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Biologically plausible strategies for visual scene
integration across spatial and temporal domains
continues to be a challenging topic. The fundamental
question we address is whether classical problems in
motion integration, such as the aperture problem, can be
solved in a model that samples the visual scene at
multiple spatial and temporal scales in parallel. We
hypothesize that fast interareal connections that allow
feedback of information between cortical layers are the
key processes that disambiguate motion direction. We
developed a neural model showing how the aperture
problem can be solved using different spatial sampling
scales between LGN, V1 layer 4, V1 layer 6, and area MT.
Our results suggest that multiscale sampling, rather than
feedback explicitly, is the key process that gives rise to
end-stopped cells in V1 and enables area MT to solve the
aperture problem without the need for calculating
intersecting constraints or crafting intricate patterns of
spatiotemporal receptive fields. Furthermore, the model
explains why end-stopped cells no longer emerge in the
absence of V1 layer 6 activity (Bolz & Gilbert, 1986), why
V1 layer 4 cells are significantly more end-stopped than
V1 layer 6 cells (Pack, Livingstone, Duffy, & Born, 2003),
and how it is possible to have a solution to the aperture
problem in area MT with no solution in V1 in the presence
of driving feedback. In summary, while much research in
the field focuses on how a laminar architecture can give
rise to complicated spatiotemporal receptive fields to
solve problems in the motion domain, we show that one
can reframe motion integration as an emergent property
of multiscale sampling achieved concurrently within
lamina and across multiple visual areas.

Introduction

Visual scene integration is a well-studied topic, yet
there is still little consensus about the necessary and

sufficient network that affords the function observed.
Historically, the classical view of visual processing is a
local to global approach whereby earlier visual areas
serve as edge and orientation detectors that pass on
information to higher-order areas that perform more
complex processing to complete the 3-D representation
of the visual scene (Marr, 1982). However, recent
research has shown that V1 contains highly multiplexed
information about brightness, orientation, spatial
frequency, and other stimulus properties (Ts’o &
Gilbert, 1988; Rossi & Paradiso, 1999; Friedman,
Zhou, & von der Heydt, 2003). Countering the view
that early visual areas only process local information, a
cell’s response to border ownership was shown to be
largely independent of spatial extent and is represented
at a single neuron level (Craft, Schuetze, Niebur, & von
der Heydt, 2007). Zhou, Friedman, and von der Heydt
(2000) showed that as early as V1 18% of the cells
responded to border ownership. Moreover, different
sized receptive fields in different visual areas suggest
that some stimulus properties may be sampled in
higher-order areas in parallel with processing at lower
areas through fast interareal connections (Bullier, 2001;
Girard, Hupeı̀, & Bullier, 2001). Together, these new
pieces of evidence suggest that much of the processing
that was previously suggested to occur intra-areally
within the same layer of the visual cortex may instead
be computed by fast, parallel, bidirectional, interareal
and interlaminar connections at different spatial
resolutions.

In this paper, we explore whether a classic problem
in visual motion integration—the aperture problem—
can be solved with a simple model that samples the
visual scene at different spatial and temporal scales in
parallel. To frame what is meant by aperture problem,
we note that a neuron’s receptive field acts as a viewing
aperture and only detects components of motion visible
to its field of view (often not the same as the true global
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motion). Due to the difference in size between stimulus
and receptive fields (the latter being smaller), the true
motion of a line viewed from this aperture is only
unambiguous at line endings (assuming no significant
texture is present); the rest of the cells only have view
access to the perpendicular component of motion—this
is commonly understood as the aperture problem
(Stumpf, 1911; Wallach, 1935; Horn & Schunck, 1981).
The neural trace of the aperture problem is therefore
considered to be cells that only respond to the
component direction of motion while the stimulus itself
may move in a different global direction that cannot be
perceived from the local aperture (known as the pattern
motion). Surprisingly, 200 ms after the onset of the
moving stimulus, area MT already ‘‘solves’’ the
aperture problem (responds to the pattern of motion)
while V1 still largely responds to components of motion
(Pack & Born, 2001; Pack et al., 2003).

Historically, three broad classes of solutions have
been proposed to explain how the aperture problem is
solved: (a) intersection of constraints, (b) vector
averaging of motion direction, and (c) feature tracking.
The intersection of constraints method uses the normal
components of velocity and predicts the perceived
direction of motion from where those velocity-space
lines intersect (Adelson & Movshon, 1982). In the vector
averaging approach, the ambiguous line segments are
perceived to move in a direction consistent with the
average of the orthogonal components of the lines (Yo
& Wilson, 1992). The unambiguous line ends are
summed with varying weights together with ambiguous
line segments to simulate the perception of global
motion. In these models, cells are typically divided into
two classes (terminator units, which can see the line
ends, and contour units, which cannot). The aperture
problem is solved by setting the weight applied to the
terminator units to be larger than that applied to the
contour units (Lorenceau, Shiffrar, Wells, & Castet,
1992). Lastly, the feature tracking approach propagates
unambiguous signals (line ends or intersections of line
ends) inward to fill in missing information of ambiguous
retinal locations; this is done via a recurrent or feedback
neural network (Chey, Grossberg, & Mingolla, 1997).
The intersection of constraints and feature tracking
methods yield the same outcome (i.e., equivalent at the
computation level) and are different only at the
algorithm and implementation levels. The above models
approach motion integration in two stages: (a) compute
local motion in early visual areas and (b) integrate local
signals in higher visual areas to obtain the global percept
of motion. Analogously, in feature tracking models,
short-range filters and competitive interactions are
assumed to take place in V1, and longer-range filters in
MT establish the larger-scale representation of the
moving object (Chey et al., 1997).

Our approach differs from the above three in several
ways: (a) We de-emphasize intra-areal processing as the
central mechanism that propagates the relevant infor-
mation to solve the aperture problem, (b) fast interareal
and interlaminar connections between V1 and MT feed
back information onto V1, and (c) the computation
done in our model areas V1 and MT is essentially
identical with the only difference being spatial sampling
scales. Henceforth, we use the terms ‘‘spatial sampling
scale’’ and ‘‘multiscale sampling’’ to mean the integra-
tion of information from neural populations with
heterogeneous receptive field sizes wherein some
populations have receptive fields as much as an order of
magnitude larger than other populations. This type of
heterogeneity is well documented in biology (Bolz &
Gilbert, 1986; Albright & Desimone, 1987), but its
usefulness is underexplored in modeling work.

More recently, other models have suggested that
multiscale sampling and feedback are the critical
components to quickly and successfully solve the
aperture problem in area MT (Bayerl & Neumann,
2004). However, it remains to be explained why V1
activity does not look more like MT activity (why it
persists to show a component-like direction of motion).
In the present work, we propose that this inconsistency
with physiology can be addressed with a neural model
that distinguishes what feedback layer 6 versus layer 4
of V1 receive from area MT. Moreover, while Bayerl
and Neumann propose a modulatory, top-down
connection fromMT to V1, our model suggests that the
interareal connections must, in fact, be driving with the
only gating or modulatory connections coming intra-
areally from V1 layer 6 to V1 layer 4.

There has also been an increased interest in statistical
models that explain how and under what conditions the
aperture problem is solved. Most of these models rely on
a Bayesian framework in which the local motion is
represented by likelihood functions of the line’s position
and velocity. Global motion is then inferred by
introducing prior constraints and computing the poste-
rior distribution (Perrinet & Masson, 2012). The prior
constraints are a priori knowledge of cell or motion
properties, such as preference for slow line speed
(Montagnini, Mamassian, Perrinet, Castet, & Masson,
2007), smoothness of motion away from luminance
discontinuities (Tlapale, Masson, & Kornprobst, 2010),
or knowledge of line end versus line middle (Barthélemy,
Perrinet, Castet, & Masson, 2008). Our approach differs
in that while we do not doubt that the brain exploits
various prediction strategies, we remain uncertain that
these prior-like constraints are explicitly available to the
neural system. Rather, like the solution to the aperture
problem itself, the constraints of temporal continuity
and slow line speed may arise as an emergent property of
a multiscale sampling process. Moreover, most statistical
models involve computing integrals over hidden vari-
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ables, which is not only time consuming on a single
computer but also biologically questionable.

A last distinguishing feature of our model is the
emergence of several observable cell properties that we
did not explicitly set out to simulate. End-stopping, a
phenomenon observed in area V1 and MT whereby
cells develop suppressed responses to long but not short
bar lengths (Pack & Born, 2001; Pack et al., 2003),
emerges from our model area V1. We show that it is
possible to solve problems in motion integration with
this simple multiscale sampling approach in which fast
interareal and interlaminar connections complement
the relatively slow intralaminar communication.
Moreover, the model is consistent with cell physiology
and receptive field sizes.

Methods

In this work, we develop a computational model that
simulates the response of three visual areas (LGN, V1
layers 4 and 6, and MT) to a vertically oriented bar
moving at a 458 angle (Figure 1). For simplicity, the
model only includes cell populations selective to three
directions of motion (right, up, and up-right). We
include only the detailed laminar structure we found
necessary for the solution of the aperture problem to
emerge. The model architecture is detailed in Figure 2.

The model

The model consists of LGN cells, V1 layer 6 neurons,
V1 layer 4 interneurons, V1 layer 4 excitatory neurons,

and MT cells (Figure 2). Nondirection-selective LGN
cells sample the moving bar with receptive fields whose
excitatory regions are 1/25th the size of the bar. There
is no within-LGN (intra-areal) connectivity; the LGN
layer receives only feed-forward input from the moving
bar.

To simulate direction-selective V1 neurons, we
introduce the concept of a direction-selective mask that
is applied to neurons of a given selectivity after they
receive the LGN input. Model areas V1 layer 6, V1
layer 4 interneurons, and V1 layer 4 excitatory cells
each have three motion direction-selective layers:
rightward, upward, and right-up (458). The rightward
direction cells, for example, respond best to LGN input
at the center of the moving bar where the only
component of motion that is visible to the cell’s
receptive field is horizontal (for more detail, see
Direction mask section).

Model LGN synapses onto three V1 populations: V1
layer 6 cells, V1 layer 4 interneurons, and V1 layer 4
excitatory cells. These synapses are not only well
documented in physiology studies of area V1 (Van
Essen, Anderson, & Felleman, 1992; Lamme, Super, &
Spekreijse, 1998), but also serve as the backbone for
many computational models of V1 (Grossberg &
Williamson, 2001; Raizada & Grossberg, 2001). It
should be noted that we were not seeking to complicate
the model unnecessarily by adding laminar connec-
tions; rather, we derived this structure as the necessary
and sufficient network to explain various aspects of the
aperture problem. All V1 populations inherit the
direction selectivity of the corresponding mask (there-
fore yielding nine V1 populations: V1 L6 rightward
selective, V1 L4 interneuron rightward selective, V1 L4
excitatory rightward selective, and similarly for the

Figure 1. Selectivity mask representation. In all of the simulations, the bar moves in the up-right direction (leftmost figure). To

simulate direction-selective cells, we introduce a mask that multiplies LGN’s activity depending on the location of the receptive field.

The rightward direction-selective mask is strongest in the center of the bar where only the horizontal direction of motion is registered

by a small receptive field. At the bar ends where the true direction of motion is registered by cells with small receptive fields, the up-

right direction selective mask is most active.
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upward-direction selective and up-right direction-se-
lective cells). While both layers 6 and 4 of V1 receive
LGN input, the receptive field sizes are distinct. Our
model V1 layer 6 has twice the receptive field size of V1
layer 4, which has similar receptive field sizes to LGN
(see Figure 2). These kernel sizes were chosen to be
consistent with known physiology (Bolz & Gilbert,
1986).

Model V1 layer 6 cells have modulatory inputs to V1
layer 4 interneurons as well as V1 layer 4 excitatory

cells. The idea that V1 layer 6 serves as a ‘‘gate’’

through which bottom-up and top-down activity is

regulated has been proposed previously (Bolz &

Gilbert, 1986). We find these modulatory connections

necessary in explaining why end-stopped cells no longer

emerge in V1 layer 4 in the absence of V1 layer 6

activity (Bolz & Gilbert, 1986). V1 layer 4 interneurons

have inhibitory, driving synapses onto V1 layer 4

excitatory cells (Figure 2).

Figure 2. Model diagram. V1 layer 4 cells (both excitatory and inhibitory) and V1 layer 6 cells receive bottom-up input from LGN with

different-sized sampling Gaussians as indicated by the size of the ovals and the x, 2x notation. This bottom-up activity is first passed

through a direction-selective mask, which simulates the motion direction–selective cells of V1. MT receives input from V1 L4 and

sends feedback to both V1 L6 and V1 L4, sampled with different-sized kernels. V1 L6 influences V1 L4 activity through inhibitory

interneurons as well as through direct modulatory input. Green arrows indicate interareal excitatory connections, and red circles

indicate interareal inhibition. Modulatory connections are in black. All feed-forward and feedback connections are driving (additive)

and shunted by the cell’s own activity with the exception of V1 layer 6, whose influence is always modulatory (multiplicative). A red

oval with a blue oval surround symbolizes on-center-off-surround intra-areal connectivity. All receptive fields are Gaussian. While we

do not show the diagrams for upward and right-upward selective cells, they are identical to this figure with the exception of the

direction-selective mask applied at the beginning. No cross-orientation competition exists. V1L6¼ V1 layer 6 cells that are rightward

motion-direction selective, V1L4i¼ V1 layer 4 inhibitory interneurons that are rightward motion-direction selective, V1L4e¼ V1 layer

4 excitatory cells that are rightward motion-direction selective, and MT¼area MT cells that are rightward motion-direction selective.
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Model area MT is similarly split into three popula-
tions that inherit their motion-direction selectivity from
V1: rightward-selective MT cells, upward-selective MT
cells, and right-up selective MT cells. MT only receives
input from V1 layer 4 cells of the same direction
selectivity; no cross-orientation interactions are mod-
eled in either area V1 or MT. MT receptive field sizes
are simulated as roughly 10 times that of V1 layer 4
receptive field sizes (Albright & Desimone, 1987). There
exists evidence for synapses directly from V1 layer 6
onto MT (Maunsell & Van Essen, 1983); however, we
did not find this connection to be fundamental to the
model and therefore did not include it.

The feedback connections in our model consist of
MT onto V1 layer 6 and MT onto V1 layer 4 excitatory
cells (Sillito, Cudeiro, & Jones, 2006). The receptive
field with which layers 4 and 6 sample MT cells are the
same as the bottom-up receptive fields of these neural
populations.

All excitatory and inhibitory inputs to the model are
driving (additive) and shunted (modulated by the cell’s
own activity) with the exception of V1 layer 6 synapses,
which are modulatory (see Appendix).

All visual areas (with the exception of LGN) are
modeled with distance-dependent shunting with on-
center-off-surround intra-areal connections:

dxij
dt
¼ �Axij þ ðB� xijÞ

�
IðtÞ*C

�
ij

� ðDþ xijÞ
�
IðtÞ*E

�
ij
þ ðx*FÞij

where xij is the model cell at location (i, j), A is the
membrane potential decay rate, B stands for the
depolarization threshold, I(t) is the driving input to the
cell at time t, C is a kernel for distance-dependent
excitation, D is a surrogate for the hyperpolarization
threshold, E is a kernel for distance-dependent inhibi-
tion, and F is a kernel for on-center-off-surround intra-
areal interactions. The * operation denotes a convolu-
tion with the respective kernel. The parameters B¼ 90
and D ¼ 60 are kept constant for all simulated brain
regions. The decay rate, A, and the kernel sizes C, E,
and F are varied as described in the section Parameter
selection.

LGN is similar to other model areas with the
simplification that it does not have any intra-areal
interactions. For a detailed summary of the equations,
see Appendix.

Direction mask

To address how our model neurons detect direction
of motion, we introduce the direction-selective mask
abstraction. The direction mask functions as a rudi-
mentary Reichardt detector or any other mechanism

that extracts ‘‘first-order’’ motion. We do not address
how this direction mask emerges in a biological system;
rather, the goal of this paper is to focus on multiscale
sampling of the motion stimulus.

Motion direction selectivity is achieved in area V1 by
introducing a direction mask over LGN cells that
modulate the sampled activity based on which spatial
region the V1 cells can perceive (Figure 1). For
example, at the center of the bar where the V1 cells only
see rightward direction of motion, the rightward mask
has the strongest activity compared to the upward and
right-up masks. Conversely, at the bar ends where the
cells have access to the true direction of motion, the
right-up mask is significantly more active than either
the rightward or upward direction masks. The direc-
tion-selective masks move together with the bar over
time to simulate which direction-selective V1 cells are
receiving input from LGN and with what strength. The
size of the direction-selective masks is no larger than
the LGN receptive field size, which does not come close
to ‘‘seeing’’ the full moving bar. Therefore, the direction
mask concept alone cannot solve the aperture problem.

The stimulus

The stimulus we use is a vertically oriented bar 100
units in length and 1 unit in width, moving at a 458
angle relative to the horizontal (Figure 1). Given that
the excitatory portion of an LGN receptive field covers
roughly 0.28 of visual angle (Zhou et al., 2000), the
moving bar roughly covers 48 of visual angle in length
and 0.28 of visual angle in width. The bar moves at
every time step to the upper right corner, and the time
step refers to the Dt taken by the coupled ODE solver.
The total simulation time is 30 time steps, simulating
300 ms.

Analysis of simulations

To determine whether the aperture problem was
present in our simulation, we defined the solution to the
aperture problem to be the case when, at some time t,
the vector average of the preferred direction of motion
pointed toward the pattern motion (458 from the
horizontal) as opposed to the component direction of
motion. The expected vector average component
direction of motion was 28 from the horizontal for area
V1 layer 4, 48 for V1 layer 6, and 188 for area MT. The
expected component direction of motion is not
uniquely 08 from the horizontal because cells that could
see the bar ends and therefore the correct direction of
motion (458) are averaged with cells that can only see
the middle of the bar (08 from the horizontal). We
assessed whether the solution to the aperture problem
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was achieved in V1 layer 6, V1 layer 4, and area MT
separately. The preferred direction was assessed at
different time points throughout the simulation.

Additionally, we investigated cell dynamics for
model areas V1 L6, V1 L4, and MT by breaking down
the analysis by cells whose receptive fields could see the
bar ends versus those that could not. The presence of
end-stopped cells was defined as suppressed activity
after 20 ms of simulation time for long bars (cells that
could not see the bar ends) without any changes in the
activity for short bars (cells whose receptive fields could
see the bar ends).

Parameter selection

To find the appropriate parameter range for our
model, we attempted to match our LGN, V1, and MT
cells to known latencies, peak response profiles, and
spike distributions from available data in the macaque
visual system. For LGN dynamics, our target cell was
tuned to have a latency of roughly 20 ms (Schmolesky
et al., 1998), a peak response at 50 ms, and complete
response decay by 300 ms (Maunsell et al., 1999). The
V1 cells were targeted to have a latency of 50 ms
(Schmolesky et al., 1998), peak response at 80 ms, and
response decay by 150 ms (Xing, Yeh, Burns, &
Shapley, 2012). Model MT neurons were targeted to
have a 70 ms latency (Schmolesky et al., 1998), a peak
response at 100 ms, and a vanishing response by 200 ms
(Raiguel, Xiao, Marcar, & Orban, 1999). Extended
sustained responses over 1 s known to exist to a lesser
or greater extent in each cell population were not
considered. Due to feedback in the model, these target
dynamics were not strictly enforced but rather served as
guides and sanity checks for the model. The exact decay
rates and other model parameters can be found in the
Appendix.

To enforce the notion of different sized receptive
fields in LGN, V1 layer 6, V1 layer 4, and MT, we used
two-dimensional Gaussians to simulate the amount of
excitatory and inhibitory influence of neighboring cells
both within (intra-) and between (inter-) lamina and
visual areas. We up-sampled or down-sampled the
excitatory and inhibitory Gaussians by the same
amount, which was determined by the relative receptive
field size of the given visual area to the LGN receptive
field size.

All excitatory Gaussian kernels had a standard
deviation¼ 0.15 and peak¼ 18, representing the spatial
spread and amplitude of the outgoing signals passed
from one visual area to another. The inhibitory
Gaussians contributing to the off-surround had a
standard deviation¼ 1.2 and peak¼ 0.5. These
parameters were chosen for consistency with other
models that use the shunting equation to represent the

membrane potential of cell populations (Grossberg &
Todorovi, 1988). We note that our choice for using
shunting feedback for cell dynamics was driven by its
inherent gain control property and ability to solve the
noise-saturation dilemma (Grossberg, 1973). It remains
to be proven that the model described in this paper can
work and stabilize without shunting dynamics in the
cell’s membrane equation.

The LGN receptive field was used as the baseline
receptive field, which was then up-sampled to simulate
the receptive fields of V1 and MT. The excitatory
portion of the LGN Gaussian had a radius of 2 units
(cells), and the inhibitory portion had a radius of 5
units. V1 layer 6 was modeled as having twice the
receptive field of LGN (excitatory radius ¼ 4 units,
inhibitory radius¼ 10 units). Our model V1 layer 4 had
the same receptive field size as LGN, consistent with
data that suggests layer 4 has smaller receptive fields
than layer 6 of V1 (Bolz & Gilbert, 1986). We modeled
area MT as having a receptive field that is 10 times that
of LGN and V1 layer 4 (excitatory radius ¼ 20 units,
inhibitory radius¼ 50 units)—a modeling decision that
is also rooted in physiology (Albright & Desimone,
1987). All feedback projections from MT to different
lamina of V1 are sampled with the same size Gaussian
as the feed-forward projections for that visual area.

The intra-areal sampling was simulated by a
difference of Gaussians (excitatory-inhibitory), whose
excitatory and inhibitory regions were down-sampled
by two, relative to the cell’s interareal sampling kernel
(for example, MT’s intra-areal sampling kernel had an
excitatory radius of 10 units and an inhibitory radius of
25 units). This relatively smaller receptive field was
meant to simulate slower intra-areal communication
when compared to its interareal counterpart.

All simulations were performed in MATLAB 2009b.
All equations and stimuli were modeled in 2-D in their
differential equation form (see Appendix).

Results

Our simulation results show that the aperture
problem can be solved in area MT with this relatively
simple multiscale sampling model (Figure 4). The initial
response of MT to the moving bar is largely in the
component direction of motion (vector average pre-
ferred direction ¼ 23.68 while the expected preferred
direction, if the cell were listening to the components of
motion, is 188). However, after 60 ms, MT switches to
responding entirely to the pattern motion (vector
average preferred direction ¼ 42.68 relative to the
expected 458 if the cell were listening to the pattern
motion).
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V1 layer 6 responds mostly to component motion
throughout the simulation (vector average¼ 218 early
in the simulation and 258 later in the simulation). V1
layer 4, however, begins to shift more strongly toward
pattern motion as the simulation progresses (vector
average¼228 early in the simulation and 338 later in the
simulation). This phenomenon of V1 neurons being
caught between component and pattern motion has
been documented in end-stopped cells (most of which
are coincidentally found in layer 4 of V1) (Pack et al.,
2003).

When we analyzed the dynamics of our model cells,
we discovered that a strong end-stopping phenomenon

emerged in our V1 layer 4 cells (and to a lesser extent in
our V1 layer 6 cells) (Figure 3). After 20 ms, most of
our V1 layer 4 cells had a significantly suppressed
response to the middle of the bar relative to their initial
response (peak response dropped by 65%) while the end
of the bar response remained unchanged. Pack et al.
(2003) also found that cells were most strongly end-
stopped in layer 4 compared to layer 6. Interestingly,
this phenomenon was not modeled explicitly but rather
falls out of the multiscale sampling approach for
reasons we describe in the Discussion section. Our
model MT cells also had a suppressed response in the
middle of the bar after 20 ms; however, these cells had a

Figure 3. Model dynamics. Cell responses of two representative cells (in red and blue, respectively) in model areas V1 L6, V1 L4, and

MT. The solid lines represent response of the cells early in the simulation (before 20 ms), and the dotted lines represent the response

later in the simulation (after 20 ms). The first column shows the dynamics of the cells whose receptive field falls within the bar ends;

the second column shows the dynamics of cells whose receptive fields only have access to the middle of the bar. The figure highlights

the development of end-stopped cells largely in area V1 L4 and, to a lesser extent, in V1 L6. Unlike V1, certain cells in MT show

suppression of response to both short bars (where the line end is visible) and longer bars (where the line end is not visible),

implicating that an entire subset of direction-selective cells (in this case the rightward-direction cells) are being suppressed. The

activity units are the threshold-scaled membrane potentials of the cells (see Appendix).
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suppressed response at the bar ends and therefore
cannot be called end-stopped. For a detailed break-
down of cell dynamics and preferred directions at the
bar ends and middle of the bar, see Figures 3 and 4,
respectively.

In an attempt to understand why end-stopped cells
were emerging from our model, we cut all feedback
connections from area MT to V1 (Figure 5A). We
found that end-stopping can still develop in the absence
of feedback only if layer 6 V1 cells have a larger
receptive field than layer 4 V1 neurons (see the
Discussion section for further explanation). Moreover,
the aperture problem could still be solved by MT (albeit
more slowly) without the feedback as long as end-
stopped cells emerge from the dynamics. However, with
only a single spatial sampling scale, we were never able

to produce end-stopped cells or the solution to the
aperture problem in MT.

Lastly, when we deactivated V1 layer 6 in our model
(Figure 5B), we no longer saw end-stopped cells
developing in layer 4. This model phenomenon is
consistent with physiology (Bolz & Gilbert, 1986) and
reinforces the decision of modulatory or gating
connections from V1 layer 6 to V1 layer 4 interneurons
and excitatory cells.

Discussion

Our simulations show that it is indeed possible to
solve the aperture problem through multiscale sam-
pling between different lamina and visual areas. Our

Figure 4. Preferred direction (PD) of cells whose receptive fields see the bar ends (leftmost column) and those that only see the

middle of the bar (middle column) for areas V1 L6 (first row), V1 L4 (middle row), and MT (third row). The short red line indicates the

vector average of the PD. The short black line indicates PD if the cells were only responding to the component direction of motion,

and the green line corresponds to the expected PD if the cell was responding to the pattern direction of motion. To get a global view

of direction coding in our model visual areas, the last column shows the average PD for the cells that see the line end and those that

don’t, together, in areas V1 L6 (first row), V1 L4 (second row), and MT (third row). The dotted blue lines indicate the PD early in the

simulation (,60 ms), and the solid blue lines show the PD of the cells after 60 ms. Simulation area V1 L6 responds most to the

component direction of motion and changes the least throughout the simulation. Area V1 L4 first responds to the component

direction of motion but shifts closer toward the pattern direction of motion later in the simulation, such that the vector average of

the PD is between the two extremes. Area MT responds to the component direction of motion at the beginning; however, after 60

ms, MT responds entirely to the pattern. While the expected pattern motion is the same for all cells (458), the component motion is

different based on the size of the receptive field of the model area. The expected component direction of motion is not uniquely 08

from the horizontal because cells that can see the bar ends and therefore whose component motion is the correct direction of motion

(458) are averaged with cells that can only see the middle of the bar (08 from the horizontal). The expected PD for component motion

is 28 from the horizontal for V1 L4, 48 from the horizontal for V1 L6, and 188 from the horizontal for MT.
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results are consistent with physiology, which shows that
MT resolves the aperture problem while V1 continues
to respond largely to the components of motion despite
direct feedback from MT.

We believe that multiscale sampling (with or without
feedback) is the key ingredient to the emergence of end-
stopped cells in V1 layer 4, which, in turn, greatly
facilitates the solution of the aperture problem in area
MT. To give an intuitive explanation of why multiscale
sampling works, consider a moving bar that elicits
activity from LGN cells, which then synapse onto
rightward direction-selective V1 cells. The activity in
the rightward direction V1 cells is greatest in the middle
of the bar where the receptive fields only perceive the
horizontal component of motion. Now suppose these
rightward-selective cells sample the LGN input at two
different spatial scales and that the activity from the
larger spatial scale is subtracted from the activity of the

smaller spatial scale (this corresponds to V1 L4 cells
receiving inhibition from V1 L4 interneurons, which
receive their input from V1 L6 cells with larger
receptive fields). The region that will be most sup-
pressed because of this (smaller – larger receptive field)
activity difference is precisely the middle of the bar. For
this reason, we see that the strongest end-stopping
occurs in our rightward-selective cells in V1 although
some end-stopping can also be seen in right-up
direction-selective cells.

While we find that feedback is not necessary for a
successful solution to the aperture problem in area MT,
it facilitates strong end-stopping in area V1 by
providing a third spatial sampling scale. We hypothe-
size that the more spatial sampling scales the system is
exposed to, the easier it becomes to suppress activity
that does not agree between scales.

Figure 5. A) All feedback is disabled from the model. End-stopping in V1 and the solution to the aperture problem by MT still emerges

due to the different receptive field sizes of layer 6 and layer 4 of V1. B) V1 layer 6 is disconnected from the model. End-stopped cells

no longer emerge in layer 4 of V1 without layer 6 activity. Without end-stopped cells in layer 4, MT takes significantly longer to solve

the aperture problem for a bar of the same length.

Journal of Vision (2013) 13(11):18, 1–14 Sherbakov & Yazdanbakhsh 9

Downloaded from jov.arvojournals.org on 07/01/2019



Furthermore, we show that it is possible to have a
driving feedback model from area MT to V1 whereby a
solution to the aperture problem in MT does not
necessitate a solution in V1. This is explained by the
facts that (a) MT synapses on different lamina in V1
(Sillito et al., 2006), where input to layer 6 eventually
ends up inhibiting activity in layer 4 through inter-
neurons, and (b) V1 is continually processing bottom-
up input from LGN (which is riddled with the aperture
problem) in addition to aperture problem–free feed-
back from area MT. Based on physiology and
psychophysics (in monkeys and humans, respectively),
we hypothesize that the visual system has evolved this
way because there are evolutionary benefits to have one
visual area (V1) preserve local motion information
while another (MT) processes global motion. Local
motion may be useful for more than just estimating
global motion and solving the aperture problem. For
example, a local motion signal from V1 can be used in
other early vision tasks, such as optic flow estimation
(Beauchemin & Barron, 1995) and image segmentation
(Stoner & Albright, 1993). By maintaining both a local
and a global registration of motion, the system remains
flexible to different types of visual and cognitive tasks
without binding itself to a given scale. We note that if
the input from MT were modulatory (multiplicative)
onto V1, V1 would solve the aperture problem as soon
as MT does, which is inconsistent with physiology.

The fact that the aperture problem may be solved by
fast interlaminar and interareal connections coupled
with slower intralaminar and intra-areal sampling
serves as a proof of concept for future work. There are
several important limitations of this study. First, we
note that the system of differential equations does not
include temporal delay terms between different visual
areas. We know that conduction latencies are different
for area V1 and MT (Bullier, 2001); however, a
systematic analysis of both feed-forward and feedback
conduction delays is beyond the scope of this paper.
Rather, we thought of the sampling kernel sizes as a
surrogate measure for both spatial and temporal
differences of receptive fields in V1 and MT. It remains
to be seen how adding explicit temporal delays that
match biological constraints impact the solution of the
aperture problem in this model.

Another simplification of this work is the assump-
tion that some filtering process enables certain cells to
be sensitive to the rightward direction of motion while
other cells are selective to the upward and up-right
directions of motion. We introduced the concept of the
direction mask as an abstraction for some process
upstream that develops this selectivity biologically. A
more complete model should show how motion-
direction selectivity arises as an emergent property of
the system and replaces the direction mask concept in
this model. It is worth noting that V1 layer 6 has strong

feedback connections onto LGN, which, when taken
together with feedback from MT to V1 layer 6, may
suggest a process by which direction-selectivity emerges
(Sillito et al., 2006).

A third limitation to this work is the lack of any
cross-orientation connectivity between the rightward,
upward, and right-up motion-selective cells. There is
evidence to suggest that this cross-orientation compe-
tition exists (Rose & Blakemore, 1974; Ferster &
Miller, 2000); however, it remains to be seen what
impact it would have on the aperture problem
simulation. Lastly, the contribution of other visual
areas as potential read-out layers for the aperture
problem solution cannot be overlooked (for example,
area MST has even larger receptive fields than MT).
Many details of the model remain to be fleshed out;
however, this work has served as a proof of concept
that multiscale sampling with simple Gaussian inter-
areal and intra-areal kernels is enough to solve the
aperture problem. Future directions of research also
include validating the model against psychophysical
measurements of the aperture problem as a function of
moving bar length, speed, duration of motion, and
contrast (Lorenceau et al., 1992).

The contribution of this paper is to reframe motion
integration as an emergent property of multiscale
sampling rather than hierarchal processing of local-to-
global information. Specifically, we investigated
whether a simple model in which receptive fields of
different spatial scales sampling a stimulus in parallel
can solve the aperture problem. Our simulation results
support the idea that fast, bidirectional, interlaminar
and interareal sampling is the key concept that enables
a network to solve the aperture problem without
further need for cells of special function or receptive
field shape.

Conclusion

In this paper, we presented a proof of concept that
motion integration in a multiscale sampling model
allows one to bypass the need for calculating intersec-
tion of constraints, propagation of signal from line
ends, complicated spatiotemporal receptive fields, and
other intricate methods. Moreover, the solution to the
aperture problem, together with the development of
end-stopped cells, pops out as an emergent property of
the network. More work needs to be done to make this
proof of concept biologically precise; however, we
believe this multiscale sampling approach could be
applied to many other classic problems in vision.

Keywords: aperture problem, motion integration,
receptive field, LGN, V1, MT, interareal connections,
intra-areal connections
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Appendix: Model equations

For all of the equations below, A represents the
membrane potential decay rate, B stands for the
depolarization threshold, and D is for the hyperpolar-
ization threshold. The A parameter is specific to the cell
population, and the B and D thresholds are 90 and 60,
respectively, for all simulated cell populations. All
excitatory, inhibitory, and intra-areal sampling kernels
(C, E, and F, respectively) are 2-D Gaussian kernels. The
absolute value of the peak amplitudes and standard
deviations of the excitatory kernels is always 18 and
0.15, respectively. The inhibitory kernels always have a
peak amplitude of 0.5 and a standard deviation of 1.2
(the ratio of E:I peak amplitude is always 36:1, and the
ratio between the E:I standard deviation is maintained at
1:8). The size of the excitatory and inhibitory Gaussians
(how many cells or units they span) varies by visual area.
The scaling is accomplished by up- or down-sampling of
the same baseline Gaussian kernels. The * operation
denotes a convolution with the respective kernel. To
simplify reading the equations, excitatory terms have
been colored green, inhibitory terms red, modulatory
terms blue, and intra-areal connections purple.

LGN

The population of LGN cells, LGNij, receives input
from the moving bar, I(t). The excitatory sampling
kernel, CLGN, has a peak amplitude of 18 and a
standard deviation of 0.15 and spans a radius of 2 cells
or units. The inhibitory sampling kernel, ELGN, has a
peak amplitude 0.5 and standard deviation 1.2 and
spans a radius of 5 cells or units. The membrane
potential decay rate, ALGN, is 50 (the same as the speed
of the moving bar in Hz).
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dLGNij

dt
¼ �A

LGN
� LGNij þ ðB� LGNijÞ

�
�
IðtÞ*CLGN

�
ij
� ðDþ LGNijÞ

�
�
IðtÞ*ELGN

�
ij

ðA1Þ

Because Equation A1 and the surrogate depolariza-
tion and hyperpolarization constants (B and D,
respectively) describe the membrane potential (the
actual spiking activity), we pass the LGN activity
through a threshold linear signal function with a
threshold of 30 before it can influence upstream
activity. The cells meeting this threshold are also
divisively normalized by the maximum activity in that
population of cells (such that the most active cell that
meets the threshold is scaled to one, and all other cells
meeting the threshold are scaled in proportion with the
maximally active cell).

V1 layer 6 rightward-selective population

The population of V1 layer 6 right cells, v1L6�
ij ,

receives shunted input from both LGN and right-
sensitive MT cells, LGN and MT�, respectively. The
LGN input is filtered through a right-selective mask
(see Direction mask section). The excitatory sampling
kernel, Cexcite

V1 , is twice the size of the LGN sampling
kernel (spans a radius of 4 units). The inhibitory
sampling kernel, Einh

V1 , is likewise twice the size of the
LGN inhibitory sampling kernel (radius ¼ 10 units).
The membrane potential decay rate, Av1, is 400
(tuned to fit the latency, peak amplitude, and decay
rate of typical V1 cells). The excitatory intra-areal
kernel, Fexcite

V1 , has peak amplitude 18, standard
deviation 0.15, and is half of the size of the interareal
excitatory kernel (radius ¼ 2 units). The inhibitory
intra-areal kernel, Finh

V1 , has peak amplitude 0.5,
standard deviation 1.2, and is also half of the
interareal inhibitory kernel (radius ¼ 5 units).

dv1L6�
ij

dt
¼ �Av1 � v1L6�

ij þ ðB� v1L6�
ij Þ

·
�
fðLGNÞ*Cexcite

V1

�
ij
�mask�ij ðtÞ

�

þ
�
fðMT�Þ*Cexcite

V1

�
ij

�
� ðDþ v1L6�

ij Þ

·
�
fðLGNÞ*Einh

V1

�
ij
�mask�ij ðtÞ

�

þ
�
fðMT�Þ*Einh

V1

�
ij

�

þ
�
v1L6�
ij *ðFexcite

V1 � Finh
V1 Þ
�
ij

ðA2Þ

The signal function, f, is again threshold linear
(threshold for LGN cells, LGN, is 30; threshold for MT
cells, MT�ij , is 35) and divisively scaled by the
maximally active cell.

V1 layer 4 inhibitory interneurons rightward-
selective population

The population of rightward-selective V1 layer 4
interneurons, v1L4i�

ij , receives bottom-up input from
LGN, modulatory input from rightward-selective V1
layer 6 neurons, and intra-areal on-center-off-sur-
round. The decay rate and sampling kernels are the
same as for V1 layer 6 cells.

dv1L4i�
ij

dt
¼ �Av1 � v1L4i�

ij þ ðB� v1L4i�
ij Þ

·
��

fðLGNÞ � fðv1L6�
ij Þ

�
*C

excite
V1

�
ij

�

�mask�ij ðtÞ
�
� ðDþ v1L4i�

ij Þ

·
���

fðLGNÞ � fðv1L6�
ij Þ

�

*E
inh
V1

�
ij
�mask�ij ðtÞ

�

þ
�
v1L4i�
ij *ðFexcite

V1 � Finh
V1 Þ
�
ij

ðA3Þ

The signal function, f, is threshold linear (threshold
for LGN cells, LGN, is 30; threshold for V1 layer 6
cells, v1L6�

ij , is 35) and divisively scaled by the
maximally active cell.

V1 layer 4 excitatory rightward-selective
population

The population of rightward-selective V1 layer 4
cells, v1L4e�

ij , receives bottom-up input from LGN,
inhibitory input from V1 layer 4 interneurons, top-
down input from MT, modulatory input from V1
layer 6 cells, and intra-areal on-center-off-surround.
The decay rate is the same as for V1 layer 6 and V1
layer 4 interneurons, but the sampling kernels are
reduced to half the size of V1 layer 6 Gaussians
(excitatory kernel spans a radius of 2 units, inhibitory
kernel radius ¼ 5 units). Note the inhibitory contri-
bution of V1 layer 4 interneuron factors in the
equation in the reverse order (the inhibitory convo-
lution is added to the excitation while the excitatory
convolution is added as inhibition).
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dv1L4e�
ij

dt
¼ �Av1ṡv1L4e�

ij þ ðB� V1L4e�
ij Þ

·
�
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V1

�
ij
�mask�ij ðtÞ

�

þ
�
fðMT�ij Þ*Cexcite
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�
ij
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�
fðv1L4i�
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ij
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ij Þ*Cexcite
V1

�
ij
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V1
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�
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�
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�
ij
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�
fðv1L4i�

ij Þ*Cexcite
V1

�
ij

�

�
�
fðv1L6�

ij Þ*Einh
V1

�
ij

þ
�
v1L4e�
ij *ðFexcite

V1 � Finh
V1Þ
�
ij

ðA4Þ

The signal function, f, is threshold linear (threshold
for LGN cells, LGN, is 30; threshold for V1 layer 6
cells, v1L6�

ij , is 35; threshold for V1 layer 4 interneurons,
v1L4i�
ij , is 25; threshold for MT cells, MT�ij , is 35) and
divisively scaled by the maximally active cell.

MT rightward-selective population

The population of MT rightward-selective cells,
MT�ij , receives bottom-up input from rightward-

selective V1 layer 4 excitatory cells and intra-areal
on-center-off-surround. MT’s decay rate, AMT, was
set to 800 to tune the cells to realistic latencies, peak
response times, and decay profiles. The excitatory
sampling kernel, Cexcite

MT , is 10 times the size of the
LGN sampling kernel (spans a radius of 20 units).
The inhibitory sampling kernel, Einh

MT, is likewise 10
times the size of the LGN inhibitory sampling kernel
(radius ¼ 50 units).

dMT�ij
dt

¼ �AMT �MT�ij

þ ðB�MT�Þ
�
fðv1L4e�Þ*Cexcite

MT

�
ij

� �

� ðDþMT�Þ
�
fðv1L4e�Þ

�
*ðEinh

MTÞij
h i

þ
�
MT�*ðFexcite

MT � Finh
MTÞ

�
ij

ðA5Þ

The signal function, f, is threshold linear (threshold
for V1 layer 4 cells, v1L4i�

ij , is 10) and divisively scaled
by the maximally active cell.

The same equations and parameters hold for
upward and right-up direction-selective cells with the
exception that mask�ij (t) is replaced by mask�ij(t) and
mask%ij (t), respectively. In general, there are no cross-
orientation interactions; only cells of the same
orientation (within and across layers) contribute the
cell’s activity.
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