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On Lack of Uniqueness in Heat 
Conduction through a Solid to Solid 
Contact 
If two solids are pressed together and made to exchange heat by conduction, one possible 
steady state corresponds to the solids remaining in contact along the entire interface. It 
is shown that this state is not unique, and that it is possible to construct solutions involv­
ing localized separation if heat flows in one of the two possible directions. 

Introduction 
The question about the possible lack of uniqueness when two 

contacting solids exchange heat by conduction was raised by Barber 
[1]. It is also implicit in the results presented by Dundurs and Panek 
[2, p. 734]. The object of this article is to demonstrate actual nonun-
iqueness in steady-state heat conduction by means of a specific ex­
ample. 

Consider for this purpose two semi-infinite solids that are pressed 
together and made to conduct heat through the contact interface. One 
possible steady state is that of the solids remaining in contact along 
the whole interface which results in simple linear temperature dis­
tributions normal to the interface. We show, however, that another 
steady-state solution involving a localized separation zone at the in­
terface and satisfying the customary boundary conditions, as well as 
the appropriate inequalities, can be constructed for heat flowing 
across the interface in one of the two possible directions. Moreover, 
the solutions for full contact and localized separation satisfy the same 
far-field boundary conditions. We also give a solution for a periodic 
array of separation zones which appears to be of fundamental im­
portance. 

The existence of competing steady-state solutions immediately 
creates new questions about history dependence, stability, and the 
rate at which possible disturbances grow if the process of heat con­
duction between two solids is viewed developing in time. There is also 
the matter of whether the lack of uniqueness demonstrated in this 
article is due to the strongly idealized boundary conditions (no re­
sistance to heat flow in zones of solid to solid contact, no heat transfer 
between the solids in the separation zones) and the fact that the 
contacting bodies are treated as semi-infinite solids. Except for a few 
comments made at the end, which anticipate some of the answers, we 
must leave these issues unresolved at the present time. 

The Problem and Its Formulation 
Consider two semi-infinite solids that are forced together by the 

applied pressure, p , and carry the remotely established uniform heat 
flux, q", in the direction normal to the interface. As mentioned before, 
one steady-state solution for the thermal and elastic fields corresponds 
to the solids remaining in contact along the whole interface. We seek 
here the steady-state solutions, satisfying identical boundary condi­
tions, but which involve localized separation between the solids. The 
problem is posed in the framework of linear thermoelasticity [3], as­
suming plane strain conditions. For simplicity, the interface is taken 
as frictionless. 

The coordinate system is placed in relation to the two bodies as 
shown in Fig. 1; subscripts or superscripts 1 and 2 are used to distin­
guish the field quantities and physical constants of the two materials. 
The thermal conductivity is denoted by k, the coefficient of thermal 
expansion by a, the shear modulus by fi, and Poisson's ratio by v. The 
quantity 
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g( l + v) 

k 
(1) 

is called the distortivity of a material [2]. 
Assuming that the two materials are homogeneous and isotropic, 

the steady-state temperature distribution is a plane harmonic func­
tion, viz., 

d2T d2T 

dx2 dy2 0 (2) 

in the absence of internal heat generation [4]. Written in the cus­
tomary indicial notation for the sake of compactness, the pertinent 
equations for the elastic fields, under the assumption of plane strain 
[3, Sec. 4.2], consist of the equilibrium conditions 

; f j (3) 

on the stress components, the relation between the total strain and 
displacement 

and Hooke's law 

2/ i 

tij = -(diUj+ djui) 

(an - vcikkSij) + «(1 + v)T8ij 

(4) 

(5) 

Herein, i, j , k = 1, 2; (xi = x, x2 = y); d; = o/dxr, and repeated indices 
imply summation over the values 1 and 2. The first term on the right 
side of (5) constitutes the elastic strain, and the second term is the 
strain due to thermal expansion. 

The boundary conditions to be imposed in the contact zones are 

T1U-,0) = T2(i-,0) 

ki 
i>Ti(x,0) 

k: 
dT2(x,Q) 

dy dy 

Uy(»(X,0)=UyW(X,0) 

(6) 

(7) 

(8) 
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Fig. 1 Contacting solids with a single separation zone 
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axy^{x, 0) = axyM{x, 0) = 0 

ffyy<
1>U,0) = » „ M ( i , 0 ) < 0 

(9) 

(10) 

Equation (6) reflects the idealization that the interface offers no re­
sistance to heat flow in the regions of solid to solid contact. The next 
boundary condition is simply a statement that no heat is generated 
at the interface. The boundary condition (8) on the normal compo­
nents of displacements insures that the bodies are in contact. Equa­
tions (9) and (10) express Newton's third law, the assumption of no 
friction, and the condition that contacting bodies can only exert 
pressure on each other and that the surface tractions cannot be ten­
sile. 

The boundary conditions used in the separation zones are 

dTi(x, 0) dT2(x, 0) 
= 0 

dy dy 

<TxyW(x, 0) = ^ < 2 > ( x , 0 ) = 0 

"yy <»(*, 0) : » H <
2>(*, 0) = 0 

UyW(X, 0)-UyM(X, 0) > 0 

(11) 

(12) 

(13) 

(14) 

Equation (11) expresses the assumption that no heat is transmitted 
across the gaps in the separation zones. The next two boundary con­
ditions insure that the surfaces of the bodies are free of traction in the 
separation zones. Condition (14) reflects the requirement that the gap 
between the bodies cannot be negative. It is important to note that 
the inequalities (10) and (14) make the problem nonlinear. 

The boundary conditions at infinity will be discussed after the so­
lutions are constructed. 

The field equations (2-5) and the boundary conditions (6-10) are 
satisfied for full contact by the following temperature, heat flux, 
displacement and stress distributions: 

T = -

= 0, qy = i 

vp (1 - v)p q"h 
u — — x, uy = y 

2M 2^I 2 ( 1 - vV 

,J-y 

2^q"d 

l - v 
y, Oxy = 0, ffyy = - P 

(15) 

(16) 

(IV) 

(18) 

"where subscripts 1 or 2 must be attached to k, 5, \i and v, depending 
on the region considered. The arbitrary datum for temperature has 
been adjusted so that the contact interface is at zero temperature. The 
linearly distributed axx or bending stress must be applied in order to 
prevent the bodies from globally warping away from each other. The 
behavior of the field quantities at infinity is clear from the explicit 
formulas. 

Single Separation Zone 
Next, we construct a steady-state solution in which the solids are 

allowed to separate over an interface segment of length la. The sep­
aration zone is expected to disturb the temperature and stresses only 
locally. We assume that no heat is transmitted across the gap, and 
there is no contact resistance outside the separation zone, so that the 
boundary conditions (11) and (6) apply in \x\ < a and \x\ > a, re­
spectively. 

There is no need to start at the level of the field equations and the 
boundary conditions other than (11) and (13), because we can take 
advantage of a Green's function for exterior thermoelastic contact that 
consists of a thermoelastic field (heat vortex) and a purely elastic field 
(edge dislocation at a freely slipping interface) [5]. The full expressions 
for the field quantities associated with the Green's function are given 
in [5] and of immediate interest are only the relationships at the in­
terface. 

An isolated heat vortex of strength w acting at the point (£, 0) leads 
to the following quantities at the interface: 

temperature discontinuity across the interface 

T(X) = T2(x, 0) - Ti(x, 0) = o>H(x - £) 

heat flux through the interface 

<Jy(x,0) = - — - — 
IT R\ + « 2 X — £ 

gap between the solids 

g(x) = uyW(x, 0)-uyW(x, 0) = 0 

and the normal tractions 

kik2 
ayy(x, 0) = 2&>Af(Si - S2) " 

ki + hi 

where H( ) is the Heaviside step function, and 

H1M2 

H(x - 0 

M' 

(19) 

(20) 

(21) 

(22) 

(23) 
2[/ti(l - Vi) + n2(X ~ vi)] 

The edge dislocation with the Burgers vector by leads to no thermal 
quantities, but gives 

g(x) = -byH(x - £) (24) 

1 
Ax, 0) 

2byM 

x-t 
(25) 

The desired solution for the single separation zone can be con­
structed by correcting the fields given by (15-18) for the full contact 
between the solids. In order to cancel the heat flux through the sep­
aration zone, we distribute heat vortices with the density Q,(x) over 
the interval — a < x < a. On the basis of (20), this leads to the rela­
tion 

1 k\ki 

From (19), it also follows that 

X « f i ( | ) d | 

•a X — £ 
= 0, <a 

T(X) XI m d l i 

and consequently 

Q(x) 
dr(x) 

dx 

(26) 

(27) 

(28) 

If the temperature jump is to vanish outside the inteval —a<x<a, 
We must have 

faO(£)(i£ = 0 (29) 

.Nomenclature. 
a = half length of separation zone 
by = Burgers vector of an isolated disloca­

tion 
By = intensity of distributed dislocations 
g = gap between the solids 
h = half length of period 
k = thermal conductivity 
M = bimaterial constant (see equation 

(23)) 

p = applied pressure 
q°° = heat flux at infinity 
Qx, Qy = components of heat flux 
T = temperature above the datum at which 

contact is established 
ui = displacement vector 
x, y = cartesian coordinates 
a = coefficient of thermal expansion 

<5,y = Kronecker delta 
8 = a(X + v)/k = distortivity 
tij - strain tensor 
li = shear modulus 
v = Poisson's ratio 
crij = stress tensor 
r = temperature jump across the interface 
a) = strength of an isolated heat vortex 
fl = intensity of distributed heat vortices 
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Equation (26) is a Cauchy singular integral equation, and its solu­
tion with the constraint (29) is known [6]: 

flU) = -
q"(ki + k2) 

<a (30) 
kik2 (a2-x2)112' 

It follows then using (22) that the distributed heat vortices give the 
following interface tractions: 

2Mq-°(b1-h){a2-x2)1'2, \x\ < a 

0, a < \x\ 
(Tyy(x, 0) (31) 

The final task is to cancel the normal tractions in the separation 
zone and allow for the gap. This is done by introducing a distribution 
By(x) of edge dislocations in the interval -a < x < a. Thus, from (25) 
and (31), 

••J3y(f)d| -P + 2w«r(81-w-**F3 + ̂  r ™ i = o,W<a 
IT J -a x — £ 

(32) 

Using (24), we also get 

gW = - J ^ B(£)d£ 

and 

dg(x) 

(33) 

By(x) = 
dx 

(34) 

Since the gap between the solids must vanish in the contact zones 

B(£)d£ = 0 (35) s: 
Due to the symmetry of the problem, By(x) must be odd in x, and (35) 
is automatically satisfied, but this will be verified a posteriori. 
Moreover, By(x) must be bounded at x = ±a [7], which also insures 
that the interface tractions vanish at the ends of the separation 
zone. 

A bounded solution of a Cauchy singular integral equation is pos­
sible only if the right side of the equation satisfies a so-called consis­
tency condition [6]. The consistency condition for (32) is 

C" \-p + 2Mq"(bl - h2)(a
2 - ?)M)(a2 - S 2 ) - 1 ' 2 ^ = 0 (36) 

Carrying out the elementary integrations, (36) reduces to 

—irp + 4Mq"(&l-52)a = 0 (37) 

Equation (37) determines the length of the separation zone. It also 
shows that a solution is possible (viz., a > 0) only when q™(5i~ &2) > 
0, or when heat flows into the material with the larger distortivity (q ™ 
> 0 corresponds to heat flowing in the direction of increasing y). 

The solution of (32) is [6] 

By(x) = —(a2 

2-irM 
,211/2 

s. <> 2Mq"(81 - 52)(a
2 - £2)1/2 - p 

' - 9 - ( « i -
7T 

(a2 - ¥)m(i - x) 

- b2)(a
2 - x2)1'2 log 

dt 

a + x 
\x\ <a (38) 

It is seen that By (x) is odd in x, as expected, and that (35) is satisfied. 
The gap between the solids can be obtained from (33) and (38) by 
numerical integration. Using (25), the normal tractions between the 
solids in the contact zones are seen to be 

y(X, 0 ) = -P+-
2M r°By(£)dZ 

J-a 
a <\x\ (39) 

Substituting (38) into (39), and carrying out the integrations [ 
obtain 

<?yy(x, 0) : 

2a 
(sgnx)(x2 — a2)1'2 log 

x + a 
,a<\x\ (40) 

The normal tractions are seen to be compressive for q"(5i — &2) > 
0. 

The shape of the gap and the distribution of normal tractions are 
shown in Figs. 2 and 3. 

It follows from (29) and (35) that the far field behavior of the dis­
turbance caused by the separation zone is the same as that of a doublet 
of heat vortices and a doublet of dislocations. From the expressions 
given in [5], we can readily deduce that a doublet of heat vortices gives 
a temperature change and stresses that are of order 11R as R -* °°, 
where R is the distance from the doublet. A doublet of dislocations 
gives stresses that decay as l/R2. It is clear, therefore, that the solution 
with a separation zone satisfies the same boundary conditions at in­
finity as the temperature and stress fields for full contact. 

P e r i o d i c A r r a y of S e p a r a t i o n Zones 
Another solution of fundamental importance is that involving a 

periodic array of separation zones. It can be constructed by means 
similar to those used in the previous section. As before, the initially 
unknown lengths of the separation zones are denoted by 2a. The 
length of a period is taken to be 2h. . 

The heat conduction part of the problem for a periodic array of 
insulated segments can first be written as 

q - • 
1 kxki 

•s: 
a(t)d£ 

= o 
T k\ + k2 J-" X — £ 

Taking advantage of the periodicity [9], we obtain 

.7 r (£ - * ) 
<T + 2hkl + k2J-a 2h 

(41) 

< a (42) 

In addition, we must require that 

fl(£)d£ = 0 (43) 

Equation (42) can be transformed to a Cauchy singular integral 
equation for the new unknown function 

*(u)> 
fi(u) 

1 + c2u2 

by the following change of variables 

0.3 

(44) 

0.2 -

O.I -

x/a 
1 ^ — * — 

O 0.5 I 

Fig. 2 Shape of the gap for a single separation zone 

to 
— i " -

x/a 

0.5 -

t.O 

" <ryJx,0)/q°°(Sl-8z)Ma 

Fig. 3 Contact pressure for a single separation zone 
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7r£ TTX ira 
tan — = cu. tan — = cs, c = tan — 

2h 2h 2h 

Condition (43) then becomes 

| 3>(u)du • 0 

(45) 

(46) 

Omitting the details which can be found in reference [9], the solution 
is 

Q(s) = — s < 1 (47) 
kxk2 (1-s2)1'2' 

The interface tractions corresponding to the periodic array of heat 
vortices can be obtained with the aid of (22). After some integrations, 
the result is 

oyy(x, 0) = 

f — < r ( S i - « 2 ) / ( * ) , 1*1 < a 
7T 

0, a <{x\ <h 
(48) 

where 

I(x) = log 

TTX I 1TX 7TOl1 / 2 

cos 1- cos2 ' cos2 — 
2h I 2h 2h 

2h 2h 

, i r a \ 1/2 

2hj 

(49) 

Next we introduce a distribution By(x) of edge dislocations to 
cancel the normal tractions in the separation zones given by (48) and 
thus obtain the following singular integral equation: 

2Mh ,„ „ w , N 
-P+ q°°(h-h)I(x) 

•K 

M 
cot 

2h 

with the constraint 

£ By(0d£ = 0 

d£ = 0, | x | < a (50) 

(51) 

Using the change of variables given by (45), defining a new unknown 
function 

* ( u ) = 
By(u) 

l + c2u2 
(52) 

and proceeding as in the case of a single separation zone, we first ob­
tain from the consistency condition that 

^ = - ^ - (1 + W*R(c) 
Mq"'(Si — <52)a 7r2a 

where 

R(c) 
J - i (1 -

F(u, c)du 

(1 - u2)1/2(l + cW)1'2 

(53) 

(54) 

and 

F(u, c) = log 
(1 + c2)1 /2 + c(l - u2)1'2 

(55) 
( 1 + c2)l/2_c(1_u2)l/2 

The solution of the transformed integral equation (50) together with 
(53) yields 

Ac2R(c)s 

<7°°(5i - 52)a 
" * - < ! • l + c2s2 

J-\ i 
F(u, c)du 

(56) 
(1 - u2)i /2(l + e2u2)(u ' 

Equation (53) determines a for given p . Alternatively, it gives di­
rectly the pressure p required to produce a specified a. The integral 
in (54) can be evaluated by the Gauss-Jacobi quadrature [10] and the 
singular integral in (56) by the related quadrature developed by Er-
dogan and Gupta [11]. Finally, the normal tractions in the new vari­
ables are 

y(s) = -p 
2M, 

-(1 + c 
J-l U 

iy(u)du 
(57) 

Substituting (53) and (56) into (57) and performing some integrations, 
we obtain in the contact zones 

(Tyy(s) 2/ i 
• ( s 2 - 1 ) 1 / 2 

Mq"{5i-b2)a 

+(sgns)(l + c2s2) f 
•^-1(1 - u 

c2R(c)\s\ 

F(u, c)du 
2 ) 1 / 2 ( 1 + C 2 U 2 ) ( U _ s ) j 

M > 1 (58) 

The results are shown in Figs. 4-6 in the original variables. Figure 4 
shows how the dimensionless parameter p/Mq" (5i — i2)a depends 
on a/h. As a/h —• 0, we recover the results for the single separation 
zone. Figure 5 shows the shapes of the gaps and Fig. 6, the contact 
pressure for various values of a/h. 

If the rate of heat flow is to be the same for full contact and sepa­
ration, the periodic array of gaps requires a larger far-field difference 
in temperatures. The additional temperature differential needed is 
readily extracted from the expressions given in [2], and it is 

ir(h — a) 
AT-

2q"h J_ _1 
hi h% 2h 

(59) 

Conclusion 
We have shown that two bodies that are pressed together and ex­

change heat by conduction may not necessarily remain in full contact 
and can separate locally if heat flows into the material with the larger 
distortivity. The questions raised in the Introduction cannot be an­
swered in the present mathematical context due to its general com­
plexity. However, insight into the phenomena involved can be gained 
by using materials that have a simpler response than that of the elastic 
solids conducting heat. A particularly simple model for this purpose 
was suggested to us by Aldo [12]. It consists of two blocks with dif-

; p/qa(SrSz)Ma 

O 0.5 I 

Fig. 4 Dependence of p/qa(S, - 82)Ma on a/h 

0.4 

0.3 

0.2 

O.I 

yg(x)/qa>(8rSe)oh 

^o/h'O.9 

—S/^\ \ 

~ ^ £ ^ \ N \ v̂ \ 
L ^ \ V \ \ \ 
^\Xvvvv\ \ x/h 

0.5 

Fig. 5 Shapes of gaps for periodic arrays of separation zones for a/h from 
0.1 to 0.9 
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vo/fl'O.I 0.9 
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^ 

°-,y(xl0)/qa(8r8!)Ma 

Fig. 6 Contact pressure for periodic arrays of separation zones with a/h -
0.1, 0.5 and 0.9 

ferent properties. Each block is an assemblage of thin rods with in­
sulated and frictionless sides, so that heat is conducted only in the 
direction of the rods and there are no shearing stresses when the 
blocks are deformed. The contact interface is normal to the rods. An 
investigation using the Aldo model has revealed the following be­
havior: 

1 The steady state involving full contact is always possible. The 
state with partial separation becomes possible when the imposed 
temperature differential exceeds a certain critical value. 

2 The state with partial separation corresponds to a lower level 
of total mechanical energy. 

The details of this study are beyond the scope of the present article 
and will be published at a later time. 

The Aldo model consisting of two finite blocks shows quite clearly 
that the nonuniqueness demonstrated here does not arise from the 
consideration of semi-infinite solids. Some very recent work by Barber 
[13], using a simplified model but a general and physically much more 
realistic contact condition for heat transfer between the solids, has 
shown that the lack of uniqueness is not caused by the idealized 
boundary conditions (6) and (11). Thus it appears that the lack of 
uniqueness for heat flowing into the material with the larger distor-

tivity is not purely mathematical, that it has a physical basis, and that 
it signals possible instabilities. 

It may be interesting to note in conclusion that there is also some 
difficulty with heat flowing between the contacting solids in the op­
posite direction, or into the material with the smaller distortivity. In 
such cases, the difficulty is exactly the opposite or connected with 
existence rather than uniqueness. It appears, however, that lack of 
existence is connected only with the highly idealized boundary con­
ditions (6) and (11), and that existence can be achieved by appro­
priately modifying the conditions imposed at the contact interface 
[14, 15]. 
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