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Abstract

In this paper we introduce a family of filter kernels - theGray-Code Kernels (GCK)and demonstrate

their use in image analysis. Filtering an image with a sequence of Gray-Code Kernels is highly efficient

and requires only2 operations per pixelfor each filter kernel, independent of the size or dimension

of the kernel. We show that the family of kernels is large and includes the Walsh-Hadamard kernels

amongst others. The GCK can be used to approximate any desired kernel and as such forms a complete

representation. The efficiency of computation using a sequence of GCK filters can be exploited for

various real-time applications, such as, pattern detection, feature extraction, texture analysis, texture

synthesis, and more.

Index Terms

Image Filtering, Filters, Filter Kernels, Convolution, Walsh-Hadamard, Pattern Matching, Block

Matching, Pattern Detection.

I. I NTRODUCTION

Many image processing and vision applications require filtering of images with a successive

set of filter kernels; pattern classification, texture analysis, image de-noising, pattern detection

are a few examples. In many such applications, however, applying a large set of filter kernels

is prohibited due to time limitations. This limitation is even more severe when dealing with

video data in which spatio-temporal filtering is required. Even when exploiting the convolution

theorem and the Fast Fourier Transform (FFT) algorithm, the complexity remains high. A possible

approach to increase efficiency is to design a set of specific kernels which are efficient to apply.

Studies that took this course of action include the integral image [1], summed-area tables [2],

and a generalized version of these called boxlets [3]. The main drawback of these approaches

are that they allow only a limited set of filter kernels to be computed efficiently.

In this paper we aim to improve run-time and approach real-time performance for image

filtering. Our work is motivated by a previous study [4], [5] in which the authors have shown

that real-time pattern matching can be achieved using successive image filtering with a set of

carefully chosen filter kernels.

The goal of this paper is to form a set of filter kernels that can be applied efficiently in various

real-time applications. Towards this end, the suggested kernels should have the following desired

characteristics:
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• Informative: The kernels should be “informative” with respect to the relevant task.

• Efficiency: The kernels should be efficient to apply enabling real-time performance.

• Variety: The kernel set should consist of a large variety of kernels so that it can be used

in various applications. It is advantageous to have a kernel set that forms a complete basis,

enabling approximations ofany desired kernel.

In this paper, we introduce a family of filter kernels such that successive convolution of an

image with a set of such filters is highly efficient and requires only2 operations per pixelfor each

filter kernel, regardless of the size or dimension of the filter. Moreover, the memory required is

at most 2 times the size of the original image. This family which we namedGray-Code Kernels

(GCK) consists of a very large set of filter kernels, including the Walsh-Hadamard basis kernels,

which can be used in a wide variety of applications. A specific application, demonstrating the

method’s efficiency, is presented in Section VI.

II. PREVIOUS WORK

Image filtering is a very common operation in image processing, yet its computational com-

plexity poses severe limitations in many applications. Numerous techniques have been proposed

to expedite this operation (e.g. [6], [7], [8], [9], [10], [3]). These techniques can be categorized

into three main classes of approaches: 1) Computational speed up of the filtering process

independent of the kernel used. 2) Design of special families of kernels for which each kernel

can be applied efficiently. 3) Design of special families of kernels for which a sequence of filters

can be applied efficiently in a cascade manner.

The first class deals with reducing run time of the filtering operation which can be applied to

any given filter kernel. The most common approach in this category is to exploit the convolution

theorem and apply filtering in the frequency domain using the Fast Fourier Transform (FFT)

[11]. In spite of the versatility of this approach, the scheme is efficient only for kernels with wide

support, due to the overhead calculations of the FFT. Its performance in real-time applications

is still inadequate (see e.g. [5]). Another approach in this class is to apply the filtering process

in the Wavelets domain while ignoring high frequency coefficients and exploiting the energy

compactization of the image in this domain [7]. Here too, in addition to the lossy results, the

overhead of the Wavelet transform limits the profitability of this scheme in real-time applications.
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The second class of approaches suggest fast image-filtering with filter kernels of specially

defined families of kernels. These families of kernels have special characteristics that are ex-

ploited to reduce filtering complexity. Studies that took this course of action include the integral

image [1], summed-area tables [2] and a generalized version of these called boxlets [3]. Another

example are kernels that belong to known function spaces that are fast to apply [6]. These

techniques are restricted to the specially defined families of kernels and do not generalize to

allow filtering with any given kernel.

The third class includes techniques for fast filtering with a cascade of kernels. In such cases,

efficiency of computation is achieved by exploiting relationships between the applied kernels. One

approach in this direction is to find a reduced subspace in which the kernel set is approximately or

exactly embedded. Filtering is performed with a small number of kernels that span this subspace.

Then, due to linearity of the filtering process, the original kernel filtering results are computed

as linear combinations of these few filtering results. The steerable filters technique [10], [12],

deformable kernels [9], and the SVD filtering [8] follow this scheme.

This paper introduces a novel technique that belongs to the third class of approaches. A

preliminary study was presented in [13]. Our work is motivated by a previous study [4], [5]

where a fast filtering scheme for the Walsh-Hadamard (WH) kernel set was used for pattern

detection. In this earlier study, the computational cost of convolving an image with each WH

kernel is between 1 ops/pixel and up to at most2logk ops/pixel for kernels of sizek × k. This

performance is achieved by exploiting the recursive structure of the WH kernels. This previous

approach, however, is constrained by several limitations:

• The method applies only to the Walsh-Hadamard Kernels.

• Filtering with each kernel requiresO(1)-O(d logk) operations per pixel (d being the kernel

dimension andk its width).

• The fast filtering approach is limited to filtering in a fixed order of kernels (defined by the

linear scanning of the leaves of the Walsh-Hadamard tree. See [5] for more details).

• Filtering is restricted to dyadic sized kernels.

• The method requires maintainingd logk images in memory. This requirement might be

prohibitive when dealing with 3D or higher-dimensional images.

In this paper we introduce the Gray-Code Kernels (GCK) and demonstrate their advantages:
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• The GCK family of kernels enables filtering in O(1) operations per pixel per kernel,

independent of the kernel size and dimension!

• The GCK family consists of a very large set of kernels.

• The GCK set includes non-dyadic kernels.

• The GCK method requires maintaining only 2 images in memory.

The GCK filters can be exploited in real-time applications, including, pattern detection, feature

extraction, texture analysis, texture synthesis, and more.

III. T HE GRAY-CODE KERNELS (GCK) - 1D CASE

Consider first the 1D case where signal and kernels are 1 dimensional vectors. Denote byV (k)
s

a set of 1D filter kernels expanded recursively from an initial seed vectors as follows:

Definition 3.1:

V (0)
s = s

V (k)
s = {[v(k−1)

s αkv
(k−1)
s ]} s.t. v(k−1)

s ∈ V (k−1)
s ,

αk ∈ {+1,−1}
whereαkv indicates the multiplication of kernelv by the valueαk and [. . .] denotes concate-

nation.

The set of kernels and the recursive definition can be visualized as a binary tree of depthk.

An example is shown in Figure 1 fork = 3. The nodes of the binary tree at leveli represent the

kernels ofV (i)
s . The leaves of the tree represent the8 kernels ofV (3)

s . The branches are marked

with the values ofα used to create the kernels (where+/− indicates+1/− 1).

Denote|s| = t the length ofs. It is easily shown thatV (k)
s is an orthogonal set of2k kernels

of length 2kt. Furthermore, given an orthogonal set of seed vectorss1, . . . sn, it can be shown

that the union setV (k)
s1

⋃
. . .

⋃
V (k)

sn
is orthogonal with2kn vectors of length2kt. If n = t the set

forms a basis.

Figure 1 also demonstrates the fact that the values,α1 . . . αk along the tree branches, uniquely

define a kernel inV (k)
s .

Definition 3.2: The sequenceα = α1 . . . αk, αi ∈ {+1,-1} that uniquely defines a kernel

v∈V (k)
s is called theα-index of v.
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α-relatedα-related

Fig. 1. The set of kernels and the recursive definition can be visualized as a binary tree. In this example the tree is of depth

k = 3 and creates23 = 8 kernels of length8. Arrows indicate pairs of kernels that areα-related.

We now define the notion ofα-relation between two filter kernels:

Definition 3.3: Two kernelsvi,vj ∈ V (k)
s are α-related iff the hamming distance of their

α-index is one.

Without loss of generality, theα-indices of twoα-related kernels are (α1 . . . αr−1, +1, . . . αk)

and (α1 . . . αr−1,−1, . . . αk). We denote the corresponding kernels asv+ and v− respectively.

Sinceα1 . . . αr−1 uniquely define a kernel inV (r−1)
s , two α-related kernels always share the same

prefix vector of length2r−1t = ∆. The arrows of Figure 1 indicate examples ofα-related kernels

in the binary tree of depthk = 3. Note that not all possible pairs of kernels areα-related. Of

special interest are sequences of kernels that are consecutivelyα-related.

Definition 3.4: An ordered set of kernelsv0 . . .vn∈V (k)
s that are consecutivelyα-related form

a sequence ofGray Code Kernels (GCK). The sequence is called aGray Code Sequence

(GCS).
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The term Gray Code relates to the fact that the series ofα-indices associated with a GCS

forms a Gray Code [14], [15], [16]. The kernels at the leaves of the tree in Figure 3 in a left to

right scan, are in fact consecutivelyα-related, and form a Gray Code Sequence. Note, however

that this sequence is not unique and that there are many possible ways of reordering the kernels

to form a Gray Code Sequence.

The main idea of this paper relies on the fact that twoα-related kernels share a special

relationship: Given twoα-related kernelsv+,v− ∈ V (k)
s their sumvp and their differencevm

are defined as follows:

Definition 3.5:

vp = v+ + v−

vm = v+ − v−

Theorem 3.6:Given two α-related kernels,v+, v− ∈ V (k)
s with a common prefix vector of

length∆, the following relation holds:

[0∆ vp] = [vm 0∆]

where0∆ denotes a vector with∆ zeros.

Proof is given in Appendix I. For example, consider the twoα-related kernels from Figure 1

whoseα-indices are[+ + +] and [+−+] respectively :

v+ = [s s s s s s s s]

v− = [s s −s −s s s −s −s]

They share a common prefix of length∆ = 2t. Then

vp = [ 2s 2s 0 0 2s 2s 0 0]

vm = [ 0 0 2s 2s 0 0 2s 2s]

and Theorem 3.6 holds with:

[02t vp] = [0 0 2s 2s 0 0 2s 2s 0 0] = [vm 02t]

For simplicity of explanation, we now expandv ∈ V (k)
s to an infinite sequence such that

v(i) = 0 for i<0 and for i≥2kt. Using this convention, the relation[0∆ vp] = [vm 0∆] can
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i-∆

i-∆

i

i

b+

b-

++

Fig. 2. Givenb−, the convolution of a signal with the filter kernelv−, the convolution resultb+ can be computed using 2

ops/pixel regardless of kernel size.

be rewritten in a new notation:

vp(i−∆) = vm(i)

With the new notation, Theorem 3.6 gives rise to the following Corollary:

Corollary 3.7:

v+(i) = +v+(i−∆) + v−(i) + v−(i−∆)

v−(i) = −v−(i−∆) + v+(i)− v+(i−∆)

Corollary 3.7 is the core principle behind the efficient filtering scheme introduced in this paper.

Let b+ andb− be the signals resulting from convolving a signalx with filter kernelsv+ and

v− respectively:

b+(i) =
∑

j x(j)v+(i− j)

b−(i) =
∑

j x(j)v−(i− j)

Then, by linearity of the convolution operation and Corollary 3.7 we have the following:

b+(i) = +b+(i−∆) + b−(i) + b−(i−∆)

b−(i) = −b−(i−∆) + b+(i)− b+(i−∆)
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[1  1]

[1 -1 -1  1][1  1 -1 -1] [1 -1  1 -1][1  1  1  1]

-+

+-+ -

[1]

[1 -1]

α-related

Fig. 3. Using initial vectors = [1] and depthk = 2 a binary tree creates the Walsh-Hadamard basis set of order4. Consecutive

kernels areα-related, as shown by the arrows.

This forms the basis of an efficient scheme for convolving a signal with a set of GCK kernels.

Given the result of convolving the signal with the filter kernelv− (v+), convolving with the filter

kernelv+ (v−) requiresonly 2 operations per pixelindependent of the kernel size (Figure 2).

Example - The 1D Walsh-Hadamard Kernels

Following is a specific example for the above definitions and discussions.

Considering Definition 3.1, and setting the prefix string tos = [1], we obtain thatV (k)
s is the

Walsh-Hadamard basis set of order2k. A binary tree can be designed such that its leaves are

the Walsh-Hadamard kernels ordered in dyadically increasing sequency and they form a Gray

Code sequence (i.e. are consecutivelyα-related). Such a tree and a discussion of its efficiency

in pattern detection is described in [4], [5]. An example fork = 2 is shown in Figure 3 where

every two consecutive kernels areα-related. For example, the first two kernels are:

v0 = [1 1 1 1]

v1 = [1 1 −1 −1]

They share the prefix string[1 1], thus ∆ = 2. Their sum and difference are respectively

vp = [2 2 0 0] andvm = [0 0 2 2] and Theorem 3.6 holds with:

vp(i− 2) = vm(i)

which yields:

v1(i) = −v1(i− 2) + v0(i)− v0(i− 2)
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Thus, given the result of filtering an image with the first Walsh-Hadamard kernel, filtering

with the second kernel requires only 2 operations (additions/subtractions) per pixel.

Subsequently, by ordering the Walsh-Hadamard kernels to form a Gray-Code Sequence, the

windowed Walsh-Hadamard transform can be performed using only 2 operations per pixel per

kernel regardless of signal and kernel size.

IV. EXTENSION OFGCK TO HIGHER DIMENSIONS

The previous sections can be generalized to higher dimensions. The most common use would

be in 2D where input signals and filter kernels are 2D images. Thus, in this section we present

only the 2-dimensional extension. However, the advantages of the approach are even more

significant in 3D and higher dimensions. Extension to higher dimensions and proofs can be

found in the Appendix.

In the previous sections, it was shown that successive filtering withα-related kernels can be

applied efficiently using at most 2 operations per pixel. We now define the conditions under

which higher dimensional filter kernels can be applied efficiently in a similar manner. We show

that computation cost remains at 2 operations per pixel per kernel regardless of the dimension.

Definition 4.1: Two filter kernelsvf1 andvf2 are consideredefficiently computable if given

an image filtered with one of the kernels, filtering the image with the second kernel is possible

using two operations per pixel.

The following Lemma forms the basis of the Gray Code Kernel results for 2-dimensions:

Lemma 4.2:Assumev01(i1, i2), v02(i1, i2) are two filter kernels in 2 dimensions.v01 andv02

are efficiently computable if both kernels are separable and can be factored into 1D kernels:

v01 = v0× v1 andv02 = v0× v2 or v01 = v1× v0 andv02 = v2× v0, such thatv1 andv2 are

α-related.

The symbol ”×” denotes the outer product:[v0 × v](i1, i2) = v0(i1)v(i2). Proof is given in

Appendix II.

As an example, consider the following two filter kernels:
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v01 =




10 10 −10 −10

5 5 −5 −5

5 5 −5 −5

10 10 −10 −10




v02 =




10 10 10 10

5 5 5 5

5 5 5 5

10 10 10 10




These kernels are separable:

v01 :

v02 :
v0 =




10

5

5

10




× v1 = [1 1 −1 −1]

v2 = [1 1 1 1]

If s = [1], the α-indices ofv1,v2 are:

α1 = [+, −]

α2 = [+, +]

and therefore, by Definition 3.3, the kernels areα-related.

Given the filtering resultb1 = I ∗ v01 of the 2-dimensional imageI with kernel v01, the

filtering b2 = I ∗ v02 can be calculated using 2 operations per pixel:

b2(i1, i2) = b2(i1, i2 − 2) + b1(i1, i2) + b1(i1, i2 − 2)

The operations in this example are along the 2nd dimension.

A. Separable Gray Code Kernels

Considering sets of 2-dimensional separable kernels, a set that spans a 2-dimensional image

window is often required. Of special interest are separable kernels of the formv = v1 × v2

wherev1 andv2 are each from a one dimensional set of Gray Code Kernels. The 2-dimensional

version ofV (k)
s is defined as:

V (k1,k2)
s1,s2

= {v1 × v2 | vi ∈ V (ki)
si

} (1)

That is for v ∈ V (k1,k2)
s1,s2

, v(i1, i2) = v1(i1)v2(i2). For example,V (2,3)
[1],[1] is the set of25 2-

dimensional kernels of size4 × 8. The setV (2,2)
[1],[1] is shown in Figure 4 and forms the4 × 4

Walsh-Hadamard kernels.
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Fig. 4. The outer product of two sets of one-dimensional Gray Code Kernels forms the set of 2-dimensional kernels. In this

case, the Walsh-Hadamard kernels of size4× 4 are obtained.

Since the 2-dimensional kernelv is separable, and can be defined by2 one-dimensional

kernels, the associated 2α-indices uniquely definev. Thus the following definition is consistent

with the one dimensional case (Definition 3.2):

Definition 4.3: For v ∈ V (k1,k2)
s1,s2

such thatv = v1×v2, with associatedα-indicesα1 andα2,

the sequenceα = [α1, α2] uniquely definesv and is called theα-index of v.

The set of kernels can then be computed using a binary tree of depthk1 + k2 such thatk1

levels of the tree operate on the first dimension andk2 on the second (see Figure 5).

Accordingly, the notion ofα-relation between two 2-dimensional kernels is defined:

Definition 4.4: Two kernelsvi,vj ∈ V (k1,k2)
s1,s2

areα-related iff the hamming distance of their

α-indices is one.
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s

K1 levels:
operations along 1st dim

K2 levels:
operations along 2st dim

s   s s  -s

Fig. 5. The set of 2D kernelsV (k1,k2)
s1,s2 can be computed using a binary tree of depthk1 + k2 such thatk1 levels of the tree

operate on the first dimension andk2 on the second.

For example, in Figure 4, every pair of horizontally or vertically neighboring kernels are

α-related.

The notion of aGray Code Sequenceof kernels can be extended to 2-dimensions:

Definition 4.5: An ordered set of 2-dimensional kernels,v0 . . .vn such that every consecutive

pair areα-related, is called aGray Code Sequenceof kernels.

From Lemma 4.2 and Definition 4.5 we have the following corollary:

Corollary 4.6: Every two consecutive 2D kernels in a Gray Code Sequence areefficiently

computable.

The GCK definitions extend naturally to higher dimensions. The d-dimensional version of

V (k)
s is defined as:
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V (k1,...,kd)
s1,...,sd

= {v1 × . . .× vd | vi ∈ V (ki)
si

} (2)

and the d-dimensional kernelv ∈ V (k1,...,kd)
s1,...,sd

is defined asv(i1, . . . , id) = v1(i1)v2(i2) . . .vd(id)

wherevi are one dimensional Gray Code kernels.

The d α-indices associated withvi uniquely definev:

Definition 4.7: For v = v1× . . .× vd, such thatvi ∈ V (ki)
si

with associatedα-index αi, the

sequenceα = [α1. . .αd] uniquely definesv and is theα-index of v.

These kernels can be computed using a binary tree of depthk1 + . . . + kd similar to the tree

of Figure 5.

If s1 = s2 = . . . = sd = s and k1 = k2 = . . . = kd = k then the set is denotedV (k)d

s and

contains d-dimensional square kernels.

Definitions and Lemmas for the separable d-dimensional GCKs are similar to the 2D case

and are given in Appendix III.

Thus, 2 consecutive kernels in a GCS are efficiently computable, requiring only 2 ops/pixel,

even in higher dimensions. Consequently, the use of GCK in higher dimensions is even more

advantageous.

In summary, successive convolution of a signal with kernels of a GCS requires only 2

ops/pixel/kernel regardless of the kernel size or dimension. Furthermore, the successive con-

volution scheme requires maintaining in memory only the results of the previous convolution,

thus only memory space the size of 2 times the original signal size is required throughout the

process.

V. SEQUENCING THEGRAY-CODE KERNELS

In previous sections we presented the GCK as a set of filter kernels. It was shown that

successive filtering withα-related kernels of this set can be applied efficiently using 2 operations

per pixel per kernel. However, the efficiency of using the GCK in a particular application is

determined not only by the computational complexity of applying each kernel, but also by the

total number of kernels taking part in the process. This, in turn, depends upon the order in which

the kernels are applied. In this section we discuss the issue of ordering kernels into sequences

of Gray Code Kernels.
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Consider the setV (k)d

s of d-dimensional separable kernels of size2kt (as defined in Section IV-

A). The kernels in this set are uniquely represented byα-indices of lengthkd (Definition 4.3).

A Gray Code Sequence is then equivalent to an ordering of these binarykd-vectors. As demon-

strated above, many such sequences are possible. In this case, the question arises as to how

many GCS are possible and how is the optimal GCS for a particular application chosen.

It is easily shown that the setV (k)d

s is isomorphic to akd-dimensional hypercube graph of2kd

vertices; every kernelv ∈ V (k)d

s is associated with a vertex whose coordinates are equal to the

α-index of v. Edges in this hypercube connect vertices associated withα-related kernels. An

example is shown in Figure 6a where the2× 2× 2 kernels ofV (1)3

s are represented by vertices

of the 3-dimensional hypercube. The vertices are marked by theα-index associated with the

kernel (+,− are represented here by0, 1 respectively). Pairs of vertices connected by an edge

representα-related kernels.

A Gray Code Sequence is a sequence ofα-related kernels thus it is isomorphic to a path in

the hypercube graph. A GCS containing all the kernels ofV (k)d

s is isomorphic to a Hamiltonian

path in thekd-dimensional hypercube [14], [15]. For example, in Figure 6b, a Hamiltonian path

is marked on the graph and represents a complete sequence of Gray Code Kernels. Given this

relationship between Gray Code sequencing and Hamiltonian paths in graphs, it is evident that

the number of possible Gray Code Sequences containing all kernels of the setV (k)d

s is equal

to the number of Hamiltonian paths in akd-dimensional hypercube:2, 8, 144, 91392, . . . for

kd = 1, 2, 3, 4, . . . [17], [15].

Hamiltonian paths are isomorphic to linear GCS in which a filter kernel appears only once.

However, other variations may be considered as well, including allowing multiple appearances

of a kernel (see Backtracking in [18]) and sequences that are isomorphic to a spanning tree on

the hypercubic graph (see Increasing Memory Allowance in [18]) In this paper we concentrate

on linear GCS.

In typical situations where filtering with GCKs is used, only a subset of filters from the filter

setV (k)d

s are required to complete the process. In such cases, theOptimal Gray Code Sequence

should be chosen from amongst the numerous possible GCS. To do so, a priority value is

assigned to each kernel, representing its contribution in achieving the goal of the process. The

priority value strongly depends on the application and possibly the input data. For example,

using the projected values as features in a classification process, the priority value may reflect

May 14, 2006 DRAFT



16

a.
000 001

100

010

101

111

011

110

b.
000 001

100

010

101

111

011

110

000 001

100

010

101

111

011

110

Fig. 6. a. The setV (1)3

s represented by a 3-dimensional hypercubic graph. The vertices are marked by theα-index associated

with the kernel (for simplicity, 0 and 1 replace + and - respectively). Every pair ofα-related kernels share an edge in the

hypercubic graph. b. A Hamiltonian Path is marked on the graph, representing a GCS.

the discrimination power of each kernel, i.e. the ability of classifying examples based on the

projection values of the specific kernel. A detailed example is given in Section VI.

Assigning a priority value to each kernel is analogous to associating a weight with every node

in the isomorphic hypercube graph. Given the priority values, the optimal Gray Code Sequence

and accordingly the chosen path in the hypercube graph can be determined. In this paper we

determined the optimal GCS of a given length as that which maximizes the accumulated priority

values. This definition of optimality is appropriate for applications with limited run time that

allow only a fixed predefined number of filter kernels to be applied. Note that the order of the

kernels within the sequence is insignificant. This is analogous to finding the maximally weighted

path of a given length in a hypercube graph. It can be shown that this problem is a special case of

the Travelling Salesman’s Subtour Problem [19] and the Orienteering Problem (OP) [20] shown

to be NP-hard. Approximation algorithms for this problem have been suggested [21], [22].

In order to demonstrate the advantage of the optimal GCS over other orderings of the Gray

Code Kernels, we compared three types of Gray Code sequencing:

• Greedy - This algorithm orders the kernels in decreasing priority value. This order max-

imizes the accumulated priority value for any given length of sequence, however, the

sequence produced is not necessarily a Gray Code Sequence since consecutive kernels are

not necessarilyα-related. In terms of computation, filtering with eachk × k kernel of the

sequence, naively requires2logk ops/pixel (e.g. by computing projection onto each kernel
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along a branch of the Walsh-Hadamard tree as explained in [5]).

• Sequency- This algorithm creates a GCS of Walsh-Hadamard kernels ordered with increas-

ing sequency (the number of sign changes along each dimension of the kernel - analogous to

frequency). For the 2D Walsh-Hadamard kernels, the ’snake’ order as depicted in Figure 7 is

used. In Section IV-A, we have shown that neighboring kernels in the 2D Walsh-Hadamard

array areα-related. Thus the Walsh-Hadamard kernels, ordered in this manner form a

Gray Code Sequence and the computation cost for each kernel reduces to 2 ops/pixel. The

Sequency order is known to perform well on natural images due to energy compactization

in the low order sequencies [23], [24], [5]. Note that, in contrast to the Greedy ordering,

this computation scheme does not depend on the priority values of the kernels.

• Optimal - Given a priority value associated with each kernel, this algorithm returns a GCS

of a given length with maximum accumulated priority values. This, in theory is an NP-

hard problem, however for short sequences (lengthn ≤ 10) an exhaustive search can be

implemented in reasonable time. For longer sequences (n > 10), we implemented a pseudo-

optimal GCS which is created by concatenating several (n/10) optimal GCS of short length

with an additional constraint that requires the last kernel in each short sequence to beα-

related to the first kernel in the following short sequence. Recurrent kernels are allowed,

thus kernels may appear more than once in the Optimal GCS, however their priority value

is accumulated only once.

VI. EXPERIMENTAL RESULTS

The most attractive property of the GCK framework is that it enables filtering with each

kernel using only 2 ops/pixel. However, this can only be achieved if the kernels are used

in an order which forms one of the many possible Gray-Code Sequences. This section tests

the implications of this requirement on the GCK efficiency in a specific application: Pattern-

Matching, where a given pattern is sought in an image. We follow the scheme suggested in

[4], [5] where a framework for real-time pattern matching was introduced. In this section we

compare performance of filtering using the 2D Walsh-Hadamard kernels as projection vectors

when ordered as GCS and when ordered otherwise. We also compare performance with another

known fast filtering scheme, namely, the Integral Image kernels as used in [1].
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Fig. 7. An array of Walsh-Hadamard kernels of ordern = 8 ordered with increasing sequency in each column and row. White

represents the value 1, and black represents the value -1. A ’snake’ ordering of these kernels is shown by the overlayed arrows.

This ordering of kernels forms a GCS of Walsh-Hadamard kernels ordered with pseudo-increasing sequency.

A. Projection-Based Pattern Matching

Finding a given pattern in an image is typically performed by scanning the entire image, and

evaluating the similarity between the pattern and a local 2D window about each pixel. In our

experiments, we assume the most common measure of similarity - the Euclidean distance.

Assume ak× k patternp is to be sought within a given image. Patternp is matched against

a similarly sized windoww at every location in the image. Referring to the patternp and the

window w as vectors in<k2
, the Euclidean distance between them is given as:

d2
E(p,w) = ‖p−w‖2 (3)

The smaller the distance value, the more similar arew and p. If the distance is found to

be below a given threshold, then it is concluded that windoww is similar to the patternp.

Now, assume thatp andw are not given, but only the values of their projectionv1
Tp andvT

1 w

onto a particular projection vectorv1, where‖v1‖ = 1. Since the Euclidean distance is a norm,

it follows from the Cauchy-Schwartz inequality, that a lower bound on the actual Euclidean

distance can be inferred from the projection values [5]:

d2
E(p,w) ≥ d2

E(vT
1 p,vT

1 w) (4)
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If an additional projection vectorv2 is given along with the projection values:vT
2 p andvT

2 w,

it is possible to tighten the lower bound on the distance. Define the distance vectord = w−p,

and assume that the projection values ofd onto r orthonormal projection vectors are given:

MTd = b

whereM = [v1 v2 · · ·vr] is a matrix composed of ther orthonormal projection vectors, and

b = [b1 b2 · · · br] is a vector of projection valuesbi = vT
i d = vT

i w− vT
i p. It is straightforward

to verify that the lower-bound on the distance is:

d2
E(p,w) = dTd ≥ bTb

A similar expression can be obtained whenvi are not orthonormal [5].

Note, that as the number of projection vectors increases, the lower bound on the distance

dE(p,w) becomes tighter. In the extreme case wherer = k2 and the projection vectors are

linearly independent, the lower bound reaches the actual Euclidean distance.

The above implies that a lower bound on the distance between a window and the pattern

can be estimated from the projections. Thus, complexity and run time of the pattern matching

process can be significantly reduced by rejecting windows with lower bounds exceeding a given

threshold value. This can be utilized within the following process:

1) The sought patternp is projected onto a set ofn normalized projection vectors{vi},
resulting inn values:p̂ i = vT

i p, for i = 1 . . . n.

2) All signal windows{wj} are projected onto the first projection vectorv1: ŵ1
j = vT

1 wj

3) This projection sets a lower bound on the true distance between each windowwj and the

pattern:LB1
j = (ŵ1

j − p̂1)2. According to the lower bound values, any window j whose

LB1
j value is greater than the given threshold can be rejected.

4) The windows of the image that have not been rejected, are projected onto the second

projection vectorv2: ŵ2
j = vT

2 wj. This produces updated lower bounds:

LB2
j = LB1

j + (ŵ2
j − p̂ 2)2.

5) Steps 3 and 4 are repeated for the subsequent projection vector.

6) The process terminates after alln kernels have been processed or until the number of

non-rejected image windows reaches a predefined percentage.
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Former experiments (e.g. see [4], [5]) showed that for reasonable threshold values, almost all

non-matching windows in the image are rejected when the lower bound (LBj) reaches 80% of

the true Euclidean distance for each window.

The main advantage using this framework is that by carefully choosing the appropriate pro-

jection vectors, this lower bound can be reached using a small number of projections. Note, that

projecting all image windows onto a projection vector can be implemented using convolution.

Thus an efficient scheme for convolving an image with a sequence of projection vectors is

advantageous within this pattern matching framework. In this section we show the advantage of

using the Gray Code Kernels as projection vectors for pattern matching. For detailed description

of the rejection framework the reader is referred to [4], [5].

B. Experimental Results I - General Pattern Case

The efficiency of the pattern matching process is measured by the total number of operations

required to find pattern appearances in the image. Using the above described rejection framework,

the total number of operations is dependent on two factors: the number of projection vectors

required to reject the non-matching windows and the cost of computing the projections onto

each of the projection vectors. In turn, the number of required projection vectors is dependent

on the order of the vectors used in the process. Thus, fewer vectors would be needed if the

kernels with strong rejection power are applied early in the process.

In the first experiment we tested the rejection power of different orders of kernels. The

experimental setting assumes an unknown pattern and an unknown window, both sampled from

natural scenes. This setting represents applications where image windows are given online and

no specific knowledge on the patterns is known apriori, (e.g. match-based texture synthesis [25],

or video coding [26]). Thus, over 3000 pattern-window pairs of size8×8 were randomly chosen

from a collection of images and the Euclidean distance between them were computed. Each8×8

Walsh-Hadamard kernelvi, was assigned a priority value which indicates the percentage of the

distance between the pattern-window pairs captured by the given kernel:

δi = Ej{(vT
i (pj −wj))

2

(pj −wj)2
} (5)

Here the expectation is calculated over all randomly chosen pattern-window pairs. Given the

priority values, the Walsh-Hadamard kernels were ordered according to the three methods de-

scribed in Section V: Greedy, Sequency, and Optimal. We compared the rejection power of these

May 14, 2006 DRAFT



21

a.
0 10 20 30 40 50 60

70

75

80

85

90

95

100

Lo
w

er
 b

ou
nd

 (
%

 o
f d

is
ta

nc
e)

# Kernels

Optimal GCS
Sequency
Greedy
Integral Im

0 10 20 30 40 50 60
70

75

80

85

90

95

100

Lo
w

er
 b

ou
nd

 (
%

 o
f d

is
ta

nc
e)

# Kernels

Optimal GCS
Sequency
Greedy
Integral Im

Optimal GCS
Sequency
Greedy
Integral Im

b.
0 200 400 600 800 1000

70

75

80

85

90

95

100

# Operations per pixel

Lo
w

er
 b

ou
nd

 (
%

 o
f d

is
ta

nc
e)

Optimal GCS
Sequency
Greedy
Integral Im

0 200 400 600 800 1000
70

75

80

85

90

95

100

# Operations per pixel

Lo
w

er
 b

ou
nd

 (
%

 o
f d

is
ta

nc
e)

Optimal GCS
Sequency
Greedy
Integral Im

Optimal GCS
Sequency
Greedy
Integral Im

Fig. 8. Filtering by projection using WH kernels in 3 different Sequences and using Integral Image Kernels. The three WH

orders include: Greedy, Sequency and Optimal GCS. a. The lower bound as a function of the number of kernel projections. b.

The lower bound as a function of the number of operations per pixel required to compute the lower bound. The lower bound

is given as the average percentage of the actual distance between pattern and window. All values are the average over 3000

pattern-window pairs sampled randomly from natural scenes.

three sequences by evaluating the lower bound calculated from the kernels in the sequence. The

tighter the lower bound, the greater the rejection power of the sequence and accordingly the

expected performance in a pattern matching application.

Figure 8 compares filtering performance and run times of the three Sequences of Walsh-

Hadamrd kernels. Figure 8a shows the lower bound (given as the percentage of the actual distance

between pattern and window) as a function of the number of kernel projections. Values are the

average over the 3000 pattern-window pairs. The Greedy order of Walsh-Hadamard kernels

creates tight lower bounds with fewer kernels than the Optimal and Sequency GCS. These

results, however, do not exhibit the run times required to obtain the lower bounds. Figure 8b

shows the lower bound (given as the average percentage of the actual distance between pattern

and window) as a function of the number of operations per pixel required to compute the lower

bound. The Optimal GCS outperforms the Sequency and Greedy sequences. The Sequency GCS

performs relatively well as expected for pattern-window pairs chosen randomly from natural

images.
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a.

b.

Fig. 9. The natural and texture images (a) and patterns (b) that were used in the experiments. Each of the 2 patterns was

sought in each of the 2 images. The origins of the patterns within the images are marked with a white square. The images are

512× 512 and the patterns are32× 32.

C. Experimental Results II - Specific Pattern Case

In this experiment , the performance of the three computation schemes (Greedey, Sequency,

and Optimal) were compared over four pattern-image scenarios. Two images of size512× 512

(figure 9.a) were chosen, representing a ’natural’ and a ’texture’ image. A32 × 32 window

(figure 9.b) was chosen randomly from each image and these served as the patterns, denoted

as ’natural pattern’ and ’texture pattern’. Each case of pattern and image pair was tested both

with and without the DC kernel (to eliminate illumination effects). Our main interest is the

comparison of the total number of operations required per pixel by each of the computation

schemes. Comparison was based on the ability to reach the 80% lower bound on the average

Euclidean distance between the pattern and image windows as described in Section VI-A.

Figure 10 presents the number of kernels required by each computation scheme in order to

reach the80% goal. This number is dictated by the order of the kernels. As expected, the Greedy

sequence required the least number of kernels and the Sequency order required the most. Since

the Optimal Sequence imposes constraints on the Greedy order, it requires a few more kernels

than the Greedy sequence. For the case of natural pattern - natural image, the Sequency order

of kernels performs equally well as the optimal GCS as expected. This is not true for the other

three cases.

Figure 11 shows the total number of ops/pixel required by the 3 computation schemes for
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Fig. 10. The number of kernels dictated by the order of each computation scheme. Each experiment is denoted by the

pattern-image pair (N=Natural, T=Texture) and whether the DC was included (+DC) or not (-DC).

the 4 pattern-image cases with and without the DC value. It can be seen that the Optimal GCS

scheme always required fewer ops/pixel than the other two orderings even though the actual

number of kernels used is greater. The Greedy scheme always required more ops/pixel even

though it used the fewest number of kernels.
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Fig. 11. The total number of ops/pixel required by each of the computation schemes. Each experiment is denoted as in

Figure 10.
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Fig. 12. A comparison between the three computation schemes. Each scheme is positioned in the plot according to the number

of kernels required and the number of ops/kernel. The dashed lines represent lines of equal Total number of Operations.

The comparison of the three schemes is graphically displayed in Figure 12 where each of

the three schemes is positioned in a plot of the number of kernels required vs. the number of

ops/kernel (log-log scale). The dashed lines represent lines of equal total number of operations.

Thus, although the Greedy scheme requires fewer kernels, the cost per kernel causes this scheme

to be expensive in terms of total number of operations. The Optimal GCS scheme requires more

kernels but since the computation cost per kernel is very low, the total number of operations

required is minimal.

Details of the experimental procedure, and analysis can be found in [18].

D. Experimental Results III - Comparison with the Integral Image Kernels

The idea of choosing projection kernels that are fast to apply was also suggested in [1], [27]

in the context of classification. Although similar in spirit, we emphasize the distinction between

our approach and that of Viola et. al. [1]. Whereas Viola et. al. perform efficient classification

using rapidly computed projection kernels, our suggested approach performs efficient filtering

that can be exploited in block matching in general. Thus, classification approaches are impractical

when patterns are given online e.g. in the case of texture synthesis and video coding (see GCK

implementation for video coding in [26]). Nevertheless, the use of the Integral Image Kernels

themselves, can be considered in the rejection based Pattern Matching application. Kernels of
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this set are efficient to compute when they are of low sequency (computational complexity of

these kernels increases exponentially with sequency). Moreover, the non-orthogonality of the

kernels adds additional computational costs due to the redundancy in feature content captured

by the kernels. This tendency is shown in the following experimental results.

We compared the performance of the GCK filtering of Walsh-Hadamard kernels with that of

the Integral Image kernels used in [1]. A priority value as defined in Equation 5 was assigned

to a set of Integral Image kernels. The kernels of the set that are the most efficient to apply

are the first order kernels which sum a single rectangular region within the window. Assuming

the integral image is given, these kernels require 3 ops per pixel to apply. We consider the set

of all possible first order integral image kernels of size8 × 8. These kernels were ordered in

decreasing priority order. Since these kernels are not orthogonal, we considered the contribution

of each kernel to the lower bound (this is achieved using the Grahm-Schmidt orthogonalization

method in which the kernels are iteratively projected onto the subspace spanned by the already

sorted kernels. See Appendix 3 in [5]). Filtering performance with these filters were compared

with those obtained by the three sequences of Walsh-Hadamard kernels described above. Results

for the Integral image kernels are also shown in Figure 8. The lower bound as a function of the

number of Integral Image kernels applied is identical to that of the Greedy sequence (the lines

overlap perfectly in Figure 8a). This is due to the fact that both the Walsh-Hadamard kernels and

the first order Integral Image kernels span the8× 8 pattern-window space and a non-restricted

ordereing of both kernel sets produce the tightest possible lower bounds for any given number of

kernels. In terms of run-time, however, all three orders of Walsh-Hadamard kernels outperform

the Integral Image kernels in the number of operations per pixel as shown in Figure 8b. This

is due to the fact that computation of the lower bound for the non-orthogonal Integral Image

kernels requires significantly more computation than for the orthogonal Walsh-Hadamard kernels

(see Appendix 3 in [5]).

VII. C ONCLUSIONS

In this paper we introduced a family of filter kernels called the Gray Code Kernels (GCK).

A special relationship between pairs of such kernels allow filtering of images with a cascade of

such kernels to be performed very fast. The GCK framework is a highly-efficient computational

scheme mainly due to the following advantages:
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• The ability of filtering an image using only 2 operations per pixel per kernel.

• The computation cost is independent of the kernel size and kernel dimension.

• The computations are performed using only integer additions and subtractions (if the seed

s is integer).

• Only a single image (the filtering results with a preceding kernel) needs to be maintained

in memory in addition to that currently being computed.

• A wide variety of kernels can be used within this framework.

• The kernels can be computed in a variety of different orders.

• The kernel set forms an orthogonal basis.

We note the following limitations of the GCK:

• The filtering with each kernel depends on the filtering result of a preceding kernel. Thus

when a single kernel computation is required, the advantages of this framework can not be

exploited. This also poses a limitation on the order in which the kernels can be computed.

• The framework offers efficient filtering for a group of image windows. Computing the

projection of a single image window might require more than 2 ops/pixel.

We note that it is possible to extend the family of GCKs even further by allowing theα-index

to be of any integer value (rather than only{+1,−1}). This, however, incurs an additional 1

ops/pixel. Details can be found in [18].

The unique properties of the GCK framework makes it an attractive choice for many ap-

plications requiring a cascade of kernel computation scheme such as feature extraction, block

matching for motion detection (e.g. [26]), texture analysis and synthesis, classification and more.
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APPENDIX I

PROOF OFTHEOREM 3.6

We prove the following Theorem.

Theorem 3.6Given two α-related kernels,v+, v− ∈ V (k)
s with a common prefix vector of

length∆ = 2r−1t, wheret = |s|, the following relation holds:

[0∆ vp] = [vm 0∆]

where0∆ denotes a vector with∆ zeros.

Proof:

Denote byv(l) the prefix of vectorv of length2lt. Sincev+ andv− areα-related there exists

an entryr, 1 ≤ r ≤ k, for which their twoα-indices differ. We prove that the following holds

for all l, r ≤ l ≤ k:

[0∆ v(l)
p ] = [v(l)

m 0∆]

Proof is by induction: forl = r we have by definitions 3.1 and 3.5 that

v
(r)
+ = [v

(r−1)
+ v

(r−1)
+ ]

v
(r)
− = [v

(r−1)
− − v

(r−1)
− ] = [v

(r−1)
+ − v

(r−1)
+ ]

thus

v(r)
p = v

(r)
+ + v

(r)
− = [2v

(r−1)
+ 0∆]

v(r)
m = v

(r)
+ − v

(r)
− = [0∆ 2v

(r−1)
+ ]

and we have

[0∆ v(r)
p ] = [0∆ 2v

(r−1)
+ 0∆] = [v(r)

m 0∆]

By induction, we assume true forl− 1 ≥ r and prove forl (note thatαl is identical for both

α-indices):

[0∆ v(l)
p ] = [0∆ [v

(l)
+ + v

(l)
− ]]

= [0∆ [[v
(l−1)
+ αlv

(l−1)
+ ] + [v

(l−1)
− αlv

(l−1)
− ]]]

= [0∆ [v(l−1)
p αlv

(l−1)
p ]]

= [[0∆ v(l−1)
p ] αlv

(l−1)
p ]
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from the induction assumption:

= [[v(l−1)
m 0∆] αlv

(l−1)
p ]

= [v(l−1)
m [0∆ αlv

(l−1)
p ]]

= [v(l−1)
m αl[0∆ v(l−1)

p ]]

and again from the induction assumption:

= [v(l−1)
m αl[v

(l−1)
m 0∆]]

= [[v(l−1)
m αlv

(l−1)
m ] 0∆]

= [v(l)
m 0∆]

APPENDIX II

EFFICIENTLY COMPUTABLE FILTER KERNELS IN D-DIMENSIONS

We now prove the efficiency of computation with d-dimensional GCKs. To simplify the

notations we define a short notation for a sequence of indices. A completed-dimensional kernel

is defined as:

v(i) = v(i1, i2, · · · , id)

and a(d−1)-dimensional kernel, lacking the dimensionm as:

v({∼ im}) = v(i1, · · · , im−1, im+1, · · · , id)

Recall that two kernels can be regarded asefficiently computableif their computation cost is

2 ops/pixel.

Lemma 2.1:Assumev01(i1, i2), v02(i1, i2) are two filter kernels in d dimensions.v01 andv02

areefficiently computable if both kernels can be factored intoα-related kernels:v01 = v0×v1

andv02 = v0×v2 , wherev0 is (d−1)-dimensional,v1 andv2 are 1-dimensionalα-related kernels

and× denotes the outer product along them-th dimension, i.e.[v0×v](i) = v0({∼ im})v(im).

Proof:

Assumev01 and v02 are two such filters. Sincev1,v2 are α-related, they share a common

prefix vector of length∆ = 2r−1t and Corollary 3.7 holds. Thus w.l.o.g. we assume:

v2(i) = +v2(i−∆) + v1(i) + v1(i−∆)
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Then we have

v02(i) = v0({∼ im})v2(im) (6)

= v0({∼ im})
(
v2(im −∆) + v1(im) + v1(im −∆)

)

= v0({∼ im})v2(im −∆) + v0({∼ im})v1(im) + v0({∼ im})v1(im −∆)

= v02(i1, . . . , (im −∆), . . . , id) + v01(i) + v01(i1, . . . , (im −∆), . . . , id)

Given ad-dimensional signals, denote byb1,b2 thed-dimensional convolution ofs with v01

andv02 respectively. From Equation 6 and linearity of the convolution we have:

b2(i) = b2(i1, . . . , (im −∆), . . . id) + b1(i)− b1(i1, . . . , (im −∆), . . . id)

Therefore, givenb1, b2 can be calculated in scan order using 2 operations per pixel, and thus,

v01 andv02 areefficiently computable.

APPENDIX III

SEPARABLE GCK IN D-DIMENSIONS

As in the 2-dimensional case, a special class of d-dimensional kernels are of interest (Equa-

tion 2 in Section IV):

V (k1,...,kd)
s1,...,sd

= {v1 × . . .× vd | vi ∈ V (ki)
si

}

Thus the d-dimensional kernelv ∈ V (k1,...,kd)
s1,...,sd

is defined asv(i1, . . . , id) = v1(i1)v2(i2) . . .vd(id)

wherevi are one dimensional Gray Code kernels.

Since the d-dimensional kernelv is separable, and can be defined byd one dimensional

kernels, the associatedd α-indices uniquely definev. Thus the following definition is consistent

with the one and two dimensional cases, Definitions 3.2 and 4.3):

Definition 3.1: For v ∈ V (k1,...,kd)
s1...,sd

such thatv = v1 × . . . × vd, with associatedα-indices

α1, . . . , αd, the sequenceα = [α1, . . . , αd] uniquely definesv and is called theα-index of v.

Similar to the 2D case, the notion ofα-relation between two d-dimensional kernels is defined:

Definition 3.2: Two kernelsvi,vj ∈ V (k1,...,kd)
s1...sd

areα-related iff the hamming distance of the

signs of theirα-index is one.

The notion ofGray Code Sequenceof kernels can be extended to d-dimensions:

Definition 3.3: An ordered set of d-dimensional kernels,v0 . . .vn such that every consecutive

pair areα-related, are called aGray Code Sequenceof d-dimensional kernels.
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From Lemma 2.1 and Definition 3.3 we have the following corollary:

Corollary 3.4: Every two consecutive d-dimensional kernels in a Gray Code Sequence are

efficiently computable.
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