
A Prototype for Translating XQuery

Expressions into XSLT Stylesheets

Niklas Klein1, Sven Groppe1, Stefan Böttcher1, and Le Gruenwald2

1 University of Paderborn, Faculty 5,
Fürstenallee 11,

D-33102 Paderborn, Germany
{niklask, sg, stb}@uni-paderborn.de

2 University of Oklahoma,
School of Computer Science,

Norman, Oklahoma 73019, U.S.A
ggruenwald@ou.edu

Abstract. The need for a user-friendly query language becomes increas-
ingly important since the introduction of XML. The W3C developed
XQuery for the purpose of querying XML data, but XQuery is not avail-
able in every tool. Because of historical reasons, many tools only support
processing XSLT stylesheets. It is desirable to use tools with XQuery, the
design goals of which are, among other goals, to be more human readable
and to be less error-prone than XSLT. Instead of implementing XQuery
support for every tool, we propose to use an XQuery to XSLT translator.
Following this idea, XQuery will be available for all tools, which currently
support XSLT stylesheets. In this paper, we propose a translator which
transforms XQuery expressions into XSLT stylesheets and we analyze
the performance of the translation and XSLT processing in comparison
to native XQuery processing.

1 Introduction

1.1 Problem Definition and Motivation

With the wide-spread use of the Extensible Markup Language (XML) accompa-
nied with increasing document sizes, there is an increasing need for user-friendly
XML query languages. While the Extensible Stylesheet Language Transforma-
tions (XSLT) [11], which also can be used as a query language, is established in
the market for years, XQuery [12] is relatively new.

Whereas XSLT is conceived as a transformation language, XQuery was aimed
to be an easy human readable query language. Furthermore, both languages are
used to grab, filter and associate data from XML-documents. There exists al-
ready a large repository of tools, especially commercial products, for supporting
XSLT, but not the XQuery language. Examples of such products are BizTalk
[8], Cocoon [1] and Xalan [2]. Whenever an application based on these tools is
required to use XQuery as the XML query language, it is a big advantage to

J. Eder et al. (Eds.): ADBIS 2005, LNCS 3631, pp. 239–254, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357336655?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

240 N. Klein et al.

have a translation from XQuery expressions to XSLT stylesheets such that the
XQuery language can be used.

Although both languages were developed with different aims, their applica-
tion possibilities and expressive power are similar. Both languages use XPath
as the path-language for retrieving XML node sets, and both languages have
corresponding language constructs for the iteration on an XML node set, the
definition of variables, XML node constructors and the definition and call of
user-defined functions. However there are some differences between the two lan-
guages which we will discuss in Section 2.3.

In this paper, we propose a translation tool from XQuery expressions into
XSLT stylesheets that covers the XQuery language except for a few exceptions.

The rest of this paper is organized as follows. Section 2 provides a compari-
son of XQuery and XSLT. Section 3 describes how we would translate XQuery
expressions into XSLT stylesheets. Section 4 presents experimental results com-
paring the execution times of XSLT stylesheets translated by our approach with
the execution times of direct executed XQuery expressions. Finally, Section 5
concludes the paper.

1.2 Related Work

There exists works that compare the languages XSLT and XQuery. [7] shows
that many XQuery constructs are easily mappable to XSLT, but presents only
examples of mappings and does not provide an algorithm for translating XQuery
expressions into XSLT stylesheets. [6] introduces an algorithmic approach of
translating XQuery expressions into XSLT stylesheets, but includes neither a
detailed algorithm for a subset of XQuery nor a report on experimental results.

Saxon [5] is a processor for both, XQuery expressions and XSLT stylesheets.
First, Saxon translates an XQuery expression or an XSLT stylesheet into an
object model, where most but not all components are common for XQuery and
XSLT. After that, Saxon executes the objects of the object model in order to
retrieve the results, but does not provide a source to source translation so that
XQuery can be used in XSLT tools.

In this paper we describe a detailed algorithm for translating a subset of
XQuery expressions into XSLT stylesheets. Furthermore, we give a detailed per-
formance analysis of the execution of the original XQuery expession compared
to the execution of the translated XSLT stylesheet.

2 Comparison of XQuery and XSLT Features

2.1 XQuery Essentials

XQuery is a functional language,which means that expressions can be nested with
full generality. XQuery is also a strongly-typed language in which the
operands of various expressions, operators, and functions must conform to the
expected types.

A Prototype for Translating XQuery Expressions into XSLT Stylesheets 241

XQuery embeds XPath as the path language to locate XML nodes in XML
structures. An XPath expression itself is a simple XQuery expression. Further-
more, the XQuery language extends the XPath language by constructors for
XML structures like elements and attributes, by FLWOR expressions, which
can combine and restructure information from XML documents, by user-defined
functions and many more language elements.

FLWOR is an acronym, standing for the first letters of the clauses that may
occur in an FLWOR expression:

– for clauses associate one or more variables to expressions, creating a tuple
stream in which each tuple binds a given variable to one of the items to
which its associated expression evaluates. There can be an arbitrary amount
of for clauses.

– let clauses bind variables to the entire result of an expression. There can be
an arbitrary number of let clauses, but there must be at least one let or
for clause.

– where clauses filter tuples, retaining only those tuples that satisfy a condi-
tion. The where clause is optional.

– order by clauses sort the tuples in a tuple stream. The order by clause is
optional.

– return clauses build the result of the FLWOR expression for a given tuple.
The return clause is required in every FLWOR expression.

2.2 XSLT Essentials

The W3C developed the declarative language XSLT, which describes the trans-
formation of XML documents into a document formulated in XML, HTML,
PDF or text by template rules. An XSLT stylesheet itself is an XML docu-
ment with the root element <xsl:stylesheet>. The xsl namespace is used to
distinguish XSLT elements from other elements. Template rules are expressed
by an <xsl:template> element. Its match attribute contains a pattern in form
of an XPath expression. Whenever a current input XML node fulfills the pat-
tern of the match attribute, the template is executed. An XSLT processor starts
the transformation of an input XML document with the current input XML
node assigned to the document root. Using a short form, the output of the
executed template is the XML nodes, which are not XSLT instructions, and
the text inside the executed template. This output can also be described by
a long form with the XSLT instructions <xsl:element> for generating XML
elements, <xsl:attribute> for generating attributes of an XML element and
<xsl:text> for generating text. Output is also described by the XSLT instruc-
tion <xsl:value-of>, which converts the result of an XPath expression to a
string. The XSLT instruction <xsl:apply-templates> recursively applies the
templates to all XML nodes in the result node set of the XPath expression given
by its select attribute. We refer to [11] for a complete list of XSLT instructions.

242 N. Klein et al.

2.3 Comparison of the XQuery and the XSLT Data Model and
Language Constructs

XSLT 2.0 and XQuery 1.0 are both based on the XPath data model [3] and both
embed XPath as the path language for determining XML node sets. Therefore,
a majority of the XQuery language constructs can be translated into XSLT lan-
guage constructs and vice versa. For example, xsl:for each has similar func-
tionality as for, xsl:if has similar functionality as where, and xsl:sort has
similar functionality as order by. However there are some differences between
the two languages which we will discuss here.

Differences in handling intermediate results: XQuery and XSLT handle
intermediate results differently.

– Whereas XQuery expressions can be nested with full generality, most XSLT
expressions cannot be nested. Therefore, nested XQuery expressions must
be translated into a construct, where the intermediate results of the nested
XQuery expression are first stored in an intermediate variable using the
xsl:variable XSLT instruction. After that the intermediate variable is re-
ferred for the results of the nested XQuery expression. XSLT variables, which
are defined by xsl:variable, can only store element nodes. In particular,
XSLT variables cannot store attribute nodes, comment nodes and text nodes.
Whenever the translated XSLT stylesheets have to store other XML nodes
besides element nodes, the translation process can use the work-around pre-
sented in Section 2.4.

– Both XQuery and XSLT embed XPath 2.0, which contains the is opera-
tor. This operator compares the two nodes identities. In the underlying data
model of XQuery and XSLT, each node has its own identity. XQuery expres-
sions never copy XML nodes, but always refer to the original XML nodes.
Contrary to XQuery expressions, XSLT expressions can only refer in vari-
ables to original XML nodes, which can be described by an XPath expression
XP and when using the <xsl:variable select="XP"> instruction. While
computing the result of more complex XSLT expressions, which contain func-
tionality outside the possibilities of XPath like iterating in a sorted node set
XP by <xsl:for-each select="XP"><xsl:sort/>...</xsl:for-each>,
XSLT expressions have to copy XML nodes by using xsl:copy or
xsl:copy-of, where the copied XML nodes get new identities different from
those of the original XML nodes or other copied XML nodes. Therefore,
whenever an XQuery expression uses the is operator and variables store a
node set that cannot be expressed by an XPath expression, the translation
process must offer a work-around, which ensures that the identities of XML
nodes in the translated XSLT stylesheet to be considered in the same way
as the identities of XML nodes in the original XQuery expression. Section
2.5 describes such a work-around.

Differences in language constructs: The translation process must consider
the following differences in the language constructs of XQuery and XSLT:

A Prototype for Translating XQuery Expressions into XSLT Stylesheets 243

– Whereas XQuery binds parameters in function calls by order of appearance,
XSLT binds parameters of calls of functions and of named templates by
parameter names.

– The order by construct of XQuery corresponds to xsl:sort. XQuery sup-
ports four order modifiers: ascending, descending, empty greatest and
empty least. XSLT supports only ascending and descending. Therefore,
empty greatest and empty least can not be translated yet. Furthermore
xsl:sort has to be the first child of the surrounding xsl:for-each XSLT
instruction. The order by clause can contain a variable $v, which is de-
fined after the for expression. Therefore, the translated variable definition
of $v occurs after the xsl:sort instruction, which must be the first child
of xsl:for-each, but translation of $v is defined later in the translated
XSLT stylesheet and cannot be used in the xsl:sort instruction. In the
special case where the variable $v is defined by an XPath expression XP, we
can replace the reference to the translation of $v in the xsl:sort XSLT in-
struction by XP. Furthermore, nested variables in XP must be already defined
before the xsl:for-each XSLT instruction or, again, must be defined by an
XPath expression such that the nested variables can be replaced in XP. In all
other cases, the order by clause cannot be translated into equivalent XSLT
instructions.

2.4 The Transforming XML Nodes to Element Nodes Approach

Whenever XML nodes, which are not element nodes, must be stored as inter-
mediate results, a preprocessing step of the original XML document is needed
to transform these XML nodes into element nodes as only element nodes can be
stored in XSLT variables of the translated XSLT stylesheet. We use a namespace
t in order to identify element nodes, which are transformed from not element
nodes. Tests on XML nodes, which are not element nodes, are translated into
tests on the corresponding element nodes (see Figure 1). As the result of the
translated XSLT stylesheet contains copied element nodes, which are not ele-
ment nodes of the original document, a postprocessing step must be applied to
the result of the XSLT stylesheet, which then transforms these element nodes
back to the corresponding XML nodes.

site/people/person/@name

is translated into

site/people/person/t:name

Fig. 1. Translating tests on attribute nodes

2.5 The Node Identifier Insertion Approach

In the following, we summarize the work-around presented in [6], which ensures
that the identities of XML nodes in the translated XSLT stylesheet are consid-
ered in the same way as the identities of XML nodes in the original XQuery
expression.

244 N. Klein et al.

Whenever the is operator occurs in the XQuery expression, it is necessary to
preprocess the source-document in order to add a new attribute t:id containing
an unambiguous identifier to every XML element and postprocess the result of
the XSLT stylesheet in order to remove the attribute t:id. Then the is operator
can be translated into the = operator evaluated on the attribute t:id.

When elements are created as intermediate results, the translated XSLT
stylesheet does not provide a mechism to set the t:id attributes of these el-
ements. Using the is operator would work in these cases (see Figure 2). In order
to consider both, the case that we have to consider the identity of XML nodes
of the input XML document and of intermediate results, we will translate the
is operator into two operations concatenated with the or operator (see Figure
3). One operation compares the t:id attributes the result of which is false in
the case that there are no t:id attributes. The other operation uses the t:is
operator the result of which is false if two copied XML nodes are compared.

The result of

let $a:= <z/>

return $a is $a

is ”true”, but the result of the wrong translation

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl=’http://www.w3.org/1999/XSL/Transform’ version="2.0">
<xsl:template match="/">

<xsl:variable name=’let0a’>
<xsl:element name=’z’/>

</xsl:variable>
<xsl:copy-of select="$let0a/@t:id = $let0a/@t:id"/>

</xsl:template>
</xsl:stylesheet>

is ”false”.

Fig. 2. Problems when translating the is operator in the case that elements are created

as intermediate results

. is /site[last()]

is translated into

(./@t:id = /site[last()]/@t:id) or (. is /site[last()])

Fig. 3. Translating the is operator

2.6 Optimization

Our proposed translation algorithm checks

– whether non-element nodes must be stored as intermediate results and, only
then, applies the transforming XML nodes to element nodes approach dis-
cussed in Section 2.4, and, otherwise, optimizes by avoiding the processing
of this approach.

A Prototype for Translating XQuery Expressions into XSLT Stylesheets 245

– whether the is operator is used and, only then, applies the node identifier
insertion approach discussed in Section 2.5, and, otherwise, optimizes by
avoiding the processing of this approach.

Furthermore, if necessary, both the preprocessing steps and postprocessing steps
presented in the transforming XML nodes to element nodes approach and in the
node identifier insertion approach can be applied in one step.

2.7 Handling Intermediate Results and Function Calls

XQuery supports closure by allowing nesting XQuery expressions with full gen-
erality. Due to the lack of closure in XSLT, query results must be stored in XSLT
variables. The results can then be referenced by the names of the variables (see
Figure 4).

for $i in doc("auction.xml")/site/closed_auctions/closed_auction
where $i/price/text() >= 40
return $i/price

is translated into

<?xml version="1.0"?>
<xsl:stylesheet version="2.0"
xmlns:xsl=’http://www.w3.org/1999/XSL/Transform’>

<xsl:variable name=’rootVar1’>
<xsl:copy-of select=’document("auction.xml")’/>

</xsl:variable>
<xsl:template match="/">

<xsl:variable name="for0_aux">
<xsl:copy-of select=’$rootVar1/site/closed_auctions/closed_auction’/>

</xsl:variable>
<xsl:for-each select="$for0_aux/*">

<xsl:variable name="for0i" select="."/>
<xsl:if test=’$for0i/price/text()>=40’>

<xsl:copy-of select="$for0i/price"/>
</xsl:if>

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

Fig. 4. Translating a query with intermediate results

While translating a function, we store the function name, the names of its
parameters and their order in a global data structure. Whenever we translate
a function call, we access this global data structure in order to retrieve the
necessary information of the names and the order of the parameters. Then the
problem of parameter binding can be solved by mapping the names in the order
of their appearance in the function call to the corresponding xsl:param tags
(see Figure 5).

246 N. Klein et al.

declare function local:mult($y, $x){ $y * $x };
local:mult(10, 10)

is translated into

<xsl:template name=’mult’>
<xsl:param name=’y’/>
<xsl:param name=’x’/>
<xsl:copy-of select=’$y*$x’/>

</xsl:template>
<xsl:template match="/">

<xsl:call-template name=’mult’>
<xsl:with-param name=’y’ select=’10’/>
<xsl:with-param name=’x’ select=’10’/>

</xsl:call-template>
</xsl:template>

Fig. 5. Translating a function

3 Translating XQuery Expressions into XSLT Stylesheets

In this section, we describe the algorithm to translate XQuery expressions into
XSLT stylesheets.

3.1 Translation of an XQuery Expression

The translation from an XQuery expression into an XSLT stylesheet is done
in two phases. In phase one, we parse the XQuery expression in order to gen-
erate the abstract syntax tree of the XQuery expression. For an example, see
the XQuery expression in Figure 4 and its abstract syntax tree in Figure 6.
In phase two, we evaluate the attribute grammar, which we do not present
here due to space limitations. After evaluating the attribute grammar, a DOM
[4] representation of the translated XSLT stylesheet is stored in the attribute
MainModul.docFrag (see Figure 6). Figure 6 presents the evaluation of attributes
for every node in the abstract syntax tree of the XQuery expression in Figure 4.
Figure 4 presents also the final results of the translation process.

3.2 Processing of the Translated XSLT Stylesheet

See Figure 7 for an example of the entire translation process (step 1) and trans-
formation process, which consists of the preprocessing step of the input XML
document (step 2), the execution of the translated XSLT stylesheet (step 3) and
the postprocessing step (step 4) of the results of the XSLT stylesheet.

If we can optimize according to what we have discussed in Section 2.6, then we
will avoid the preprocessing step (step 2) and the postprocessing step (step 4).

4 Performance Analysis

This section describes the experiments that we have conducted to compare the
execution time of translated XQuery expressions (i.e. XSLT stylesheets) in-

A Prototype for Translating XQuery Expressions into XSLT Stylesheets 247

Fig. 6. The abstract syntax tree including computed attributes showing the translation

of the XQuery expression in Figure 4

cluding the translation time with the time for executing the original XQuery
expression.

4.1 Experimental Environment

We have used the XMark benchmark [10] for all our experiments. This bench-
mark consists of 20 XQuery queries and an XML data generator. This generator
generates XML documents, the size of which can be scaled, containing auction
data. The XMark developers chose the 20 XQuery queries that cover many as-
pects of XQuery. Furthermore, XMark is one of the most used benchmarks for
XQuery in research. We have used documents of size 0.317 MB, 0.558 MB, 1.2
MB, 1.7 MB, 2.3 MB, 2.8 MB, 5.5 MB and 12 MB for the experiments.

We have used three different query evaluators: Saxon [5], Xalan [2] and Qexo
[9]. Saxon has the capability to evaluate both XQuery expressions and XSLT

248 N. Klein et al.

Fig. 7. The transformation process

stylesheets. Whereas Xalan is an XSLT evaluator, which is integrated in the
Sun Java Development Kit, Qexo is an XQuery evaluator. Qexo is one of the
few XQuery evaluators developed in Java, which implements most language con-
structs of the current XQuery specifications.

We present the average execution times of 20 executions for every XMark
query in combination with every query evaluator.

A Prototype for Translating XQuery Expressions into XSLT Stylesheets 249

We have run the experiments on an AMD Athlon 2 Gigahertz with 1 Gi-
gabytes main memory, where 800 Megabytes are assigned to the Java virtual
machine. The system runs a Linux kernel 2.6.4 and Java version 1.4.2.

4.2 Analysis of Experimental Results

We present the average execution times of twenty experiments of all 20 XMark
queries and their translated XSLT stylesheets for a fixed document file size of 5.5
Megabytes in Figure 14. For the XSLT stylesheets in Figure 14 we have used op-
timized evaluation (i.e. without the pre- and postprocessing step) except for the
unoptimized XSLT stylesheet of query 10, which cannot be optimized because
query 10 uses the is operator. Saxon processes the XQuery queries 22 % faster
on average compared to evaluateing the translated XSLT stylesheets. When we
only consider queries without joins, i.e. all queries except the queries 8, 9 and
10, Saxon evaluates the XQuery queries 12 % faster on average. Figure 14 shows
that Saxon evaluates the translated XSLT stylesheets of the queries 8, 9 and
10 up to 132 times slower compared to evaluating the original XQuery queries,
which shows that Saxon does not optimize the execution of the translated XSLT
stylesheets of the queries 8, 9 and 10 with joins. The execution of the translated
XSLT stylesheets of the Xalan XSLT processor is 0.8 % faster on average com-
pared to the execution of the Qexo XQuery evaluator of the XMark queries. Note
that Xalan and Qexo can not evaluate all queries because they do not implement
all used XPath functions. Furthermore, the evaluation time of the Qexo XQuery
evaluator is large when evaluating queries containing joins. In fact, Qexo eval-
uates query 9 (containing two joins) over 7000 times slower than query 1 (no
join). The translation needs linear time in the size of the input XQuery query,
which is under 7 msec in all cases and can be neglected.

Optimized processing is on average 13 % faster than processing with the
preprocessing step and postprocessing step. Only the XMark query 10 cannot
be optimized (because it uses the is operator), such that the preprocessing step
and the postprocessing step must be performed.

Furthermore, we present the average results of twenty experiments of six
queries (XMark query 1, 2, 3, 8, 9 and 18) where we vary the document file
sizes: Figure 8 shows the execution times of query 1, where the Saxon XQuery
evaluator is 18 % faster on average compared to the Saxon XSLT processor
with optimization (about 6 sec in the slowest case) and 33 % faster than Saxon
XSLT without optimization. Using Xalan XSLT (optimized) is faster than Saxon
XQuery for document sizes less than 10 MB, the Xalan XSLT processor is 32 %
faster on average compared to Saxon XQuery. The Qexo XQuery evaluator is
again 58 % faster than Xalan.

We have retrieved similar results for query 2 (see Figure 9), query 3 (see
Figure 10) and query 18 (see Figure 13) compared to query 1. Note that Qexo
cannot evaluate query 3 and query 18.

XMark Query 8 contains one join and XMark query 9 contains two joins. The
execution times of query 8 (see Figure 11) and the execution times of query 9 (see
Figure 12) show that XSLT processors evaluate the translated XSLT stylesheets

250 N. Klein et al.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2 4 6 8 10 12

ex
ec

ut
io

n
tim

es
 o

f X
M

ar
k

qu
er

y
1

(s
ec

on
ds

)

file size (megabytes)

Saxon XQuery
Saxon XSLT

Saxon XSLT no optimization
Xalan

Xalan no optimization
Qexo

Fig. 8. Execution times (y-axis) of XMark Query 1 and of its translated XSLT

stylesheet depending on the file size (x-axis)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2 4 6 8 10 12

ex
ec

ut
io

n
tim

es
 o

f X
M

ar
k

qu
er

y
2

(s
ec

on
ds

)

file size (megabytes)

Saxon XQuery
Saxon XSLT

Saxon XSLT no optimization
Xalan

Xalan no optimization
Qexo

Fig. 9. Execution times (y-axis) of XMark Query 2 and of its translated XSLT

stylesheet depending on the file size (x-axis)

A Prototype for Translating XQuery Expressions into XSLT Stylesheets 251

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2 4 6 8 10 12

ex
ec

ut
io

n
tim

es
 o

f X
M

ar
k

qu
er

y
3

(s
ec

on
ds

)

file size (megabytes)

Saxon XQuery
Saxon XSLT

Saxon XSLT no optimization
Xalan

Xalan no optimization

Fig. 10. Execution times (y-axis) of XMark Query 3 and of its translated XSLT

stylesheet depending on the file size (x-axis)

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10 12

ex
ec

ut
io

n
tim

es
 o

f X
M

ar
k

qu
er

y
8

(s
ec

on
ds

)

file size (megabytes)

Saxon XQuery
Saxon XSLT

Saxon XSLT no optimization
Xalan

Xalan no optimization
Qexo

Fig. 11. Execution times (y-axis) of XMark Query 8 and of its translated XSLT

stylesheet depending on the file size (x-axis)

252 N. Klein et al.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 0.5 1 1.5 2 2.5 3

ex
ec

ut
io

n
tim

es
 o

f X
M

ar
k

qu
er

y
9

(s
ec

on
ds

)

file size (megabytes)

Saxon XQuery
Saxon XSLT

Saxon XSLT no optimization
Xalan

Xalan no optimization
Qexo

Fig. 12. Execution times (y-axis) of XMark Query 9 and of its translated XSLT

stylesheet depending on the file size (x-axis)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2 4 6 8 10 12

ex
ec

ut
io

n
tim

es
 o

f X
M

ar
k

qu
er

y
18

 (
se

co
nd

s)

file size (megabytes)

Saxon XQuery
Saxon XSLT

Saxon XSLT no optimization
Xalan

Xalan no optimization

Fig. 13. Execution times (y-axis) of XMark Query 18 and of its translated XSLT

stylesheet depending on the file size (x-axis)

A Prototype for Translating XQuery Expressions into XSLT Stylesheets 253

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
im

e
(m

se
c)

XMark Query

Saxon XQuery
Saxon XSLT

Xalan
Qexo

Fig. 14. The execution time of all XMark queries for a file size of 5.5 Megabytes

of queries containing joins much slower compared to the execution of XQuery
evaluators of the XQuery queries.

The Saxon XQuery evaluator processes both queries much faster, 80 % for
query 8 and 98 % for query 9, compared to the execution of the optimized trans-
lated XSLT stylesheets of the Saxon XSLT processor. Contrary, the evaluation
of the translated queries of the Saxon XSLT processor is 85 % faster for query
8 and 90 % faster for query 9 compared to the Qexo XQuery evaluator.

5 Summary and Conclusions

We have presented an approach for translating XQuery expressions into XSLT
stylesheets. We described the algorithm for the translation process in terms of
an attribute grammar, which we do not present here due to space limitations.
In general, there must be a preprocessing step for the original XML document
before executing the translated XSLT stylesheet and a postprocessing step for
the result of the translated XSLT stylesheet.

The experiments considering the XMark queries showed that executing the
translated XSLT stylesheet is 12 % slower than native XQuery processing (except
queries containing joins). We show that in most cases, but at least for all XMark
queries except one XMark query, we can optimize and avoid the preprocessing

254 N. Klein et al.

step and the postprocessing step. Optimized processing is on average 13 % faster
than processing with the preprocessing step and postprocessing step. Therefore,
we have achieved the goal to make XQuery practically useable for the broad field
of XSLT tools.

References

1. apache.org. Cocoon (2004) http://cocoon.apache.org
2. apache.org. Xalan (2004) http://xml.apache.org/xalan-j
3. Fernandez, M., Robie, J. (Eds): “XQuery 1.0 and XPath 2.0 Data Model”. W3C

Working Draft, June (2001) http://www.w3.org/TR/2001/WD-query-datamodel/
4. Hors, A. L., Hegaret, P. L., Nicol, G., Robie, J., Champion, M., Byrne, S. (Eds):

“Document Object Model (DOM) Level 2 Core Specification Version 1.0”. W3C
Recommendation, Nov. (2000) http://www.w3.org/TR/DOM-Level-2-Core/

5. Kay, M. H.: Saxon (2004) http://saxon.sourceforge.net
6. Lechner, S., Preuner, G., Schrefl, M.: Translating XQueryinto XSLT. In Revised

Papers from the HUMACS, DASWIS, ECOMO, and DAMA on ER 2001 Work-
shops, Springer-Verlag (2002) 239–252

7. Lenz, E.: XQuery: Reinventing the Wheel? (2004)
http://www.xmlportfolio.com/xquery.html

8. Microsoft. Biztalk (2004) http://www.biztalk.org/
9. qexo.org. Qexo (2004) http://www.gnu.org/software/qexo

10. Schmidt, A., Waas, F., Manolescu, I., Kersten, M., Carey, M. J., Busse, B.: XMark:
A benchmark for XML data management. In Proc. of the 28th International
Conference on Very Large Data Bases (VLDB 2002), Hong Kong, China, July 02
(2002)

11. W3C. XSL Transformations (XSLT) (2003) http://www.w3.org/TR/xslt
12. W3C. XML Query (2004) http://www.w3.org/XML/Query

	Introduction
	Problem Definition and Motivation
	Related Work

	Comparison of XQuery and XSLT Features
	XQuery Essentials
	XSLT Essentials
	Comparison of the XQuery and the XSLT Data Model and Language Constructs
	The Transforming XML Nodes to Element Nodes Approach
	The Node Identifier Insertion Approach
	Optimization
	Handling Intermediate Results and Function Calls

	Translating XQuery Expressions into XSLT Stylesheets
	Translation of an XQuery Expression
	Processing of the Translated XSLT Stylesheet

	Performance Analysis
	Experimental Environment
	Analysis of Experimental Results

	Summary and Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

