International Journal of Computer Vision 43(2), 75-97, 2001

[ |
3% oo Compuer Viion
© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

The Interpretation of Line Drawings with Contrast Failure and Shadows
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Abstract. Inline drawings derived from real images, lines may be missing due to contrast failure and objects with
curved surfaces may cast shadows from multiple light sources.

This paper shows that it is the presence of shadows, rather than contrast failure, that renders the line drawing
labelling problem NP-complete. However, shadows are a valuable visual cue, since their presence is formally shown
to reduce the average ambiguity of drawings. This is especially true when constraints concerning shadow formation
are employed to differentiate shadow and non-shadow lines.

The extended junction constraint, concerning straight lines colinear with junctions, compensates the loss of
information caused by contrast failure. In fact, we observe the contrast failure paradox: a drawing is sometimes less
ambiguous when lines are partly missing due to contrast failure.

It is known that the coplanarity of sets of object vertices can be deduced from the presence of straight lines in the
drawing. This paper shows that these coplanarity constraints are robust to the presence of contrast failure.

Keywords: line drawing labelling, contrast failure, shadows, coplanarity constraints, extended junction

constraints, constraint satisfaction problem

1. Introduction

The interpretation of line drawings is a classic prob-
lem in artificial intelligence. The pioneering work of
Huffman (1971), Clowes (1971) and Waltz (1975),
in identifying constraints on the semantic labelling
of junctions and the propagation of these constraints,
made restrictive assumptions that limited the direct ap-
plication of their work in computer vision systems.
The seminal work of Sugihara (1982, 1984, 1986) in
which necessary and sufficient conditions for the phys-
ical realisability of a labelled drawing were coded as
a standard linear programming problem, retained the
very restrictive assumptions that the drawing is a per-
fect projection (in the sense that there are no missing
lines) of a polyhedral scene, thus limiting its applica-
tion to the interpretation of human-entered drawings
of polyhedral scenes. Shimshoni and Ponce’s (1997)
technique for dealing with inaccurate line drawings is
also restricted to images of polyhedral scenes without
contrast failure.

The constraints on the semantic labelling of junc-
tions were generalised to curved objects with C3
surfaces (Cooper, 1993, 1997a, 1999; Malik, 1987).
However, the possible presence of phantom junctions
(undetectable label transitions) on curved lines reduces
the predictive power of a catalogue of semantic junc-
tion labellings, compared with the catalogue for poly-
hedral objects, since the two ends of a curved line do
not necessarily have the same semantic label. Semantic
junction labellings provide even less information when
the drawing is an imperfect projection of the surface-
normal discontinuity edges of a 3D scene.

However, we will show that the ambiguity caused by
contrast failure can be greatly reduced by the introduc-
tion of a new constraint concerning lines colinear with
junctions. Valuable information can also be obtained
from constraints concerning shadows, in terms of the
characteristic properties of shadow edges in the inten-
sity image, in terms of the types of junctions that can
be joined by shadow lines and in terms of the types of
vertices which can cast distant shadows.
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Figure 1. A drawing with shadow lines and contrast failure.

An important source of information when interpret-
ing a drawing of man-made objects is the presence of
linear features such as straight lines, parallel lines, co-
linear points and coplanar points. Such linear features
in the drawing can be translated into a standard lin-
ear programming problem involving a system of linear
equations and linear inequalities on variables repre-
senting the depths of object vertices (Cooper, 2000).
Computer vision systems must interpret line draw-
ings derived from real images in which contrast failure
means that certain lines will be missing and lighting
effects mean that spurious lines will occur due to shad-
ows. An example is given in Fig. 1. This paper shows
that the constraints derived from linear features (such
as coplanarity) are almost all robust to contrast fail-
ure and the presence of shadow lines. They allow us,
among other things, to deduce that the points 1, 2, 3, 4,
5 and 6 in Fig. 1 are coplanar.

The strength of these coplanarity constraints is
illustrated by the fact that they are able to identify the
impossible drawings illustrated in Fig. 2. These draw-
ings are physically unrealisable as 3D scenes under the
assumption that straight lines are projections of straight
edges formed by the intersection of surfaces which are
planar in the vicinity of the edge. Two applications of
the constraint to the drawing of Fig. 2(a) are sufficient
to deduce that the points A, B, E, C, D are coplanar.
Two further applications indicate that A, B, F, C, D are
also coplanar. A contradiction arises from the fact that
the points A, B, C, D should be colinear since they all
lie on the intersection of these two planes.

The drawing in Fig. 2(b) shows that the coplanarity
constraint can still be applied to straight edges in curved
objects and even to hidden surfaces under a further
assumption that all vertices are trihedral. The tangents
AD and BE must be coplanar with the straight edge AB.

(a)

(b)

C

Figure 2. Drawings which are impossible due to coplanarity
constraints.

Similarly the tangents BE and CF must be coplanar with
the straight edge BC. Furthermore, AD and CF are both
tangential to the same hidden surface which is planar
in the vicinity of the straight edge AC. The extensions
of lines AD, BE and CF should intersect in 3D space
(at the point of intersection of the three planes ADBE,
BECF and ADCF) which is clearly impossible since
their projections in the drawing do not intersect. The
drawing in Fig. 2(b) is therefore also unrealisable.

2. Problem Statement

The problem studied in this paper is the recovery of
depth information from a line drawing of a 3D scene
containing objects composed of smooth C3 curved sur-
faces. Any curved line in the drawing could be the pro-
jection of an infinite family of 3D curves. Thus, given
this overwhelming ambiguity in the shape of curved
edges, we restrict ourselves to the determination of
colinearity and coplanarity relationships between the
visible object vertices. Semantic labellings (involving
labels such as occluding, convex, concave or shadow
for each line) will also be determined for each line
junction in the drawing.

In order to obtain constraints on the semantic la-
bellings of junctions and the depths of vertices, it is nec-
essary to make assumptions concerning object shape
and/or image formation. The following list includes all
the assumptions that we will be led to make in order to
obtain the constraints described in this paper. Note that
some constraints are based on fewer assumptions than
others.



General viewpoint assumption: A small perturba-
tion in the position of the viewpoint does not change
the configuration of the drawing (intersection of
lines, presence of straight lines, colinear points, etc.).

General light source position assumption: A small
change in the position of any light source does not
change the configuration of the drawing.

General relative position assumption: A small cha-
nge in the relative positions of objects does not
change the configuration of the drawing.

Polyhedral vertices assumption: Every object vertex
behaves locally as a polyhedral vertex: the surfaces
So, Si,...,S,_; which intersect to form the vertex
V each have unique tangent-planes Tg, T, ..., T,—;
at V; the intersection of T; and Tt {(mod ») 1S tangen-
tial at V to the edge E; which is the intersection of
surfaces S; and Sy 1(mod n)-

Trihedral vertices assumption: Every object vertex
behaves locally as a polyhedral vertex formed by the
intersection of exactly three surfaces.

Non-tangential edges and surfaces assumption:
None of the surfaces S; and edges E; which inter-
sect to form a vertex V meet tangentially at V. Every
object edge is formed by the non-tangential intersec-
tion of two surfaces.

Straight edge formation assumption: Every straig-
ht edge in 3D is formed by the intersection of locally
planar surfaces.

Extended trihedral assumption: For a given object A,
let P4 be the set of planes which are either tangential
to a surface of A at a vertex or tangential to a surface
of A along a straight edge. All objects A satisfy not
only the trihedral vertices assumption but also the
condition that no four planes in P, meet at a point.

Note that the straight edge formation assumption
is particularly powerful. It has been used to establish
coplanarity constraints in the analysis of perfect projec-
tions of curved objects containing some straight edges
(Cooper, 2000), but it can also be applied to deduce,
for example, that a straight shadow line is the shadow
cast by a straight edge onto a planar surface.

Under the assumptions of trihedral vertices where
edges and surfaces meet non-tangentially, there are
only five viewpoint-independent object vertex types
which can project into junctions of degree less than
four. These are illustrated in Fig. 3 and numbered 1 to
5. Note that a reflected version of vertex type 5 can also
occur. Four more vertex types occur at points where the
line of sight is tangential to an object surface (and are
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Figure 3. The basic set of 15 different vertices derived from the
assumptions of general relative position, trihedral vertices and non-
tangential edges and surfaces.

thus viewpoint-dependent vertices). These are the ver-
tices numbered 6 to 9 in Fig. 3. In multi-object scenes,
the multi-object vertices numbered 10 to 15 can also
occur. To limit the number of multi-object vertices, we
only incude vertices which are stable to small changes
in the relative positions of objects. This implies, for
example, that no three objects meet at a vertex, that no
two object edges coincide and that no object vertex lies
on the edge of another object.

Edges can be classified as follows. Occluding edges
are formed by the intersection of two surfaces, only
one of which is visible, and are denoted by an arrow
(with the occluding surface on the right as we follow
the direction of the arrow). Extremal edges are formed
by a single curved surface being tangential to the line
of sight, and are denoted by a double-headed arrow. For
example, the contour of a cube is made up of occluding
edges, whereas the contour of a sphere is an extremal
edge. A convex edge is formed by the intersection of
two surfaces (both of which are visible) at an exte-
rior angle of greater than m, and is denoted by “+”.
If the exterior angle is less than s, then the edge is
concave and is denoted by “—”. However, in multi-
object scenes, concave edges can also be caused by two
objects touching along a common surface (for example,
the edge 10-11 in Fig. 3) or by two objects touching
along the edge of one of the objects (for example, the
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edge 12-13 in Fig. 3). These two edges are denoted
by the labels ‘«<— —’ and ‘<«—3’, respectively. Exam-
ples of all line labels can be found in Fig. 3. For the
set of vertices studied in this paper (numbered 1 to 15
in Fig. 3), it is unnecessary to make the distinction

’ ‘— —7 and ‘—’ edges, since a pair

s

between ‘<« —’ ‘—
of objects which touch along a common face can al-
ways be interpreted as a single object. In the termi-
nology of the constraint satisfaction problem, the la-
bel ‘—’ is neighbourhood substitutable (Cooper, 1997b,
Freuder, 1991) for the labels ‘<— —’ and ‘— — atevery
line-end.

Under the assumption that straight lines are projec-
tions of straight edges formed by the intersection of lo-
cally planar surfaces, label transitions on straight lines
in a drawing which is not subject to contrast failure are
illegal. Nevertheless, when the surfaces which meet
to form an edge may be curved, undetectable tran-
sitions from convex to occluding labels are possible
and are known as C-junctions or phantom junctions.
An example is the projection of vertex 8 in Fig. 3.
Phantom junctions can also occur on straight lines, due
to contrast failure at projections of vertices of type 5,
11 or 13 of Fig. 3; a T-junction is undetectable when
the stem of the T-junction is missing due to contrast
failure.

3. Constraints on the Form of Edges
in the Intensity Image

If the drawing is derived by detecting edges in an in-
tensity image, then this has two consequences:

o the existence of spurious or missing lines in the
drawing;

o further information is available in the form of inten-
sity values in the vicinity of edges which could be
used to constrain their labelling as concave, convex,
occluding, extremal, shadow, etc.

Edges can be classified as either step or ramp, de-
pending on the form of their cross-section in the in-
tensity image. Figure 4(a) shows a typical scene con-
taining three objects and one light source, viewed from
above. Figure 4(b) shows the cross-section of the in-
tensity image of the larger of the three objects. Assum-
ing Lambertian surfaces, step edges can occur due to
discontinuities in surface albedo, surface orientation or
illumination. For example, the step edge D in Fig. 4 is a
shadow edge, caused by a discontinuity in illumination.

(a)

(b)

(©)

Figure 4. Example of the formation of different types of edge.

Objects do not always cast sharp shadows. Non-point
light sources, such as windows, give rise to soft shad-
ows consisting of an umbra and a penumbra. Even when
no non-point light sources are apparently present, large
reflective object surfaces provide secondary non-point
light sources. In Fig. 4, the surface GH acts as a sec-
ondary light source, illuminating the viewed object be-
tween A and C, producing a penumbra on section AB.
The penumbra is bounded by two ramp edges. The
width of the penumbra depends on the width of the
non-point light source. A shadow step edge such as D
can be considered as a penumbra of zero width.

It can easily be shown that, when the secondary light
source is planar, another ramp edge occurs at the inter-
section of this plane with the viewed object. Since GH
is planar, a ramp edge thus occurs at C. More impor-
tantly, this is true even in the case when the planar sur-
face GH actually intersects the viewed object surface at
C, as shown in Fig. 4(c). In other words, a concave edge
may be visible in the intensity image as a ramp edge,
rather than a step edge, if it is not directly illuminated.
Note that, on the other hand, for a directly-illuminated



concave edge E, inter-reflection models (Shimshoni
and Ponce, 1997) which take into account the fact that
the surfaces meeting at E are secondary light sources,
predict an increase in brightness as we approach E.

Ramp edges have two other possible causes, as il-
lustrated by the points E and F in Fig. 4(a). The point
E represents a discontinuity of surface curvature of the
viewed object. In general, discontinuities of the nth
derivative in the object surface are visible as discon-
tinuities of the (n — 1)th derivative in the intensity
image. Note that discontinuities of surface curvature
are, in fact, disallowed by the assumption that object
surfaces meet non-tangentially, but have been studied
in previous papers (Cooper, 1993, 1997a). When rays
emanating from a point light source strike an object sur-
face tangentially, this gives rise to another ramp edge
in the intensity image, as occurs at F in Fig. 4(a).

Ramp edges can be classified as valleys if the first
derivative of intensity increases as we cross the edge,
or as ridges if the first derivative decreases. It can be
shown that edges A, C and F must always be valleys and
that edge B must always be a ridge. However, the edge
E would change from a valley to a ridge if it was illumi-
nated from the right rather than from the left. When the
light source is not a point light source, a characteristic
feature of a shadow edge leaving a junction is that it
starts as a step edge and gradually separates into two
ramp edges, one ridge and one valley.

Shadow step edges cast by point light sources, such
as edge D in Fig. 4(a), also have a characteristic pro-
perty (Rubin and Richards, 1982) which we state as a
constraint.

Shadow Edge Constraint

On the illuminated side of a shadow edge the viewed
surface emits more light than on the shaded side, and
this is true at all points along the edge and for all wave-
lengths.

For example, an edge separating a dark green region
from a bright red region cannot be a shadow edge. Un-
der the stronger assumption that all illumination falling
on the viewed surface is from identical white light
sources, the observed hue should, in fact, be identi-
cal on both sides of a shadow edge. However, colour
saturation (proportion of white light) may be greater on
the brighter side of the edge due to specular reflection.

We have seen that concave edges in 3D, without any
direct illumination, can be visible as valley ramp edges

Interpretation of Drawings with Contrast Failure 79

in the intensity image. Under what circumstances can
depth-discontinuity, concave or convex edges be invisi-
ble in the intensity image? This phenomenon is known
as contrast failure. An occluding edge is not guaran-
teed to produce any kind of visible edge. A depth dis-
continuity between two parallel surfaces of identical
surface characteristics and subject to the same illumi-
nation will necessarily be undetectable. Since, in man-
made objects, pairs of parallel surfaces are common,
a minimum requirement when analysing line drawings
derived from intensity images is that certain occluding
lines may be missing. It should also be noted that it
is possible to construct depth discontinuities which are
visible as ramp instead of step edges, if the two parallel
surfaces have distinct curvatures.

Contrast failure can occur between any two surfaces
of identical albedo if they receive identical illumina-
tion (for example, if the only light source happens to
lie in the plane bisecting the two surfaces). Although
this kind of contrast failure is viewpoint independent
it is not independent of the light source positions. To
obtain most of the constraints stated in this paper, we
will assume that this kind of contrast failure does not
occur, by making the general light source position as-
sumption.

Two other causes of contrast failure must be men-
tioned, although they are assumed not to occur in this

paper:

e the surfaces on the two sides of the edge emit no
light, either due to zero albedo (i.e. the surface is
completely black) or due to zero illumination (i.e.
the surface is in complete darkness);

e the two surfaces are illuminated by a totally dif-
fuse light source (i.e. equal illumination from all
directions).

The first of these two cases can only occur in image
regions which are particularly dark. It is possible to es-
tablish a catalogue of junction labellings which allows
for this kind of contrast failure, and apply it solely at
junctions including at least one sufficiently dark region.

It can be noted that in the case of totally diffuse light-
ing, not all edges are necessarily invisible. For example,
when a cube is placed on a dark table and illuminated
by a totally diffuse light source, its top surface receives
approximately twice as much illumination as its sides,
meaning that the boundary of the top surface is de-
tectable in the intensity image. The upright edges of
the cube would, however, be invisible. Although ob-
jects do not cast shadows under totally diffuse lighting,
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ramp ‘“shadow” edges can still occur, for example at
points such as C in Fig. 4(a), due to discontinuities in
illumination gradient.

The following two assumptions, together with the
general light source position assumption, limit contrast
failure to occluding edges between two locally parallel
surfaces.

Illumination assumption: every point of every visible
object surface is illuminated by a light source which
is not totally diffuse.

Albedo assumption: every point of every visible
object surface has non-zero albedo.

The constraints presented in this paper only hold
for idealised drawings in which contrast failure only
occurs when surfaces are parallel. In practice, due the
finite precision of imaging devices, contrast failure will
occur for other reasons, such as a light source lying near
to the bisecting plane of a 3D edge. It is important to un-
derstand the idealised case before progressing to more
realistic constraints. These more realistic constraints
can be expressed in a natural way as valued constraints
(Cooper, not yet published). In the framework of the
valued constraint satisfaction problem, all junction
labellings that may occur due to unlikely, but not en-
tirely impossible, scene configurations must be deter-
mined and assigned some low but non-zero value.

4. Shadows and Curved Surfaces

Waltz (1975) studied in detail the ways in which shad-
ows can be cast at polyhedral vertices. When object
surfaces may be curved, new junctions can occur in
the drawing or become visible due to the presence of
shadows.

When rays emanating from a point light source
touch an object surface tangentially they create a ramp
shadow edge, such as AB in Fig. 5. We call such edges
extremal illumination edges. They are always valley
ramp edges in the intensity image. Extremal illumina-
tion edges terminate when they meet a surface-normal
discontinuity edge E (such as at A and B in Fig. 5),
and they intersect their cast shadow at this point (as
at B) if and only if the edge E is concave. An L-
junction occurs in an extremal illumination edge when
it crosses a discontinuity in surface curvature of the
underlying surface, as illustrated at junction L in Fig. 5
(Nalwa, 1988). Discontinuities of surface curvature,
which also give rise to ramp edges in the intensity im-
age, are discussed in detail in (Cooper, 1993), but are,

. L .............................................

%////////%

Figure 5. Junctions caused by shadows and curved surfaces.

J/'

in fact, disallowed in this paper by the assumption that
surfaces meet non-tangentially. When a shadow edge S,
representing a step edge in the intensity image, meets
an extremal illumination edge produced by the same
light source, S fades out as it approaches the junction.
This is illustrated by the junction F in Fig. 5, where GF
must fade out.

The shadow of point A in Fig. 5 is the point D.
The black dot marks a discontinuity of curvature of
the line in the drawing. Such junctions are known as
curvature-L junctions. The shadow of the line BA ar-
rives at D from the left. We introduce the label {} for
shadow edges cast by extremal illumination edges. The
shadow of the outer rim of the cylinder arrives at D from
the right. We use Waltz’s (1975) label 1 for shadows
cast by surface-normal discontinuity edges. Both types
of arrow point towards the shaded region. The line ar-
riving from the right, when extended to the other side
of D, must lie within the shadow. Imagine that ramp
lines such as AB cannot be detected. Then a junction



of type B would be indistinguishable from a junction
of type H. Nevertheless, the first curvature-L junction
encountered along the shadow line allows us to dis-
tinguish between these two types of junction. At I, it
is the shadow line arriving from the left which, when
extended, must lie within the shadow, meaning that HI
must be labelled 1 as shown.

If we were to allow object surfaces to meet tan-
gentially, then there would be two other causes of
curvature-L junctions on a cast shadow line S: (1) a dis-
continuity of curvature in the edge casting the shadow
S, or (2) a discontinuity of curvature in the surface cast-
ing the shadow, when S is the shadow cast by an ex-
tremal illumination edge. An example of case (2) is the
junction K in Fig. 5, which is the shadow of junction L.

The junction C in Fig. 5 is a T junction. The bar
of the T is a convex edge E and the stem of the T is
a shadow edge S. In fact S is the shadow cast by E
on one of the surfaces which intersect to form E. It
can be shown that S actually fades out in the intensity
image as it approaches the T-junction. However, since
S meets the bar of the T-junction non-tangentially, this
kind of junction provides no essentially new labelling
since such a junction (without S fading out) is well
known to be possible when a shadow falls on a straight
convex edge (Waltz, 1975).

When a shadow line (representing either a step or
ramp edge in the intensity image) meets an extremal
line, such as the side of a cylinder or the contour of
a sphere, it does so tangentially. Junctions E and J in
Fig. 5 are examples. Junctions such as E are called
3-tangent junctions. Two of the lines meeting at the
junction have continuous curvature.

The junctions G and H in Fig. 5 are essentially the
same type of junction: the convex edge E of one object
touches the surface of another object. Without shadows,
this junction is invisible and has no effect on the la-
belling of the projection of E in the drawing. However,
this junction may become visible due to the presence
of shadows. Shadow lines may be visible on one side
(e.g. junction H) or on both sides (e.g. junction G), and
n light sources may produce up to n shadow lines on
each side of the junction. Corresponding shadow lines
(such as EG and GF) must have continuous curvature
at the junction. Note that, although junctions such as
G and H contradict the rule that an object edge should
not meet an object surface tangentially, they are clearly
too common to be ignored.

Another new junction is the intersection of two
shadow lines (step or ramp), produced by two distinct
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light sources, in the form of an X. In fact, an X-
junction is a valuable clue to line labelling, since the
two lines crossing at the X-junction must be illumi-
nation or albedo discontinuity lines (such as shadows,
reflections or surface markings).

5. A Constraint on Shadow Lines

We distinguish two types of junctions in a drawing:
light-source dependent and light-source independent.
When all light sources are subject to a small pertur-
bation, the scene point projecting into a light-source-
dependent junction changes, whereas light-source
independent junctions are always projections of the
same point in 3D. In Fig. 5, junctions A, B, C, D, E,
F I, J, K, L are all light-source dependent, whereas
junctions G and H are light-source independent. Junc-
tions which are projections of 3D vertices, such as ver-
tices 1 to 15 in Fig. 3, are clearly light-source indepen-
dent. In fact, junctions of type W, Y, K, Peak, Multi,
4-tangent and X are always light-source independent.
Definitions of the different possible junction types can
be found in Appendix C (Fig. 24). A W junction is
also light-source independent if all but one of the lines
meeting at the junction are known to be projections
of surface-normal discontinuity edges. The following
constraint concerns shadow lines colinear with or join-
ing two light-source independent junctions. It is partic-
ularly useful for eliminating ‘shadow’ as a possible
label for lines joining two light-source independent
junctions in the drawing.

Straight Shadow Line Constraint

Under the assumptions of general viewpoint and gen-
eral light source positions, a straight line colinear with
two light-source independent junctions cannot be a
shadow line.

This follows from the fact that the equation of a
shadow line changes with a change in the position of
the corresponding light source. On the other hand, since
light-source independent junctions are projections of
fixed 3D points, the line which joins them is invariant
to changes in light source positions. Note that this con-
straint could be used to distinguish between ramp lines
caused by illumination effects and ramp lines which
are projections of surface-normal discontinuity edges.

The shadow line constraint described in this section
is apowerful constraint which allows us to eliminate the



82 Cooper

Figure 6. The straight shadow line constraint identifies the three
lines labelled d as non-shadow lines, but also the line BC as a shadow
line.

label ‘shadow’ for many lines. For example, the lines
labelled d (for surface-normal discontinuity) in Fig. 6
cannot be shadow lines, since they are straight lines
joining two light-source independent junctions. This,
in turn, implies that line AB is a shadow line (under the
assumption of trihedral vertices). Applying the straight
shadow line constraint to line AB, which is now known
to be a shadow, means that B cannot be a light-source
independent junction. Thus the line BC must also
be a shadow. This example shows that the shadow line
constraint can not only be used to identify non-shadow
lines, but can, in some cases, be used to identify shadow
lines.

6. Extended Junction Constraints

Consider the junction A in Fig. 7(a). The fact that it
is colinear with the straight line BC is a valuable clue
which can be used to drastically reduce the number
of possible legal labellings for A (from 43 to just 11).
We use the term extended junction to denote a junction

(a) (b)

Figure 7. The contrast failure paradox: the drawing (a) is less am-
biguous than the drawing (b) due to the fact that contrast failure has
caused the line AB to be missing.

Figure 8. Different types of extended junctions J-Mj, J-M, and
J-M3, not caused by contrast failure between parallel surfaces.

together with a straight line which is colinear with it
(such as A-BC in Fig. 7).

Consider an extended junction in which a line M is
colinear with a junction J. By the general viewpoint
assumption, we can deduce that M and the lines which
meet atJ are projections of lines which meet in 3D. The
extension of M may be invisible at J because of contrast
failure (as is clearly the case with the extension of line
CB in Fig. 7(a)). It may also be invisible because of
occlusion. For example, in Fig. 8, M is the extension
of a shadow line which is occluded at J. M, is a shadow
line which is not visible at J because J is shaded by
another object. Of the three edges which meet at the
vertex which projects into J, only two are visible, the the
third being hidden due to self-occlusion. M3 is colinear
with the projection H of this hidden edge. Note that we
include the possibility that distinct 3D edges may be
colinear, since this situation occurs too often in man-
made objects for us to ignore it. When two visible lines
in the drawing are colinear, this constrains the possible
labellings for the two lines, as described in Cooper
(2000).

Figure 9 lists all the possible forms of extended junc-
tions involving a total of up to four lines. For example,
the extended junction A-BC in Fig. 7(a) is of type L[K].
For each type of extended junction given in Fig. 9,
Appendix A gives the list of legal labellings obtained
by enumerating all possible cases. All the assumptions
given in Sections 2 and 3 are required to establish this
catalogue, including the very strong extended trihedral
assumption. Note that reflected versions of all types
of extended junctions exist (except for L[W] and L[Y]
junctions), with slightly different lists of labellings.

Applying the L[K] constraint, defined by the list
of labellings in Appendix A, to the extended junc-
tion A-BC in the drawing in Fig. 7(a), tells us that
junction A has one of the four labellings — +, +—,
<+ or +<« (given that BC cannot be a shadow line,
since it is the bar of a T-junction). The global labelling
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Figure 9. The types of extended junctions of total degree up to four.

which results after constraint propagation is shown in
Fig. 7(a). We use the generic label A to represent any
label from the set {—, <, —, <=, —#}. It is inter-
esting to compare this global labelling with the result
of constraint propagation on a drawing which is iden-
tical to the drawing in Fig. 7(a) except for the fact
that the line AB is not subject to contrast failure. The
global labelling obtained in this case is shown in Fig.
7(b), where the generic label d represents the set of
labels A U {4]}. It turns out that the drawing in Fig.
7(b) is more ambiguous, due to the fact that junction A
now has 12 legal labellings, instead of just 4. We call
this phenomenon, in which a drawing is less ambigu-
ous when more lines are missing, the contrast failure
paradox.

A perfect projection is almost always more informa-
tive than an imperfect projection (due to the absence of
phantom junctions on straight lines). However, if it is
known that contrast failure can occur, the contrast fail-
ure paradox tells us that a line in the drawing which is
partly missing due to contrast failure may provide more
information than the corresponding line if it had been
totally visible. In the example of Fig. 7, this is because
we effectively add back the missing line with the extra
information that it was missing due to contrast failure.

7. Constraint Between Vertices
and the Shadows they Cast

Suppose that vertex V projects into junction Jy in the
drawing and that the shadow cast by V projects into
junction Jgs. Such corresponding junction pairs (Jy, Js)
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Figure 10. Examples of vertex-shadow correspondences: (A,B),
(C,D) and (E,F); and examples of L-junctions, X and Y, that are not
shadows of visible vertices.

may be detected, for example, from the fact that they
are colinear with the projection of a known light source
(under the general viewpoint and general light source
position assumptions). It turns out that the number of
legal labellings of the junction pair (Jy, Jg) is very limi-
ted. We call the resulting constraint the vertex-shadow
constraint. For example, establishing that B, D, F in
Fig. 10 are the shadows of A, C, E, respectively, reduces
the number of legal labellings for A from 9 to just 1,
for B, D, F from 31 to just 1 and for C, E from 34
to just 3. It should be noted that junctions composed
uniquely of shadow lines are not necessarily shadows of
vertices. They may be the intersection of the shadows
of two distinct objects, as at junction X in Fig. 10.
Furthermore, a shadow-casting vertex V may be invisi-
ble in the drawing due to occlusion or contrast failure
(which is the case for the vertex casting the shadow at
junction Y in Fig. 10).

Trihedral vertices necessarily cast shadows Jg in the
form of L-junctions. Analysis of the intensity image
gives us the direction of the shadow lines (| or 1)
meeting at Js. This then provides a strong constraint
on the possible labellings of Jy. We distinguish two
cases, depending on whether Jg is a convex L-junction
(i.e. the shaded area subtends an angle « less than )
or concave L-junction (¢ > m). If Jg is a convex L-
junction, then V must be a vertex of type 1 in Fig. 3
(such as the corner of a cube), which gives rise to the
following constraint on the possible labellings of Jy.

Vertex-Shadow Constraint when the Shadow
of the Vertex is Convex

If Jy is a Y-junction then it has the labelling + + +.
If Jy is a W-junction then it has the labelling — + —.
If Jy is an L-junction then it has one of the labellings
+ —, — + or —— (except that the labelling —— is



(b)

Figure11. (a)Inthesetwo cases, thelabelling —— forJy isillegal,
since no edge could cast the upper shadow edge at Jg; (b) in these
three cases, no legal labelling exists for Jy. (N.B. Only the solid lines
are actually present in the drawing.)

illegal for the two configurations shown in Fig. 11(a)).
Furthermore, the configurations in Fig. 11(b) are physi-
cally impossible.

For example, knowing that B is the shadow of A
in Fig. 10 uniquely determines the labelling — + —
for A. Knowing that D is the shadow of C narrows down
the labelling of C to three possibilities (depending on
which of the three lines is missing due to occlusion or
contrast failure).

If, on the other hand, Js is a concave L-junction,
then V must be a vertex of type 2, 5, 11, 13 or 15 in
Fig. 3. In this case, Jy may include shadow lines, since
these vertices can cast local as well as distant shadows.
Given the technical complexity of the resulting con-
straint on the labellings for Jy, we relegate the details to
Appendix B.

The vertex-shadow constraint is a very strong con-
straint. For example, if Jg is convex and Jy is eithera Y
or W junction, then the labelling of Jy is uniquely de-
termined. Even more striking is the fact that, whatever
the form of Jy, the labelling of Jg is always uniquely de-
termined. However, we should be wary of applying the
vertex-shadow constraint unconditionally to all pairs
of junctions (Jy, Js) which are colinear with a light
source, to within an angle of error €. The number of spu-
rious correspondences thus found increases as (/7 )n?.

8. Tractability of the Line Labelling Problem

The classic approach to the interpretation of line draw-
ings is to assign semantic labels to the lines of the
drawing in accordance with a catalogue of legal junc-
tion labellings. The catalogue, giving the list of le-
gal labellings for each type of junction which may
occur in the drawing (L, Y, T, etc.), is derived from

assumptions on object shape and image formation. In
certain cases, the existence of a legal global labelling
of the drawing is not only a necessary condition but
also a sufficient condition for the drawing to be realis-
able as the projection of a physically possible 3D scene
(Cooper, 1999).

For a given catalogue, we use the term LDLP (line
drawing labelling problem) to denote the computa-
tional problem of determining whether a drawing given
as input has at least one global labelling consistent
with the catalogue. It is known that the LDLP is NP-
complete for perfect projections of polyhedral scenes
(Kirousis and Papadimitriou, 1988) but that the LDLP
is solvable in linear time for perfect projections of
curved objects (Cooper, 1999). When the LDLP is in-
tractable, the propagation of constraints (Tsang, 1993;
Waltz, 1975) has nevertheless proved to be a powerful
tool for reducing the ambiguity in the labelling prob-
lem by filtering out labels which cannot be part of a
global legal labelling.

A catalogue of labelled junctions can thus be judged
according to two important criteria: (1) is the associated
LDLP tractable, and (2) what is the predictive power
of the catalogue. The predictive power measures the
number of bits of information per line-end provided by
the catalogue (Cooper, 1997a) and can easily by used
to estimate the probability that a random labelling of a
drawing will actually be a legal labelling. This section
is exclusively concerned with the tractability of differ-
ent versions of the LDLP in the presence of contrast
failure and/or shadows. The corresponding catalogues
of junction labellings are given in Appendix C.

This section presents two main results. Firstly, the
possibility of missing lines due to contrast failure be-
tween parallel surfaces renders the LDLP solvable in
linear time, even for polyhedral scenes, provided there
are no shadows. Secondly, in all cases, in the presence
of shadows the LDLP is NP-complete.

Theorem 1. The LDLP is solvable in linear time
for drawings subject to contrast failure, but without
shadows.

Proof: This result follows from the possible exis-
tence of undetectable phantom junctions on any line
in the drawing, meaning that any label in the set
A = {—, <, =, «<#, —>#} can be transformed into
any other label in this set. Such label transitions, caused
by T-junctions with missing stems due to contrast fail-
ure, can occur on straight as well as curved lines. The
original LDLP is, hence, equivalent to a LDLP in which
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Figure 12. The catalogue of labelled junctions for line drawings

with missing lines due to contrast failure between parallel surfaces,
but no shadows.

all the labels in the set {—, <, —, <%, —=£} are re-
placed by a unique label A. The resulting catalogue of
labelled junctions is given in Fig. 12. A question mark
denotes any of the four labels: A, 4+, —>, «—. Re-
flected versions of curvature-L and 3-tangent junctions
also exist. m|

The constraints at Ly and 3-tangent junctions can be
replaced by a combination of unary constraints. The
constraints at T, W and Y junctions can be replaced
by a combination of binary constraints. For example,
a W junction joining lines with labels x, y, z can be
replaced by

(x:‘A’Vy:‘A’)/\(x=‘+’\/y=‘+’)
A =N Vy=2A)
/\(Z:c+7\/y:c+’)

On curved lines, transitions between + and A can oc-
cur, meaning that these labels can be replaced by the
even more generic label d = A U {+}. On lines joining
two L junctions, the label A is neighbourhood substi-
tutable for all other labels (Cooper, 1997b; Freuder,
1991) and hence all such lines can immediately be la-
belled A without altering the solvability of the problem.
In the resulting reduced problem, each line has at most
two possible labels, and all constraints are unary or
binary. The LDLP has thus been reduced to 2SAT, for
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which there is a known linear time algorithm (Melhorn,
1974).

Theorem 2. The LDLP is solvable in linear time for
drawings subject to contrast failure, and containing
shadow lines which have all been identified as such.

Proof: Consider the line drawing which results when
all shadow lines have been erased. The remaining junc-
tions are exactly those listed in Fig. 12. The presence of
shadows may restrict the possible labellings for a given
junction. For example, the presence of a shadow line
leaving a Y junction prohibits the labelling (+, +, +).
Nevertheless, it is easy to verify that the reduction to
2SAT, described above, still holds. It is noteworthy that
junctions which are only detectable due to the presence
of shadows, such as junctions B and Gin Fig. 5, provide
no essentially new type of constraint, once shadows
have been erased. u

Although we omit the details, it is easily verified that
the reduction to 2SAT still holds when extended junc-
tion constraints are applied to line drawings without
shadows or with shadows identified as such. A similar
remark holds for the vertex-shadow constraints, which,
of course, can only be applied to line drawings with
shadows identified as such.

Theorem 3. The LDLP for line drawings with shad-
ows is NP-complete, whether or not contrast failure
between parallel surfaces can occur.

Proof: NP-completeness follows immediately from
the following reduction from PLANAR 3SAT
(Lichtenstein, 1982) in which an arbitrary instance of
PLANAR 3SAT is represented by a drawing to be la-
belled. It is sufficient to demonstrate constructions for

1) producing multiple copies of the same variable v;
2) negating a variable —v;
3) the disjunction of three variables v; V v, V v3.

We associate the value false with the label ‘shadow’.
(Note that the orientation of the shadow label is implicit
in the difference in intensity between the two sides
of the corresponding edge in the intensity image, and
so does not need to be specified). We associate the
value true with the generic label d = {+, —, <, —,
<%, —}. Alllines in the drawing under construction
are curved, meaning that any two labels in the set d can
be transformed one into the other by a sequence of
phantom junctions on any line.
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(a)

(b)

Figure 13. Constructions required for the reduction of PLANAR
3SAT to the LDLP with shadows: (a) v =v; = vy =...(b)u = —v
() vy Vv V3.

Figure 13 gives the three constructions mentioned
above. In Fig. 13(a), all the variables v; must have the
same value (d or ‘shadow’) as v. This follows from
the set of legal labellings for Xy junctions, given in
Appendix C. The construction in Fig. 13(b) represents
negation, since u=d iff v = ‘shadow’. In Fig. 13(c), it
is easy, though tedious, to verify that variables u, v, w
can simultaneously take on all combinations of values
except (shadow, shadow, shadow). Such an assignment
of values would imply that the first, third and fourth
lines meeting at the Peak junction P would have to be
simultaneously labelled d, which is not alegal labelling.
In each construction in Fig. 13, the shading next to a
line indicates which side of the corresponding edge in
the intensity image is darker.

The reduction from PLANAR 3SAT is now com-
plete. Note that the constructions work whether con-
trast failure between parallel surfaces can occur or not.

The tractability results proved in this section
(Theorems 1, 2, 3) are robust to the changes in the
catalogue of junction labellings which follow when dis-
continuities of surface curvature are allowed (Cooper,
1993) or when object edges and surfaces may meet
tangentially (Cooper, 1997a).

Since the assumption that contrast failure can only
occur between parallel surfaces may, in practice, be too

optimistic, we should also consider the LDLP in which
contrast failure can occur at any non-shadow edges.
We call this phenomenon generalised contrast failure.
In the case of line drawings without shadows, the con-
straints under the assumption of generalised contrast
failure are even weaker than those given in Fig. 12, and
the LDLP is still solvable in linear time.

When generalised contrast failure can occur in draw-
ings of scenes with shadows, tractability depends on
whether there is just one or many point light sources.
With multiple point light sources the LDLP becomes al-
most trivial: any line in the drawing, whose correspond-
ing edge in the intensity image does not prohibit the la-
bel ‘shadow’, can be labelled ‘shadow’ and subtracted
out of the drawing without any effect on the solvabil-
ity of the LDLP. The drawing that remains when all
such lines have been subtracted out is an instance of
the LDLP without shadows. We have just seen that this
problem is solvable in linear time. On the other hand,
if we know that the scene is illuminated by at most
one point light source (and any number of non-point
light sources), then the LDLP becomes NP-complete
again. The only change required in the proof of NP-
completeness is that the construction for v; V v, V v3 in
Fig. 13(c) must be replaced by a simpler construction
consisting of a single W-junction. Indeed, under the as-
sumptions of generalised contrast failure and a single
point light source, all combinations of the labels d and
‘shadow’ are legal for a W-junction, except (‘shadow’,
‘shadow’, ‘shadow’).

We conclude that the tractability results proved in
Theorems 1, 2, 3 are not merely consequences of ar-
bitrary assumptions about object shape or the kind of
contrast failure that can occur, but instead are quite
general results. Contrast failure makes the LDLP solv-
able in linear time, whereas the problem becomes NP-
complete for drawings with shadows.

9. Predictive Power of the Junction
Labelling Constraints

Another important criterion for judging a set of con-
straints is their strength. The stronger the constraints,
the less the expected number of spurious interpretations
of the drawing. We can quantify the notion of strength
of a catalogue of junction labellings by calculating its
predictive power, which is defined as the number of
bits of information that the catalogue provides per line-
end. A necessary (though not sufficient) condition for
the expected number of spurious global labellings of a



Table 1. A comparison of the predictive
power of different catalogues.

p PPmax/2

No CF, no shadows 3.22 3.00
No CF, shadows 4.28 3.59
CF, no shadows 2.44 3.00
CF, shadows 3.57 3.59

drawing to tend to zero, as the number of lines in the
drawing tends to infinity, is that pp > ppmax/2, where
pp is the predictive power and pppm,x is the theoretical
upper bound on pp (Cooper, 1997a). Table 1 presents
the values of pp and ppmax/2 for the catalogues given
in Appendix C under four different assumptions: draw-
ings with or without contrast failure (CF), drawings
with or without shadows.

In calculating the predictive power of catalogues in-
volving shadows, we assume that analysis of the in-
tensity image allows us to determine, for each line-end
at a junction, which side of the line is darker. For ex-
ample, analysis of the intensity image at an X-junction
reduces the number of legal labellings for the junction
from four to just one. On the other hand we are pes-
simistic in that we assume that all lines in the drawing
are curved, which implies that any number of + <«
transitions can occur an any line.

The results of Table 1 confirm something that is well
known to artists and photographers, that a scene with
shadows is less ambiguous than the same scene with-
out shadows. In general, a line drawing with shadows
has a smaller expected number of spurious interpreta-
tions than the same drawing without shadows. Unfor-
tunately, when contrast failure can occur, the value of
pp falls below the critical value ppnax/2, meaning that
the catalogue of junction labellings does not provide
sufficient information to uniquely label line drawings
subject to contrast failure. The dramatic drop in the
value of pp, when contrast failure is allowed, is due
to the fact that transitions such as — — are legal on
any line in the drawing. Such transitions are caused by
contrast failure at vertices such as number 5 in Fig. 3.

The possibility of missing lines due to contrast fail-
ure thus increases the importance of other constraints,
such as the identification of non-shadow lines by anal-
ysis of the intensity image (Section 3), the straight
shadow line constraint (Section 5), the extended junc-
tion constraints (Section 6), the vertex-shadow con-
straints (Section 7), the absence of + <« transitions
on straight lines, the colinear lines labelling constraint
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(Cooper, 2000), and the identification of extremal lines
and +<— transitions by analysis of the intensity image
(Cooper, 1997; Malik and Maydan, 1989).

10. Coplanarity Constraints from Straight Edges

The coplanarity of four 3D points can be deduced from
the presence of a straight line in the drawing, under the
straight edge formation assumption (see Section 2).
The case when the drawing is not subject to contrast
failure, which occurs for example when the drawing is
human-entered, has been treated in detail in a previous
paper (Cooper, 2000). The constraints derived in this
section cover the generalisation of these coplanarity
constraints to the case of possibly missing lines due to
contrast failure. Although coplanarity constraints can
be used to establish linear equations between the depths
of object vertices (Cooper, 2000), they can also be used
to simply group together 3D edges lying in the same
plane. This makes explicit information which could be
useful for later tasks such as object recognition, for
example.

If we assume that all vertices are trihedral, then
coplanarity constraints can still be applied. For ex-
ample, the existence of three lines, identified as non-
shadow lines, meeting at each junction implies that no
contrast failure has occurred. This constraint is given in
Fig. 14. A straight edge joins the vertices j and k. If the
edge leaving j in direction of i is also a straight edge,
then we can take i to be the next vertex encountered on
this edge, otherwise we can leti be an arbitrary point ly-
ing on the tangent to the edge. For example, in Fig. 15,
applying the constraint to the straight edge 23, allows
us to deduce that the 3D points 1, 2, 3, 4 are coplanar.
The common plane may, in fact, be a partially or totally
hidden surface. For example, the constraint applied to
the straight edge 4-5 in Fig. 15 tells us that points 3,
4,5, 6 are coplanar, even though the common plane is
hidden at points 4, 5, 6.

Note that any number of shadow edges may also be
present at j and k, even though they are not shown in

j k

Figure 14. The coplanarity of i, j, k, 1 follows from the fact that jk
is a straight edge and that all three edges are visible at each junction.
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Figure 15. The coplanarity of points 1, 2, 3, 4, 5, 6 can be deduced
from three applications of the coplanarity constraint of Fig. 14.

Fig. 14. The three non-shadow lines meeting at j or k
form Y or W junctions, but not T-junctions. However,
any number of T-junctions may occur on the straight
line jk without affecting the validity of the constraint.
For example, the constraint applied to the straight edge
3—4in Fig. 15, tells us that points 2, 3,4, 5 are coplanar.

This coplanarity constraint can be applied to show
that certain impossible drawings are unrealisable as 3D
objects. In Fig. 16, we obtain the labels shown after ap-
plying the extended junction constraint at junctions A
and C, together with the straight shadow line constraint
to lines BD, DF, BF, FE. These line labels indicate that
ABCD, CDEF and EFAB are three sets of coplanar
points. However, this is impossible since the projec-
tions of lines AB, CD and EF (when extended to infin-
ity in both directions) do not intersect at a point in the
drawing.

Figure 16. This drawings is impossible due to the coplanarity
constraint.

Figure 17. The coplanarity of i, j, k, 1 follows from the fact that jk
is a straight edge, whenever we have sufficient evidence to deduce
that i, j, k, 1 all lie on the same surface.

Coplanarity can still be deduced even in some cases
when less than three non-shadow lines have been iden-
tified at each junction. This is illustrated in Fig. 17. As
in Fig. 14, any number of lines identified as shadows
can be added without affecting the validity of the con-
straint. Apart from the lines ij, jk and kl, any number
of other lines of any type may occur, as shown, al-
ways lying on our right hand side as we follow the path
ijkl. Unlike the constraint of Fig. 14, in this constraint
the junctions j and k may be T-junctions. In fact, they
may be any junctions satisfying o« # 0 A o # 7 (and
B # 0 A B # m). This constraint does not even require
the trihedral vertices assumption.

However, the coplanarity constraint of Fig. 17 is only
valid for certain labellings of the lines ij, jk and kl in
the vicinity of the junctions. The generic label > on
a vertical line represents any type of edge which, if
formed by the intersection of two surfaces, is such that
the surface which is visible just to the right of the line
is one of these surfaces. Equivalently, we could replace
> in the statement of this constraint, by the set of pos-
sible labels {4+, —, 1, 1 #, ‘shadow’}. This constraint
is only valid if it is known that the pair of edges ij
and jk (and the pair of edges jk and kl) meet in 3D.
We can deduce that the edges ij and jk meet in 3D if
at least one shadow line is present at j, or if « < 7
(given the restrictions on the labelling for j). If three
non-shadow lines have been identified at j, and meet
at a 'Y or a W junction, then no restrictions are neces-
sary, neither on the angle « nor on the labels for ij and
jkatj.

The constraint of Fig. 17 was deduced from exam-
ining all junctions under the assumption that contrast
failure can only occur between parallel surfaces.

Note that in the coplanarity constraints of Figs. 14
and 17, if the point i (or point 1) is a T or L junction,
then it may, in fact, be the projection of two distinct 3D
points. We can avoid any ambiguity by saying that it
is the 3D lines ij, jk, kl which are coplanar, rather than
the points 1, j, k, L.



11. Results on some Sample Drawings

This section demonstrates the information which can be
deduced from a line drawing subject to contrast failure.
The result of applying the constraints described in this
paper to a drawing consists in certain restrictions on
the possible labelling of the drawing together with a
list of sets of coplanar points.

Many other constraints could also be applied, con-
cerning sets of colinear points, sets of straight lines
which intersect at a point (Cooper, 2000), or sets of par-
allel lines whose projections meet at a vanishing point
(Parodi and Torre, 1994). If vanishing points are de-
tected (Straforini et al., 1993; Tai et al., 1993), however,
it should be noted that sets of shadow lines Sy, ..., S;
may converge to a point which is not a vanishing point.
This occurs, for example, if Sy, ..., S; are shadows
of parallel edges. Unless restrictions are placed on the
shape of object surfaces, extremal lines may also con-
verge to a common point in the drawing which is not a
vanishing point. The extended trihedral assumption is
necessary to identify the intersection of four (or more)
lines, each labelled with the generic label d, as a van-
ishing point.

Figure 18 shows a drawing involving shadows and
contrast failure. The labels shown for lines or line-
ends are the result of applying the catalogue given in
Appendix C and then filtering by constraint propaga-
tion (Tsang, 1993). The generic labels d and A are
shown when it is not possible to uniquely determine a
label. The absence of a label on a line indicates that we
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have not been able to obtain sufficient restictions on
the line label to limit it to one of the generic labels d or
A. To avoid cluttering up the figure unnecessarily, we
have used generic labels for lines (or line-ends) rather
than the actual lists of possible junction labellings. In
fact, many junctions have a much smaller number of
possible labellings than indicated. Junctions 1, 5 and
8, for example, each have no more than three possible
labellings.

The coplanarity constraints also allow us to deduce
the following facts:

(1) points 1, 2, 8, 7 are coplanar;

(2) points 2, 3, 9, 8, are coplanar;

(3) points 3,4, 13,9, 10, 11, 12 are coplanar;
(4) points 1, 2, 3,4, 5, 6 are coplanar;

(5) points 7, 8,9, 10, 11 are coplanar;

(6) points 13, 4, 5, 14 are coplanar.

The rule implicitly used for merging sets of coplanar
points S; and S, is that S} and S, can be merged if
S1 N S, contains at least three non- colinear points.
Since both T and L junctions can be caused by one
edge occluding another distant edge, they may in fact
be the projection of two distinct points in 3D. Thus,
care must be taken when applying those coplanarity
constraints above involving the junctions 1, 6, 7, 11,
13 and 14. For example, the point 13 which is coplanar
with points 4, 5 and 14 is the point projecting into the
T-junction and lying on the line 4-13.

Figure 18. A drawing with shadow lines and contrast failure between parallel surfaces.
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7

Figure 19. A drawing involving shadows and contrast failure between parallel surfaces.

Figure 19 shows another example drawing involv-
ing shadows and contrast failure. The thicker lines
are assumed to have been identified as non-shadow
lines by the shadow edge constraint (see Section 3).
For example, this would be the case if, at some point
along the line, there were a simultaneous increase in the
red component and decrease in the green component
as we cross the line. The identification of these lines
as non-shadow allows us, by propagating junction la-
belling constraints, to identify the convex edges of the
left-most object. The planarity of the three visible sur-
faces of this object (or rather the edges bounding these
surfaces) can then be deduced from several applica-
tions of the coplanarity constraints. The middle object,
the half cylinder, is successfully labelled as shown,
with little ambiguity, due to the presence of 3-tangent,
curvature-L and T-junctions.

However, practically no information is obtained con-
cerning the right-most object or the cast shadow lines in
Fig. 19. An obvious idea is to apply a heuristic rule that
prefers labellings involving as few missing lines as pos-
sible. This would allow us to find the correct labelling
of the cast shadow lines, but would give a completely
erroneous labelling of the right-most object. One such
erroneous labelling is shown in Fig. 20. Another idea
is to try to determine the position of the light source by
generating half-lines passing through pairs of junctions

Figure 20. Anunlikely, but legal labelling, for the right-most object
in Fig. 19, which does not require lines to be missing due to contrast
failure.

which could be projections of a vertex and its shadow,
and looking for points where several of these lines inter-
sect. If we suppose that the position of the light source
in the drawing of Fig. 19 has been determined in this
way or is known a priori, then we can apply the vertex-
shadow constraint to the pairs of junction (1, 6), (2,
7), (3, 8), (4, 9), (5, 10). The global labelling which
results after constraint propagation is shown in Fig. 21.
A consequence of the tighter constraints on junction
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Figure 21. The global labelling of the drawing of Fig. 19 after application of the vertex-shadow constraint.

labellings thus determined, is that the planarity of the
two visible faces of the right-most object can now be
deduced.

12. Sufficient Conditions for Realisability

An interesting theoretical question is what are the nec-
essary and sufficient conditions for a line drawing
to be realisable as the projection of a physically
possible 3D scene. This is called the realisability
problem and has been solved for polyhedral scenes
(Sugihara, 1984) and scenes composed of various
classes of objects with curved surfaces (Cooper, 1997a;
Cooper, 1999; Cooper, 2000). The constraints on line
drawings with contrast failure and shadows stated
in this paper are clearly necessary but not sufficient
conditions for realisability. Extending the set of con-
straints so that they become a sufficient condition
for realisability would require adding inequality con-
straints on the 3D positions of vertices (of the form
“point A is in front of the plane BCD”) to encode
the three dimensional meaning of the labels +, —, —
, <, =>#, <% (Cooper, 2000; Sugihara, 1984). For
example, if three straight lines AB, AC, AD meet at
the Y-junction A labelled 4+ + +, then point D must
be behind the plane ABC. Many of these inequal-
ity constraints still hold even when contrast failure

may occur. We have not stated them because they
are not as informative as coplanarity constraints and
they do not propagate as easily as semantic labelling
constraints.

Another important constraint which has not been ap-
plied in this paper is the correspondence between edges
and the shadow-edges they cast. We would have to con-
sider correspondences between edges and the shadows
they cast at shadow-producing junctions, at extended
junctions and at vertex-shadow correspondences. An
elegant unified approach is to assign to each shadow
line-end labelled | or 1 an extra shadow-casting-edge
label representing the edge E which casts it. This
shadow-casting-edge label is “CF” if E is missing in the
drawing due to contrast failure and is “OC” if E is miss-
ing due to occlusion. The junction labelling constraints,
the extended junction constraints and the vertex-
shadow constraints can all be modified to include
shadow-casting-edge labels with each | or 1 label. Al-
though a detailed discussion of shadow-casting-edge
labels is beyond the scope of this paper, it is worth
noting that such labels can provide extra information
concerning semantic line labels. This follows directly
from the fact that concave edges cannot cast shadows.
Thus, for example, if the straight edge AB is known to
cast the shadow CD, with C the shadow of vertex A and
D the shadow of vertex B, then no semantic label tran-
sitions (such as — —) are possible between A and B.
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Determining correspondences between edges and
the shadow edges they cast would also allow us to apply
extra coplanarity constraints. For example, knowing
that edge 12-10 is the shadow of edge 2-8 in Fig. 18,
we can deduce that points 2, 8, 10, 12 are coplanar.
This follows from the fact that the shadow of a straight
edge E lies in the plane passing through E and the
light source. Under an assumption of C* surfaces, we
could also deduce that points 3, 4, 9, 12 are coplanar in
Fig. 18, since the shadow line 3—12 must lie in the
surface on which it is cast.

The presence of point light sources casting shadows
also implies certain inequality constraints. We have
seen that the presence of a shadow at a vertex may
imply certain coplanarity constraints. A less obvious
constraint is that the absence of a visible shadow at
a vertex implies restrictions on the relative positions
of the light source(s) and the tangents to the surfaces
meeting at the vertex.

In conclusion, the elaboration of necessary and suf-
ficient conditions for the realisability of line draw-
ings with contrast failure and shadows remains an
open problem. Nevertheless, the constraints stated in
this paper amply demonstrate the feasibility of the
analysis of line drawings with contrast failure and
shadows.

13. Conclusion

When analysing line drawings of curved objects in
which lines may be missing due to contrast failure,
the classic technique of propagating junction labelling
constraints does not provide sufficient information
to adequately interpret the drawing. This is mainly
due to the possibility of undetectable label transitions
on lines. However, the extra information required to
adequately interpret the drawing can often be obtained
from various constraints concerning shadow formation
and extended junctions (a straight line colinear with a
junction).

Although the presence of shadows in a drawing
is what causes the labelling problem to become NP-
complete, shadows are a valuable source of information
since the drawing is, on average, less ambiguous.

Further information, concerning the shape of objects
in the drawing, can be obtained from coplanarity con-
straints between sets of object vertices, derived from
the presence of straight lines in the drawing. These con-
straints have been shown to be robust to the presence
of contrast failure.

Appendix A: Legal Labellings for Extended
Junctions

In the following sets of legal labellings, the label d can
be replaced by any of the labels +, —, —, <, > #,
<. Horizontal arrows represent occluding edges
whereas vertical arrows represent shadows.

LIK]: - +d,+—d, «<+d, + «<d, <+ 1,
—->—|,——l, >—=# >F—], >,
—F#—=>], <.

LIW]: »—-d,——d,——1,—>—],—>—d,
-1, >—], >—#d, >#—>d,
S AL el <1
——=> |, >, o<, ><«1.

L[Y]: - d,— —>d,»>—d, >—#d,
—->#->d,— -1, > -], >—>1, —>—,
> FE>P, >oF], >, ><«1,

—><FE], >, 1, —F#>1.

C[3-tangent]: —— 1.

T[V]: —<«+1, — <<«d, < — +d, «<#<—+ 1,
—<— P, <=, <<, — <1,
—F——P, — —+ |, —<—F#+ ],

— — >, <F£ ], <], <1,

S T N

T[K]: — «<<«d, < —+d, < —+ 1, «<# +1,
coech eecl eeF L oA,

e S R

=t —-—=l].

Y[Multi]: <~ —td, — >4, > —d, > -,
—># > d, >#t—>1, > > #d,
—>|—=#]l,>1t—>d, —>]—>d,
T A
e e S
et oA, Ee L,

el et el



W[Peak]:

W[Multi] :

et el il
e SR N

SE el e LA
>t et e, el
Sl et et et
e L R

—l—=l, 1=, <]l

—t>d—->-J|d—->|-d-—]d

e L A
—->—=>\d, >—l|, >+ =>#],
e T R e
SoAld oA+ -+

e T A
Tl e e AR A S
R A e
=ttt 2l ==t
=t <= <=

—t>d, - —-]d,—}—-d ——]d,
—->—=>\d, >#—>|d, >—>#]| d,
= ===l =#+ =1
—F> N =#F=> L == #]
—-<#l|, =+ =>#,

==, =<, =<1

—-— =l 11,
—»—=>#FL, ==t ==l
=, 2t 2>l <=,

—|l=1 <= .

Dt d, 4 L —d, <t -+ =,

> =do= = ==,
— s E o
I R

—

+ £l >+ ol ol

_><_‘L\J/’ - T_)\lﬂ \l'(_#_)‘l’v

—l=l,<1t=>l, <=
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Appendix B: Vertex-Shadow Constraint
when the Shadow of the Vertex is Concave

It is assumed that junction Jy is the projection of a
vertex V whose shadow is visible in the drawing as
the concave L-junction Js. The constraints given be-
low concern only the non-shadow lines meeting at Jy.
Thus, applying the vertex-shadow constraint to (Jy, Js)
means eliminating from the list of labellings for Jy all
labellings whose restriction to non-shadow lines does
not occur in the appropriate list below.

Very rarely, the presence of a shadow line in a
labelling for Jy may invalidate the correspondence
(Jv, Jg). In fact, this occurs in only one case. Sup-
pose that the labelling for Jy is one of the labellings
given in Fig. 22 (together with any number of extra
shadow lines added to the W-junctions shown). Then
this identifies V as a type 3 vertex (according to the
numbering scheme of Fig. 3), but such vertices cannot
cast distant shadows. Thus such labellings should also
be eliminated as illegal.

Figure 23 shows the six types of junctions which can
occur at Jy, and the three types of junction which can
occur at Jg. The dotted line represents the line joining
Jv and Js. For all physically possible junction pairs
(v, Js), we give below the list of legal labellings for
Jv. Reflected versions of most of these constraints also
exist.

(D), @): +—,— +, >, <, —><.

(2), @): = —, >—#, >, <.

(3, @): »— —.

(4, @): > —, >>>#, >>—, + > —,
+ooFE o,

((6), (2)): <<, << +, < << .

(1), (D) < —, — <, «——#, «——, >k,
— <.

(2),®): > = — <, «—+,+ =, <>, >—,
<.

Figure 22. Illegal labellings for Jy.



(2)

(b) §

(3)

(4)

(5)

1
2 3

Figure 23. (1)—(6) the 6 possible types of Jy ; (a), (b), (c) the 3
types of Js.

((3),(0): < — <, — «—.

(@, ®): +—+.

((5),(D): <« — =, «—>#F—>, <—>—, +— —,
e e e

((6), (b)): < <<, < <—, < — =, < <F—>,
— —, —<—F 4, < +.

(1), (€): < —, — <, «—>#, <>, >F<,
.

(2),(€): > —, — <, <=, >—>, << .

((3),(©): < — <, — «—.

((5),(@): <« — >, «>F>, <>, >—>— .

((6), (C)): <<, <>, «— — >, <—<F> .

Appendix C: Catalogue of Junction Labellings

We give the catalogue of junction labellings in two
stages: the first catalogue is the list of junction la-
bellings in the case that there are no missing lines; the

second catalogue is the list of all extra labellings which
have to be added to the first catalogue in the case that
contrast failure between parallel surfaces may cause
lines to be missing. The catalogues have been derived
under the assumptions of general light source positions
and general viewpoint. We assume that the only vertices
that may occur in the scene are the 15 vertices shown
in Fig. 3. Junctions may also be caused by occlusion
or by the interaction of shadows and curved surfaces
(as described in Section 4). We suppose that ramp lines
have not been detected in the intensity image.

It is worth noting the differences between our cat-
alogue and that of Waltz (1975). Although Waltz
allowed for accidental alignment and cracks, which we
have not considered, our approach is more general in
that we allow curved objects, contrast failure and mul-
tiple light sources. Because of the possible presence of
multiple light sources, there is no theoretical limit to
the number of lines which can meet at junctions in the
drawing. We have thus been obliged to place an arbi-
trary limit on the degree of junctions to be included in
the published catalogue. Figure 24 shows all junctions
of degree less than or equal to 4. Ata 3-tangent junction,
the lines numbered 2 and 3 have continuous curvature,
as do the lines numbered 3 and 4 at a 4-tangent junc-
tion. At a Multi junction the lines 1 and 2, if extended
through the junction, would both lie within the sector
bounded by lines 3 and 4.

In the comma-separated lists of junction labellings,
each labelling is given in the form L;L,..L,, where m
is the degree of the junction and each L; is the label
of the line numbered i in Fig. 24. Although some of
the lists are long, it should be remembered that many
labellings will immediately be eliminated by analysis
of the intensity image. For example, the shadow label 1
and 1} are incompatible with a line saparating a lighter
region above the line from a darker region below.

Catalogue of Junction Labellings
without Contrast Failure

terminal: —, 1, |, M, 4 .

Ct—>, >+ + <, <+ ++, —, >,
<, —FE, > FEE > «—«—, M,
ot 4.

(The first four labellings are illegal on straight lines.)

curvature-L: I}, «—<«, «— —, «—<«#, >—>»,

— =, >#>, ||.



terminal y C
curvature-L 1 2/

1

3-tangent 72 \3

L
W /\
2
Y % T T
3
w o<
2
%
v
4
Peak 4 4 Muli ! 2
2 3
3 4
X
X Ly 1
2
3 4 ../—

Figure 24. List of junctions of degree less than or equal to 4.

Y

/\2

1 3
2

1 2
3

1 2

3 4

1
4-tangent ;2 73 A

1 2
K
:3 4:

(If line 1 is straight, then only the first four labellings
are legal.)

L: -, «<«,— >, > —, <« 4+, 4+ «,

ko, o E LA A A

3-tangent:— + —, || ——, | >F#—>#, P«—«,

<« o=, <« |««.

(If line 1 is straight, then only the first three labellings
are legal; if lines 2 and 3 are straight, then only the last
five labellings are legal.)

Wi—+— >4+ >, > + >#, >#F + —,
+ -+t <t +H > - > =, — <,
‘L -, \L_>_)7£9 _>(_7E\L’ _>7é<_\l/’ \L_)#_)’

—><],{—>—.
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Y ——— +4++, > —, «— — «—, — «——>,
i e e N A M s IR
— <, = o, ==, =,

— <P, <], >F >, —<«F#T,
= <—F M oF—, > | #,
—F<—| .

T: <7, ««7 < — >, « —F, < <«F—>,
—F e, — < —F ey
—F<—+ ++ 1+t oot o,
++M++ 4, -1, —>—1.

4-tangent: || —— .
Xo: <<t <<, == 11>—.

(If lines 1 and 2 are straight, then only the first two
labellings are legal.)

Ki = —+1, « =1+ «Fet+t, —tt,
—< P, o, P,

—F<—+ |, —<F#| +.

R R R A L R RS
b - - -
- +—1, =+ >#1, >—> -1,
> >FE, P, —FE P ——, | —+,
—l<F# 4+, — |, >F<——],

| — < —F

Peak: +| —+,+— ) +, > — =, > —|—,
Mo — -
e == —h> =4 - -,
b= o — el o+ o,
S ol et L E
et A ]
e R e ]
=+ =, >+, |l <—,

==, =><Jl.

Multi: | > — =, =<« 1 — <<, <> —,
- (_TT’ <~ _TT’ ~+ ‘L(_#v + (_#(_T’
P bty et >,
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N, cF et >t
P> E e N+
—F A+t Moo, Lo,
t>o, Mo, et
Pt fobe, >t

-t .

X A A A LU T T
I UL At AU, Il LU
e tddn Uerds LU,

Catalogue of Extra Junction Labellings
due to Contrast Failure

terminal: <, — .

C: ——>, > —, — <, <« —, >F>, >—>F,

— e, ——E

curvature-L: &

L: « — <>, <, 5> <, — <, <, < <F#
>, D e, e > —F—
+ =, = 4, <, e Ly
-1 =), =, L=, <1, <4,
< <=, —-m1 -0 11—, 4—.

3-tangent: O

W: 5| - — 1>, | <#F—>, o> #], |-,
P>, o=, e, <, o<
Y: P, =<, o], <<, > 1<,

=< P Fe, > —F, o FE],

Po—, >, =, |>—, <>,
=M oo #, —FE >, ——F] .

T: »>—|,—>—>#|,——1, >#>1.

4-tangent: D

X()Z @
K: _>_)75¢T7 - - \J/Tv _)75_)TJ/’ - _)T\Lv

-1, >—=>M, —>—=>I11.
U: <<, <<, <<, —=>l—>1,

>t

Peak: —|—|, >t —, 4 —=, 1>,
S Lo E, e,
St e, el >l
T N

<=, l<l=, {{—=>—.

Multi: M— — 1 — <, 1 — =, —1<1,
R e
Mo st Pt o, L,
R R AR A
Pl <<, > M <, > <,
St et bl L et
e e tlem, <1,

et b et to el lo et

M=, <M=, <I1—.

X: O
Lo: + «.
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