
a

n
m
o
e

r
t

d
i
i
h
u
d
p

i
a

H
f
f

r

o
x

u

n
fl

t

inar
me
r
rect-

n
tion
ned
tio

ted
en-

th-
r is
m
pa-
,

te,
the
r and

de-
ll as
n,

-
gth

ow
nd

th
sult

nd

and
ous

Downloaded From
Entropy Generation Minimization of
Fully Developed Internal Flow
With Constant Heat Flux
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This paper uses the entropy generation minimization (EG
method to optimize a single-phase, convective, fully develo
flow with uniform and constant heat flux. For fixed mass flow r
and fixed total heat transfer rate, and the assumption of unifo
and constant heat flux, an optimal Reynolds number for lami
and turbulent flow is obtained. The study also compares opti
Reynolds number and minimum entropy generation for cr
sections: square, equilateral triangle, and rectangle with asp
ratios of two and eight. The rectangle with aspect ratio of eig
had the smallest optimal Reynolds number, the smallest ent
generation number, and the smallest flow leng
@DOI: 10.1115/1.1777585#

Introduction
This paper presents the thermodynamic optimum for fully

veloped internal convective flow, i.e., flow through a tube w
constant and uniform heat flux. The optimum is obtained by m
mizing the sum of viscous momentum transfer losses and
transfer losses. The viscous momentum transfer losses are d
fluid friction between the wall and the fluid and within the flui
Heat transfer losses are due to heat transfer across finite tem
ture differences between the wall and the fluid. The losses mus
quantified in equal units in order to compare them and to m
mize the sum of losses. One method of comparing losses is b
on the second law of thermodynamics, entropy generation m
mization ~EGM!.

Bejan @1–6# presents analyses of a tube flow using EGM.
has found thermodynamic optimums of the ratio of film coe
cient to pumping power and the dimensionless temperature di
ence with constant mass flow rate and heat transfer rate per
length. Note constant heat transfer rate per unit length is diffe
from uniform and constant heat flux. Reference@5# presents lami-
nar and turbulent flow through a tube with circular cross-secti
Entropy generation rate per unit length was minimized at a fi
heat transfer rate per unit length and mass flow rate, and
optimal Reynolds number~optimal tube diameter! was obtained.
For laminar flow, the optimal Reynolds number is zero. For t
bulent flow, the optimal Reynolds number is a function of Pran
number and duty parameter. The duty parameter is a functio
fluid properties, heat transfer rate per unit length, and mass
rate.

Sahin@7–9# investigated laminar and turbulent flow through
tube with uniform and constant heat flux. He investigated
effect of temperature-dependent viscosity on the entropy gen
tion rate as well as the ratio of pumping power to heat trans
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@7,8#. He presented the optimum cross-section shape for lam
flow and constant heat flux while comparing ducts of the sa
cross-sectional area and length@9#. He determined that the circula
cross-section was superior and the equilateral triangular and
angular cross-sections were inferior.

Nag and Mukherjee@10# investigated the tradeoff losses withi
a heat exchanger’s fluid passage minimizing entropy genera
rate for fixed wall temperature and mass flow rate. They obtai
the optimal wall-fluid temperature difference and the optimal ra
of film coefficient to pumping power. Sahin@11# also investigated
the entropy generation at fixed wall temperature. He presen
particularly the effect of temperature-dependent viscosity on
tropy generation and pumping power.

The rationale for this study is to complement the work by o
ers in regards to convective flow through a tube. This pape
different by considering a different boundary condition, unifor
and constant heat flux without fixing the duct geometry. This
per describes the optimal passage geometry~cross-section shape
tube length, and tube hydraulic diameter! for fully-developed
laminar and turbulent flows with fixed total heat transfer ra
fixed mass flow rate, and uniform and constant heat flux. Also
paper presents the solution’s dependence on the heat transfe
friction factor correlations.

Model Development
Figure 1 is a description of single-phase, steady, and fully

veloped flow through a tube subjected to heat transfer as we
wall shear forces. A small differential section of the flow is show
where its properties change acrossdx due to the interactions. Be
jan @6# developed the entropy generation equation per unit len
of tube.

Ṡgen8 5
q̇9P ~Tw2T!

T2
1

ṁ3f

2rTDhAc
2

(1)

whereq̇9, P , Tw , T, ṁ, f, r, Dh , andAc are the heat flux, tube
perimeter, wall temperature, bulk fluid temperature, mass fl
rate, Darcy friction factor, fluid density, hydraulic diameter, a
cross-sectional area, respectively.

Ratts and Atul@12# integrated the equation over the tube leng
L. They assumed that fluid properties were constant. Their re
was

Ṡgen>
~ q̇9!2P DhL

Nu•kT1T2
1

8ṁ3f L

r2TaveDh
3
P 2

(2)

where Nu is the Nusselt number,k is the thermal conductivity,T1
andT2 are the inlet and outlet fluid temperatures, and

Tave[
~T12T2!

ln~T1 /T2!
(3)

Integration was based on the boundary condition of uniform a
constant heat flux. The first term on the right hand side of Eq.~2!
is the entropy generation rate due to heat transfer dissipation
the second term is the entropy generation rate due to visc
dissipation.

The entropy generation rate in it its final form is

NS5NS,DTS 11
1

f
Re72g1a PrbD (4)

where the variables are: the entropy generation number

NS[
Ṡgen

Q̇/Tave

(5)

the entropy generation due to heat transfer dissipation

NS,DT5
4

xCh
F q̇9ṁ

mkTm
GRea11 Pr2b (6)9,
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the mean fluid temperature

Tm[
T1T2

Tave
(7)

the ratio of cross-section perimeter to hydraulic diameter~a con-
stant for a given cross-section shape and referred to as the s
ratio!

x5
P

Dh
(8)

and

f5F ~4!7

8x4ChCf
GF q̇9rṁ2

m3.5AkTm
G 2

(9)

The second term in brackets in Eq.~9! is the design criteria and is
referred to as the duty parameter@5#. The constantsCh , Cf , and
exponentsa, b, andg are from the Nusselt correlation

Nu5Ch Rea Prb (10)

and the friction factor correlation

f 5Cf Re2g (11)

Fig. 1 Fully developed internal flow
Table 1 Different
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There is an optimal Reynolds number that minimizes the
tropy generation. The minimum is found by taking the derivati
of Eq. ~4! with respect to Reynolds number, setting the derivat
equal to zero, and solving for the Reynolds number. The opti
Reynolds number is

Reopt5FfS a11

62g DPr2bG1/~72g1a!

(12)

Note the optimal Reynolds number scales inversely to the sh
ratio, the heat transfer correlation coefficient, and the friction f
tor correlation coefficient. Substituting the optimal Reynolds nu
ber into Eq.~4! results in the minimum entropy generation num
ber.

NS,min5
4

xCh
F q̇9ṁ

mkTm
GF11

~a11!

~62g! GReopt
2~a11! Pr2b (13)

The ratio of Eq.~4! to Eq. ~11! is

NS

NS,min
5S 62g

72g1a D S Re

Reopt
D 2~a11!

1S a11

72g1a D S Re

Reopt
D 62g

(14)

Note that this equation is independent of the Prandtl expon
and therefore the solution is the same for heating and cooling

Circular Cross-Section Tubes
The model was applied to a circular cross-section tube.

laminar flow, the heat transfer and friction factor correlations
given in Table 1. The constants for Eq.~10! are Ch54.36 and
a5b50. The constants for Eq.~11! areCf564 andg51. Substi-
tuting the constants into Eq.~12! provides the optimal Reynolds
number as a function of the duty parameter. Figure 2 presents
~12! for laminar flow. As the duty parameter increases, the optim
Reynolds number increases. Substituting the constants into
~14! results in the entropy number ratio as a function of the R
nolds number ratio. Figure 3 presents Eq.~14! for laminar flow.
Cross Section Tubes
AUGUST 2004, Vol. 126 Õ 657
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For an incremental change in the Reynolds number from the
timal condition, more entropy is generated in the direction of v
cous dissipation than heat transfer dissipation.

For turbulent flow, the Dittus-Boelter equation@14# constants
for Eq. ~10! are Ch50.023, a54/5, b50.4 ~heating! and 0.3
~cooling!. The constants@14# for Eq. ~11! are Cf50.316 and
g51/4 for ReD,23104, and Cf50.184 andg51/5 for 23104

,ReD,33105. Substituting the constants into Eq.~12! provides
the optimal Reynolds number for turbulent flow and is presen
in Fig. 2 ~dashed lines!. The optimum is plotted for two Prandt
numbers. As the Prandtl number increases, the optimal Reyn
number decreases. Equation~14! for turbulent flow is plotted in
Fig. 3. Note that the turbulent solution is more symmetric arou
the optimum in comparison to the laminar solution. With an
cremental change in Reynolds number from the optimal condit
the increase in heat transfer loss is closer in value to the incr
in viscous loss. Both the heat dissipation and viscous dissipa
losses are larger than for the laminar case. In addition the solu
by Bejan@6# is also plotted for comparison.

Noncircular Cross-Section Tubes
The model is applicable to noncircular cross-section tub

Table 1 presents the different cross-sections to be considered
table provides the geometric parameters: perimeter, cr
sectional area, and hydraulic diameter. The noncircular solut
were compared to the circular solution. The optimal Reyno

Fig. 2 Optimal Reynolds number for circular cross-section

Fig. 3 Entropy generation for circular cross-section
658 Õ Vol. 126, AUGUST 2004
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number for the noncircular cross-sections with respect to the
timal Reynolds number for the circular cross-section is

Reopt

Reopt,circle
5F ~x4ChCf !circle

~x4ChCf !
G 1/~72g1a!

(15)

The minimum entropy generation for the noncircular cross-sec
with respect to the minimum entropy generation for the circu
cross-section is

NS,min

NS,min,circle
5

~xCh!circle

~xCh! FReopt,circle

Reopt
Ga11

(16)

The solution for Eq.~15! is shown in Fig. 4 for laminar flow.
For the optimal Reynolds number, the shape order from highes
lowest is the circle, square~90 percent!, rectangle (b/a52) ~80
percent!, triangle ~78 percent!, and rectangle (b/a58) ~41 per-
cent!. The optimal Reynolds number is a strong function of t
shape ratio,x. The larger its value, the smaller the Reynolds nu
ber. Shapes with a larger value ofx can reduce the hydraulic
diameter to increase heat transfer without excessive viscous d
pation losses.

The optimal Reynolds number fixes the tube diameter an
also fixes the tube length. It can be shown that the ratio of
noncircular tube length to the circular tube length is equal to
ratio of the Reynolds number of the noncircular tube to the R
nolds number of the circular tube. The optimal length ratio
plotted in Fig. 4. The rectangle (b/a58) is the shortest and the
circle is the longest.

For the minimum entropy generation, the shape order fr
most irreversible to least irreversible is the triangle~109 percent!,
square~105 percent!, circle, rectangle (b/a52) ~93 percent!, and
rectangle (b/a58) ~51 percent!. The triangle and square genera
more entropy than the circle. Equation~16! is strongly dependen
on the product of the heat transfer correlation coefficient and
shape ratio. All of the cross-sections accept for the rectan
(b/a52) are ordered with respect to the value of the correlat
coefficient. For higher values of the coefficient, less entropy
generated. The rectangle (b/a52) has a high enough perimete
to-diameter ratio to reduce the entropy generation below
circle.

The solution for Eq.~15! is shown in Fig. 5 for turbulent flow.
For the optimal Reynolds number, the shape order from highes
lowest is the circle, square~88 percent!, rectangle (b/a52) ~83
percent!, triangle ~77 percent!, and rectangle (b/a58) ~54 per-
cent!. The optimal Reynolds number is solely a function of t
shape ratio. The heat transfer and friction factor coefficients
the same for all cross-sections. The optimal length ratio is plo
in Fig. 5. The rectangle (b/a58) is the shortest and the circle i
the longest.

Fig. 4 Optimal solutions for laminar flow
Transactions of the ASME
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For the minimum entropy generation, the shape order fr
most irreversible to least irreversible is the circle, square~98.8
percent!, rectangle (b/a52) ~98.3 percent!, triangle ~97.5 per-
cent!, and rectangle (b/a58) ~94.1 percent!. The entropy ratio is
only dependent on the shape ratio, but not as strong with res
to the optimal Reynolds number ratio.

Conclusions
The paper presented the optimal configuration for laminar

turbulent flow in a tube with a constant and uniform heat flux
a given total heat transfer rate and mass flow rate using the E
method. Considering the heat transfer and viscous momen
transfer entropy generation, the total entropy generation was m
mized providing the optimal Reynolds number, hydraulic dia
eter, and tube length. By the EGM method, the following conc
sions were made:

• For fixed heat transfer rate and mass flow rate with a cons
heat flux, there is an optimal Reynolds number for laminar a
turbulent flow.

• For the same deviation from optimal Reynolds number
laminar flow, the increase in entropy generation is smaller for h
dissipation than for viscous dissipation. The same is true for
bulent flow, but not as pronounced.

• In turbulent flow, the optimal Reynolds number is larger f
smaller Prandtl numbers.

• The optimal Reynolds number in laminar and turbulent flo
scales inversely with the shape ratio. The shape order from hig
to lowest is the circle, square, rectangle (b/a52), triangle, and
rectangle (b/a58).

• The minimum entropy generation in laminar flow is strong
dependent on the inverse of the product of heat transfer cor
tion coefficient and shape ratio. The shape order from most i
versible to least irreversible is the triangle, square, circle, re
angle (b/a52), and rectangle (b/a58).

• The minimum entropy generation in turbulent flow is depe
dent solely on the inverse of the shape ratio. The shape order
most irreversible to least irreversible is the circle, square, r
angle (b/a52), triangle, and rectangle (b/a58).

• The optimal tube length scales with the optimal Reyno
number. The longest to shortest length is the same order as
optimal Reynolds number. For the cross-sections considered
rectangle (b/a58) is the shortest length and the circle is t
longest length.

Nomenclature

Ac 5 cross-section area, m2

D 5 diameter, m
Dh 5 hydraulic diameter, m

Fig. 5 Optimal solutions for turbulent flow
Journal of Heat Transfer
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Ch 5 correlation coefficient
Cf 5 correlation coefficient

f 5 friction factor
h 5 enthalpy, J kg21

k 5 thermal conductivity, W m21 K21

L 5 tube length, m
NS 5 entropy generation number

NS,min 5 entropy generation number
NS,DT 5 entropy generation number

Nu 5 Nusselt number
ṁ 5 mass flow rate, kg s21

p 5 perimeter, m
P 5 Pressure, N m22

Pr 5 Prandtl number
Re 5 Reynolds number

Reopt 5 Reynolds number, optimum
q̇9 5 heat transfer flux, W m22

s 5 entropy, J kg21 K21

Ṡgen8 5 entropy generation gradient, W K21 m21

Ṡgen 5 entropy generation rate, W K21

T 5 temperature, K
Tw 5 wall temperature, K

Q̇ 5 heat transfer rate, W
x 5 coordinate, m
a 5 correlation exponent
b 5 correlation exponent
g 5 correlation exponent
m 5 dynamic viscosity, N s m22

r 5 density, kg m23

tw 5 wall shear stress, N m22

f 5 Eq. ~7!
x 5 shape ratio: ratio of perimeter to hydraulic diameter
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