluation, because the code was carefully
templated to avoid derivatives of inactive variables.

(3) The relative operation count and the relative CPU time for the FD com-
putation of dd/dw; were nearly identical at 6.4 and 6.5 respectively. This
suggests that the relative operation count in the FD case is a very good
prediction of the relative CPU time, which seems reasonable since the ma-
jority of the computation in the FD method is performed in the same C++
function that computes d;;.

(4) The AD computation of dd/dw; requires 1.44 times the operations of the the
FD method. The increased operation count is typical and expected for an AD
method. Note that some individual derivative operations are more efficient
than their function evaluations, in particular the square root operation.

ACM Transactions on Mathematical Software, Vol. 35, No. 1, Article 1, Publication date: July 2008.

1:26 o R. A. Bartlett et al.

Table III.
) Operation counts for the computation of the flux function
f" = f(w;[) - n;;, the dissipation term d;; and the 5 x 5 Jacobian 3d/dw;
using one-sided finite difference (FD), automatic differentiation (AD)
using TFad<double>, and the complex-step (CS) using
std: :complex<double>. These results were obtained using g++ 3.2.2 on
the same Red Hat Linux 7.2 platform shown in Table IV.

Operation | fi* d;; | FDad/ow; | AD ad/aw; | CS ad/ow;
= 14 65 446 819 2018
+ 4 29 174 459 714
+= 6 24 149 114 609
unary + 0 7 42 3 22
- 1 14 115 85 620
-= 0 0 0 0 150
unary - 0 9 54 59 89
* 15 102 637 947 2707
*= 0 5 30 5 65
/ 3 8 49 48 134
= 0 0 0 0 40
sqrt 0 5 30 5 50
abs 0 0 0 0 75
> 0 3 18 3 38
< 0 3 18 3 53
== 0 0 0 0 45
all ops 43 274 1762 2550 7429
rel ops 0.16 1.0 6.4 9.3 27.1
rel CPU 0.11 1.0 6.5 10.9 19.5

(5) As expected the CS method results in a significant increase in operation
count over the AD method, as a result of extra (unnecessary) floating-point
computations and recomputations of the value of the dissipation function
d repeatedly for each separate column of dd/dw;.

These results are for a specific compiler on a particular platform, but it is
important to evaluate the ability of different compilers to implement efficient
C++ code for derived types and expression templates. Table IV shows relative
CPU times on a variety of platforms for computing the 5 x 5 Jacobian od/dw;
using the FD, AD, and CS methods.

The relative CPU time of performing one-side finite differences varies by as
much as 6.2 for ICL to 7.4 for SGI even through exactly the same C++ source
code was compiled on each of these platforms with similar optimization levels.
A relative CPU time of slightly greater than 6.0 for the one-sided finite differ-
ence would be ideal since six evaluations of d(...) are performed (one for the
base point and five others for each perturbation in w;). The additional over-
head is incurred in performing the vector subtraction and scaling as shown in
(4).

These results also show that the CS method using std: : complex<double>
is much less efficient than the AD method using TFad<5,double> on all of
these platforms (as predicted by the relative increase in total operations).
The greatest disparity between AD and CS occurred with the ICL compiler
where the relative CPU time for CS was almost six times greater than for AD.

ACM Transactions on Mathematical Software, Vol. 35, No. 1, Article 1, Publication date: July 2008.

Strategies for Simulation and Analysis of Applications in C++ . 1:27

Table IV.

Relative CPU times for the computation of the 5 x 5 Jacobian of the dissipation term dd/ow;
using one-sided finite difference (FD), automatic differentiation (AD) using TFad<double> and
the complex-step (CS) using std: : complex<double>. All CPU times are relative to evaluation of
the dissipation term d(...).

Compiler/platform | One-sided finite differences | Automatic differentiation | Complex step

g++ 7.0 7.5 39.9

kce 7.0 12.5 31.6

ICL 6.2 10.3 59.3

SGI 7.4 19.5 39.0

CXX 6.7 57.4 197.5
Platforms

g++ : GNU g++ version 3.1, Red Hat Linux 7.2, 1.7 GHz Intel P IV
kee : KAI C++ version 4.0e, Red Hat Linux 7.2, 1.7 GHz Intel P IV
ICL : Intel C++ version 5.0, MS Windows 2000, 1.0 GHz Intel P IV
SGI : MipsPro C++ version 7.3.1

cxx : Compaq C++ version, Sandia National Laboratories Cplant

The difference between the relative CPU times for CS and AD was almost twice
that what would be predicted by the relative operation counts.

Finally, a large difference in performance is observed for the handling of the
scalar types TFad<double> and std: : complex<double> in comparison to double.
The relative performance of TFad<double> varies from 7.5 for g++ 3.1 to 57.4
for cxx. The relative performance of 7.5 for g++ 3.1 was very good considering
that the relative total operation count is 9.3 (as shown in Table III). The AD
code actually exceeds what would be predicted from the ideal operation count
in this one case.

5. CONCLUSIONS

A hybrid differentiation strategy is presented to compute Jacobian-vector prod-
ucts for an ANSI C++ implementation of a finite-volume discretization of the
Euler equations. Noninvasive and invasive hybrid symbolic/AD strategies that
pre-compute and store Jacobian submatrices at the mesh-object level and then
assemble Jacobian-vector products may result in computations nearly five times
faster than one-sided finite differences. In addition, these derivative computa-
tions are accurate to machine precision. No-storage use of AD at the edge level
can result in derivative computations that are very competitive in speed with
FD methods and require little knowledge of the actual edge-level computa-
tions. However, exploiting the structure of the computations at a lower level
and combining symbolically derived and coded derivatives with AD resulted in
significant improvements in CPU time and storage. Conclusions and observa-
tions are summarized as follows:

(1) Hybrid symbolic/AD approaches are well suited to discretization methods
for PDEs due to their structure. Hybrid symbolic/AD methods can result
in very accurate and affordable derivative computations without having to
rewrite an entire code. Instead, differentiation tools can be applied at the
mesh object level in a general way.

ACM Transactions on Mathematical Software, Vol. 35, No. 1, Article 1, Publication date: July 2008.

1:28 o R. A. Bartlett et al.

(2) Computing Jacobian-vector products and performing like computations by
applying AD at the mesh object level generally does not require sophis-
ticated AD features such as the special sparsity and check-pointing han-
dling for storage management that are the focus of several research groups
[Bischof et al. 1997; Griewank et al. 1996].

(3) One of the main advantages of the hybrid strategy is the flexibility with
which one can apply AD so that the right balance between implementation
effort and computational efficiency can be achieved.

(4) Anynew or existing C++ project that is considering derivative computations
should template on the scalar type as much computational C++ code as pos-
sible. Templating code by the scalar type not only allows the use of AD but
other techniques such as interval analysis, extended precision arithmetic,
complex arithmetic, and uncertainty quantification.

(5) Symbolic differentiation is not always efficient or affordable even though
theoretically such an approach should result in the best quality differenti-
ation code. In many cases, too much implementation effort is necessary to
provide symbolic derivatives that are more efficient than those generated
by AD.

(6) The complex-step method for differentiation is analogous to automatic dif-
ferentiation but less efficient (and slightly less accurate). Therefore, since
many good AD classes for C++ are available, the complex-step method for
the computation of derivatives should never be seriously considered for pro-
duction use in ANSI C++ codes. However, as an extra validation approach,
the complex-step method may be very reasonable. In other languages that
lack support for operator overloading but yet support complex arithmetic,
such as Fortran 77, the complex-step method is a much more attractive
alternative.

REFERENCES

Bebpa, L. M., Kororgy, L. N., Surkiks, N. V., AND Frorova, T. S. 1959. Programs for automatic dif-
ferentiation for the machine BESM. Tech. rep., Institute for Precise Mechanics and Computation
Techniques, Academy of Science.

Bischor, C., CARLE, A., CorLiss, G., GRIEWANK, A., AND Hovranp, P. 1992. ADIFOR—generating
derivative codes from Fortran programs. Scientific Program. 1, 1-29.

Bischor, C. H., Ron, L., AND MAUER, A. 1997. ADIC—An extensible automatic differentiation tool
for ANSI-C. Softw.—Pract. Experi. 27, 12, 1427-1456.

Brazek, J. 2001. Computational Fluid Dynamics: Principles and Applications. Elsevier.

CESARE, N. AND PIRONNEAU, O. 2000. Flow control problem using automatic differentiation in C++.
Tech. rep., LAN-UPMC report 99013. Unversite Pierre et Marie Curie.

Courrty, F., Dervieux, A., Koosus, B., anp Hascoer, L. 2003. Reverse automatic differentia-
tion for optimum design: from adjoint state assembly to gradient computation. Optimiz. Meth.
Softw. 18, 5, 615—-6217.

Faure, C. 2005. An auomatic differentiation platform: Odyssee. Future Gener. Comput.
Syst. 21, 8, 1391-1400.

GIERING, R. AND Kaminskr, T. 1998. Recipies for adjoint code construction. ACM Trans. Math.
Softw. 24, 4, 437-474.

GOEDECKER, S. AND Hoisie, A. 2001. Performance Optimization of Numerically Intensive Codes.
SIAM.

ACM Transactions on Mathematical Software, Vol. 35, No. 1, Article 1, Publication date: July 2008.

Strategies for Simulation and Analysis of Applications in C++ . 1:29

GRIEWANK, A. 2000. Evaluating Derivatives: Principles and Techniques of Algorithmic Differen-
tiation. SIAM.

GRIEWANK, A., JUEDES, D., AND UTKE, J. 1996. ADOL-C, a package for the automatic differentiation
of algorithms written in C/C++. ACM Trans. Math. Softw. 22, 2, 131-167.

Hascort, L. 2004. Tapenade: a tool for automatic differentiation of programs. In Proceedings
of the 4th European Congress on Computational Methods in Applied Sciences and Engineering
(ECCOMAS) 2. P. Neittaanm aki, T. Rossi, S. Korotov, E. Onate, J. Periaux, and D. Knorzer, Eds.

LinnainMaa, S. 1976. Taylor expansion of the accumulated rounding errror. BIT (Nordisk Tid-
skrift for Informationsbehandling) 16, 146-160.

Marrins, J. R. R. A., STURDZA, P., AND ALONSO, J. J. 2003. The complex-step derivative approxima-
tion. ACM Trans. Math. Softw. 29, 3, 245-262.

Moorg, R. 1979. Methods and Applications of Interval Analysis. STAM.

Rog,P. 1981. Approximate Riemann solvers, parameter vectors, and difference schemes. J. Com-
putat. Phy. 43, 357-372.

SPEELPENNING, B. 1980. Compiling fast partial derivatives of functions given by algorithms. Ph.D.
thesis, Department of Computer Science, University of Illinois at Urbana-Champaign.

SQUIRE, W. aND Trarp, G. 1998. Using complex variables to estimate derivatives of real functions.
SIAM Rev. 40, 1, 110-112.

VAN ALBADA, B., VAN LEER, G., AND JR., W. R. 1982. A comparative study of computational methods
in cosmic gas dynamics. Astronomy Astrophys. 108, 76—84.

VanpeN, K. anDp Orewis, P. 1996. Comparison of numerical and analytical Jacobians. AIAA J. 34, 6,
1125-1129.

WenGerT, R. E. 1964. A simple automatic derivative evaluation program. Comm. ACM 7, 8,
463-464.

Received May 2006; revised April 2007; accepted July 2007

ACM Transactions on Mathematical Software, Vol. 35, No. 1, Article 1, Publication date: July 2008.

